

BC-MRA ACCREDITED

Test Report No.: PSU-QSU2309010110RF06

Certificate #6613.01

FCC TEST REPORT (Part 15, Subpart C)

Applicant:	HMD Global Oy
Address:	Bertel Jungin aukio 9,02600 Espoo,Finland

Manufacturer or Supplier:	HMD Global Oy
Address:	Bertel Jungin aukio 9,02600 Espoo,Finland
Product:	Mobile phone
Brand Name: NOKIA	
Model Name:	TA-1536
FCC ID:	2AJOTTA-1536
Date of tests:	Jan. 16, 2023 ~ Feb. 23, 2023

The tests have been carried out according to the requirements of the following standard:

□ FCC Part 15, Subpart C, Section 15.247

◯ ANSI C63.10-2013

CONCLUSION: The submitted sample was found to **COMPLY** with the test requirement

Prepared by Chao Wu	Approved by Peibo Sun
Engineer / Mobile Department	Manager / Mobile Department

Chao Wu

Date: Feb. 23, 2023

Simperbo

Date: Feb. 23, 2023

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

TABLE OF CONTENTS

R	ELEA	ASE C	CONTROL RECORD	5
1	s	UMM	ARY OF TEST RESULTS	6
	1.1	MEA	ASUREMENT UNCERTAINTY	7
2	G	ENE	RAL INFORMATION	8
	2.1	GEN	NERAL DESCRIPTION OF EUT	8
	2.2	DES	SCRIPTION OF TEST MODES	12
	2.	.2.1	CONFIGURATION OF SYSTEM UNDER TEST	13
	2.	.2.2	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	13
	2.3	DUT	Y CYCLE OF TEST SIGNAL	17
	2.4	GEN	NERAL DESCRIPTION OF APPLIED STANDARDS	18
	2.5	DES	SCRIPTION OF SUPPORT UNITS	18
3	T	EST	TYPES AND RESULTS	19
	3.1	COI	NDUCTED EMISSION MEASUREMENT	19
	3.	.1.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	19
	3.	.1.2	TEST INSTRUMENTS	19
	3.	.1.3	TEST PROCEDURES	20
	3.	.1.4	DEVIATION FROM TEST STANDARD	20
	3.	.1.5	TEST SETUP	21
	3.	.1.6	EUT OPERATING CONDITIONS	21
	3.	.1.7	TEST RESULTS	22
	3.2	RAD	DIATED EMISSION MEASUREMENT	24
	3.	.2.1	LIMITS OF RADIATED EMISSION MEASUREMENT	24
	3.	.2.2	TEST INSTRUMENTS	25
	3.	.2.3	TEST PROCEDURES	26
	3.	.2.4	DEVIATION FROM TEST STANDARD	26
	3.	.2.5	TEST SETUP	27
	3.	.2.6	EUT OPERATING CONDITIONS	28
	3.	.2.7	TEST RESULTS	29
	3.3	6 DI	BANDWIDTH MEASUREMENT	73
	3.	.3.1	LIMITS OF 6DB BANDWIDTH MEASUREMENT	73
	3.	.3.2	TEST INSTRUMENTS	73
	3.	.3.3	TEST PROCEDURE	74
	-	.3.4	DEVIATION FROM TEST STANDARD	75
Н	uarui 7	lavers	High Technology Tower N, Innovation Center, 88 Zhuyi Road, High-tech	

VERITAS Test Report No.: PSU-QSU2309010110RF06

	3.3.5	TEST SETUP	75
	3.3.6	EUT OPERATING CONDITIONS	75
	3.3.7	TEST RESULTS	76
	3.4 CON	NDUCTED OUTPUT POWER	77
	3.4.1	LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT	77
	3.4.2	TEST SETUP	77
	3.4.3	TEST INSTRUMENTS	77
	3.4.4	TEST PROCEDURES	77
	3.4.5	DEVIATION FROM TEST STANDARD	77
	3.4.6	EUT OPERATING CONDITIONS	77
	3.4.7	TEST RESULTS	78
	3.4.7.1	MAXIMUM PEAK OUTPUT POWER	78
	3.4.7.2	AVERAGE OUTPUT POWER (FOR REFERENCE)	79
	3.5 POV	VER SPECTRAL DENSITY MEASUREMENT	80
	3.5.1	LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT	80
	3.5.2	TEST SETUP	80
	3.5.3	TEST INSTRUMENTS	80
	3.5.4	TEST PROCEDURE	80
	3.5.5	DEVIATION FROM TEST STANDARD	80
	3.5.6	EUT OPERATING CONDITION	80
	3.5.7	TEST RESULTS	81
	3.6 OUT	OF BAND EMISSION MEASUREMENT	82
	3.6.1	LIMITS OF OUT OF BAND EMISSION MEASUREMENT	82
	3.6.2	TEST SETUP	82
	3.6.3	TEST INSTRUMENTS	82
	3.6.4	TEST PROCEDURE	82
	3.6.5	DEVIATION FROM TEST STANDARD	83
	3.6.6	EUT OPERATING CONDITION	83
	3.6.7	TEST RESULTS	83
4	РНОТО	OGRAPHS OF THE TEST CONFIGURATION	84
5	MODIF	ICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB	3.85
6	APPEN	IDIX 1 WLAN 2.4G	86
	DTS BAN	DWIDTH	86
		RESULT	
		GRAPHS	
		M CONDUCTED OUTPUT POWER	

TEST RESULT PEAK	96
TEST RESULT AVERAGE	96
MAXIMUM POWER SPECTRAL DENSITY	97
TEST RESULT	97
TEST GRAPHS	97
BAND EDGE MEASUREMENTS	106
TEST RESULT	106
TEST GRAPHS	107
CONDUCTED SPURIOUS EMISSION	113
TEST RESULT	113
TEST GRAPHS	114
DUTY CYCLE	132
TEST RESULT	132
TEST GRAPHS	133
7 APPENDIX 2 BLE	135
DTS BANDWIDTH	135
TEST RESULT	135
TEST GRAPHS	136
OCCUPIED CHANNEL BANDWIDTH	139
TEST RESULT	139
TEST GRAPHS	140
MAXIMUM CONDUCTED OUTPUT POWER	143
TEST RESULT PEAK	143
TEST RESULT AVERAGE	143
MAXIMUM POWER SPECTRAL DENSITY	144
TEST RESULT	144
TEST GRAPHS	145
BAND EDGE MEASUREMENTS	148
TEST RESULT	148
TEST GRAPHS	149
CONDUCTED SPURIOUS EMISSION	151
TEST RESULT	151
TEST GRAPHS	152
DUTY CYCLE	158
TEST RESULT	158
TEST GRAPHS	159

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
W7L-P23010004-1RF06	W7L-P23010004-1RF06 Original release	
	Based on the original product adding 2G PA second	Feb. 23, 2023
	supply. The FX5196 add 2nd supply FX5596Y, raw	
	material of Wafer and the printing model have	
PSU-QSU2309010110RF06	changes. The IC design has not changed and there	
P30-Q302309010110KF00	is no impact on BT and WIFI, other has not	
	changed. This report verify the RSE worse case.	
	The test results are similar, so the original reported	
	data is retained.	

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC PART 15, SUBPART C (SECTION 15.247)				
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	Test lab*	
15.207	AC Power Conducted Emission	Compliance	А	
15.205 15.209	Radiated Emissions	Compliance	А	
15.247(d)	Out of band Emission Measurement	Compliance	А	
15.247(a)(2)	6dB bandwidth	Compliance	А	
15.247(b)	Conducted Output power	Compliance	А	
15.247(e)	Power Spectral Density	Compliance	А	
15.203	Antenna Requirement	Compliance	А	

Note: 1.Except RSE · other data please refer to Appendix 1 (for WIFI-2.4G) and Appendix 2 (for BLE)

2. Only the worse data were report

*Test Lab Information Reference

Lab A:

Huarui 7Layers High Technology (Suzhou) Co., Ltd.

Lab Address:

Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province Accredited Test Lab Cert 6613.01

The FCC Site Registration No. is 434559; The Designation No. is CN1325.

1.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY	
AC Power Conducted emissions	±2.70dB	
Radiated emissions (30MHz~1GMHz)	±4.98dB	
Radiated emissions (1GMHz ~6GMHz)	±4.70dB	
Radiated emissions (6GMHz ~18GMHz)	±4.60dB	
Radiated emissions (18GMHz ~40GMHz)	±4.12dB	
Conducted emissions	±4.01dB	
Occupied Channel Bandwidth	±43.58KHz	
Conducted Output power	±2.06dB	
Power Spectral Density	±0.85 dB	

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

PRODUCT*	Mobile phone		
BRAND NAME*	NOKIA		
MODEL NAME*	TA-1536		
NOMINAL VOLTAGE*	5.0Vdc(adapter) 3.85Vdc (Li-ion, battery)		
MODULATION	DSSS, OFDM, GFSK		
	802.11b: 11/ 5.5/ 2.0 / 1.0 Mbps		
	802.11g: 54/ 48/ 36 / 24 / 18 / 9/ 6 Mbps		
TRANSMISSION RATE	802.11n20: up to 72.2 Mbps		
	BT_LE: 1 Mbps		
OPERATING	2412-2462MHz for 11b/g/n(HT20)		
FREQUENCY	2402-2480MHz for BT-LE(GFSK)		
MAX. OUTPUT POWER	WLAN: 333.43mW (Maximum) BT-LE: 1.22mW (Maximum)		
ANTENNA TYPE*	PIFA Antenna with 1.2dBi gain		
HW VERSION*	SPR_S63Q0		
SW VERSION*	00WW_0_090		
I/O PORTS*	Refer to user's manual		
	USB cable1: non-shielded cable, with w/o ferrite core, 1 meter		
CABLE SUPPLIED*	USB cable2: non-shielded cable, with w/o ferrite core, 1 meter		
	USB cable3: non-shielded cable, with w/o ferrite core, 1 meter		
	Earphone: non-shielded cable, with w/o ferrite core, 1.2 meter		

NOTE

- 1. *Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, Test Lab is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 3. The EUT incorporates a SISO function. Physically, the EUT provides one transmitter and one receiver.

MODULATION MODE	TX/RX FUNCTION
802.11b	1TX /1RX
802.11g	1TX /1RX
802.11n (20MHz)	1TX /1RX
BT_LE(1MHz)	1TX /1RX

- 4. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
- 5. The product of TA-1536(FCC ID: 2AJOTTA-1536) have version and components manufacturer from a second supplier. The first version is 090, the second one is 103, only the version changes, and the RF parameters do not change, components manufacturer with following changes as below:

NO.	Change Description		specificatons	first supplier	specificatons	second supplie r
		64GB EMMC	FEMDNN064G-A3		FEMDNN064G-A3	
1			A56	Longsys	A56	Biwin
			BWCTARV11X64G		BWCTARV11X64G	
		2GB	FLXC2002G-N2		FLXC2002G-N2	
2		LPDDR	BWMZEX32H2A-1	Longsys	BWMZEX32H2A-16	Biwin
	PCBA		6G-X		G-X	
		3GB LPDDR	FLXC4003G-50		FLXC4003G-50	
3			BWMEXX32H2A-2	Longsys	BWMEXX32H2A-2	Biwin
			4Gb-X		4Gb-X	
		4GB LPDDR	FLXC2004G-30		FLXC2004G-30	
4			BWMZCX32H2A-3	Longsys	BWMZCX32H2A-3	Biwin
			2G-X		2G-X	
5		PCB	/ KII	KINGSHINE	,	WUZH
J					/	U
			6.517 HKC,		6.517 BOE (B8),	Lian
6	LCM	LCD	360min,400typ,	TCL	360min,400typ,	Chuan
			2.5D		2.5D	g

VERITAS Test Report No.: PSU-QSU2309010110RF06

VERITAS	AS TOUR OF THE TOUR GOOD TO THE TOUR OF					
7	Front camera	Camera	8M FF COM	Lian Heyingxiang	8M FF COM	Shijia
8	Rear camera	Camera	13M-AF COB	Lian Heyingxiang	13M-AF COB	Ruiche ng
9	Macro CAM	Camera	2M FF	Shijia	2M FF	Lian Heying xiang
10	fingerprint	module	Back fingerprint	Hedayuan	Back fingerprint	Sanyin gxin
11	1 Speaker		1712 1W	Dong Sheng	1712 1W	Xin Rongd a
12	Vibrator		1027 FPC	Kai Long	1027 FPC	Chao Yin
13	Receiver		0809	Dong Sheng	0809	Xin Rongd a
14	FPC		1	Lante	1	Kaihon gxing
15	Battery		5000MAH	Gaoyuan	5000MAH	Feng Hua
16	Data cable		2A typeC	Yuwei	2A typeC	Juwei

VERITAS Test Report No.: PSU-QSU2309010110RF06

List of Accessory:

ACCESSORIES	BRAND	MANUFACTURER	MODEL	SPECIFICATION
LCD Panel 1	НКС	MianYang HKC Optoelectronics Technology Co., Ltd.	QM065HS03-1	6.517
LCD Panel 2	вое	вое	BV065WBQ-L1B	6.517
Battery 1	Nokia	Guangdong Fenghua New Energy Co.,Ltd.	WT510	Capacity : 3.85 Vdc, 4900mAh
Battery 2	Nokia	HUNAN GAOYUAN BATTERY Co., Ltd.	WT510	Capacity: 3.85 Vdc, 4900mAh
AC Adapter	Nokia	SHENZHEN BAIJUNDA ELECTRONICS.,LTD	AD-010U	I/P: 100-240Vac, 0.35A, O/P: 5.0Vdc, 2.0A
Earphone	Juwei Electronics Co., LTD	Juwei Electronics Co., LTD	JWEP1252-H21H	Signal Line, 1.2meter
USB Cable 1	Juwei Electronics Co., LTD	Juwei Electronics Co., LTD	JWUB1536-H21H	Signal Line, 1.0meter
USB Cable 2	Yu Wei	Dongguan Yuwei Electronic Technology Co., Ltd.	CH2212TC	Signal Line, 1.0meter
USB Cable 3	Sai bao	Saibao (Jiangxi) Industrial Co., Ltd	SHM1-A003A	Signal Line, 1.0meter

2.2 DESCRIPTION OF TEST MODES

11 channels are provided for 802.11b, 802.11g and 802.11n (HT20):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
1	2412 MHz	7	2442 MHz
2	2417 MHz	8	2447 MHz
3	2422 MHz	9	2452 MHz
4	2427 MHz	10	2457 MHz
5	2432 MHz	11	2462 MHz
6	2437 MHz		

40 channels are provided for BT-LE (GFSK):

			`	,			
CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHZ)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

2.2.1 CONFIGURATION OF SYSTEM UNDER TEST

Please see section 5 photographs of the test configuration for reference.

2.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports.

The worst case was found when positioned on Y axis for radiated emission. Following test modes were selected for the final test, and the final worst case is marked in boldface and recorded in the report:

EUT CONFIGURE		APPLICA	ABLE TO		MODE
MODE	RE<1G	RE≥1G	PLC	APCM	MODE
-	√	$\sqrt{}$	V	√	-

Where

RE<1G: Radiated Emission below 1GHz

RE≥1G: Radiated Emission above 1GHz

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

NOTE: No need to concern of Conducted Emission due to the EUT is powered by battery.

RADIATED EMISSION TEST (BELOW 1GHz):

⊠ Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11b	1 to 11	6	OFDM	MCS0
BT-LE	0 to 39	19	GFSK	1.0

RADIATED EMISSION TEST (ABOVE 1GHz):

- ☑ Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 - ⊠ Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABL E CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	1.0
802.11g	1 to 11	1, 6, 11	OFDM	6.0
802.11n HT20	1 to 11	1, 6, 11	OFDM	MCS0
BT-LE	0 to 39	0,19, 39	GFSK	1

POWER LINE CONDUCTED EMISSION TEST

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- ⊠ Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11n HT20	1 to 11	6	OFDM	MCS0

BANDEDGE MEASUREMENT:

⊠ Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	1.0
802.11g	1 to 11	1, 6, 11	OFDM	6.0
802.11n HT20	1 to 11	1, 6, 11	OFDM	MCS0
BT-LE	0 to 39	0,19, 39	GFSK	1

ANTENNA PORT CONDUCTED MEASUREMENT:

- ☐ This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

⊠ Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	1.0
802.11g	1 to 11	1, 6, 11	OFDM	6.0
802.11n HT20	1 to 11	1, 6, 11	OFDM	MCS0
BT-LE	0 to 39	0,19, 39	GFSK	1

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	TEST VOLTAGE	TESTED BY
RE<1G	23deg. C, 70%RH	DC 5V By Adapter	Chao Wu
RE≥1G	23deg. C, 70%RH	DC 5V By Adapter	Chao Wu
PLC	25deg. C, 52%RH	DC 5V By Adapter	Chao Wu
APCM	25deg. C, 60%RH	DC 3.85V By Battery	Chao Wu

2.3 Duty Cycle of Test Signal

Please Refer to Appendix1/2 Of this test report.

WORST-CASE DATA:

Measured Duty Cycle				
Mode	Duty Cycle [%]			
Wiode	ANT0+1			
	11B	99.52		
WIFI 2.4GHz	11G	97.49		
	11N20	96.59		
BT LE	BT4.0	86.98		

Note:

Duty cycle of test signal is < 98%, duty factor shall be considered.

2.4 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C, Section 15.247

KDB 558074 D01 DTS Meas Guidance v05r02

ANSI C63.10-2013

Note:

- 1. All test items have been performed and recorded as per the above standards.
- 2. The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (Certification). The test report has been issued separately.

2.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	N/A	N/A	N/A	N/A	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	N/A

3 TEST TYPES AND RESULTS

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED	LIMIT (dBµV)
	Quasi-peak	Average
0.15 ~ 0.5	66 to 56	56 to 46
0.5 ~ 5	56	46
5 ~ 30	60	50

NOTE: 1.The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

3.1.2 TEST INSTRUMENTS

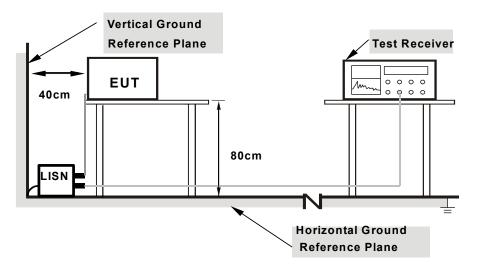
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.	
EMI Test Receiver	Rohde&Schwarz	ESR3	102749	Feb.25,22	Feb.24,24	
ELEKTRA test	Dahda & Cahurana		NIA	NI/A	NI/A	
software	Rohde&Schwarz	ELEKTRA	NA	N/A	N/A	
LISN network	Rohde&Schwarz	ENV216	102640	Feb.17,22	Feb.16,24	
CABLE	Rohde&Schwarz	W61.01	N/A	Apr.28,23	Oct.27,23	
CABLE	Rohde&Schwarz	W601	N/A	Apr.28,23	Oct.27,23	

NOTE:

- 1. The test was performed in CE shielded room.
- 2. The calibration interval of the above test instruments is 6 months or 24 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

3.1.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.


NOTE: All modes of operation were investigated and the worst-case emissions are reported.

3.1.4 DEVIATION FROM TEST STANDARD

No deviation.

3.1.5 TEST SETUP

Note: 1.Support units were connected to second LISN.

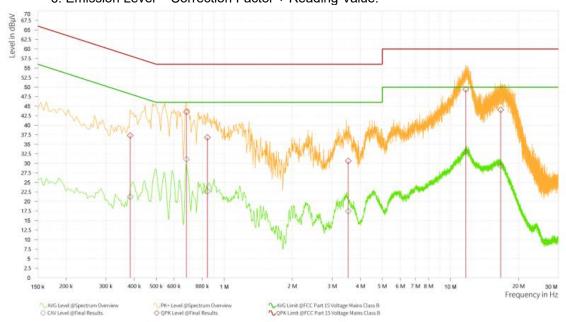
2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.1.6 EUT OPERATING CONDITIONS

- a. Turned on the power and connected of all equipment.
- b. EUT was operated according to the type used was description in manufacturer's specifications or the User's Manual.

3.1.7 TEST RESULTS

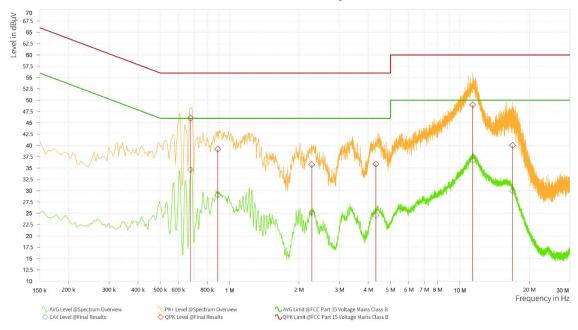

CONDUCTED WORST-CASE DATA:

Frequency Range	150KHz ~ 30MHz		Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25deg. C, 55%RH
Tested By	Chao Wu		

Rg	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	CAV Level [dBµV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]	Correction [dB]	Line	Meas. BW [kHz]
1	0.384	37.31	58.19	20.88	21.21	48.19	26.98	10.01	L1	9.000
1	0.681	43.51	56.00	12.49	31.10	46.00	14.90	9.99	L1	9.000
1	0.843	36.81	56.00	19.19	22.65	46.00	23.35	9.92	L1	9.000
1	3.534	30.59	56.00	25.41	17.45	46.00	28.55	9.79	L1	9.000
1	11.702	49.40	60.00	10.60	32.90	50.00	17.10	9.98	L1	9.000
1	16.692	44.05	60.00	15.95	29.33	50.00	20.67	10.08	L1	9.000

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value -Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



Frequency Range	1150KH7~30MH7	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25deg. C, 55%RH
Tested By	Chao Wu		

Rg	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	CAV Level [dBµV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]	Correction [dB]	Line	Meas. BW [kHz]
1	0.677	46.04	56.00	9.96	34.60	46.00	11.40	10.00	Ν	9.000
1	0.888	39.19	56.00	16.81	28.99	46.00	17.01	9.91	N	9.000
1	2.274	35.76	56.00	20.24	25.13	46.00	20.87	9.78	N	9.000
1	4.313	35.86	56.00	20.14	24.56	46.00	21.44	9.81	N	9.000
1	11.360	48.95	60.00	11.05	36.70	50.00	13.30	10.00	N	9.000
1	16.935	40.05	60.00	19.95	29.93	50.00	20.07	10.14	Ν	9.000

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value -Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

VERITAS Test Report No.: PSU-QSU2309010110RF06

3.2.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Pre-Amplifier	R&S	SCU18F1	100815	Aug.30,22	Aug.29,24
Pre-Amplifier	R&S	SCU08F1	101028	Sep.16,22	Sep.15,24
Signal Generator	R&S	SMB100A	182185	Feb.16,22	Feb.15,24
3m Fully-anechoic Chamber	TDK	9m*6m*6m	HRSW-SZ-E MC-01Cham ber	Nov.25,22	Nov.24,25
3m Semi-anechoic Chamber	TDK	9m*6m*6m	HRSW-SZ-E MC-02Cham ber	Nov.25,22	Nov.24,25
EMI TEST Receiver	R&S	ESW44	101973	Feb.25,22	Feb.24,24
Bilog Antenna	SCHWARZBEC K	VULB 9163	1264	Feb.28,22	Feb.27,24
Horn Antenna	ETS-LINDGRE N	3117	227836	Aug.22,22	Aug.21,24
Horn Antenna (18GHz-40GHz)	Steatite Q-par Antennas	QMS 00880	23486	Feb.23,22	Feb.22,24
Horn Antenna	Steatite Q-par Antennas	QMS 00208	23485	Aug.22,22	Aug.21,24
Loop Antenna	SCHWARZ	HFH2-Z2/Z2E	100976	Feb.23,22	Feb.22,24
WIDEBANDRADIO COMMUNICATION TESTER	R&S	CMW500	169399	Jun.27,22	Jun.26,24
Test Software	ELEKTRA	ELEKTRA4.32	N/A	N/A	N/A
Open Switch and Control Unit	R&S	OSP220	101964	N/A	N/A
DC Source	HYELEC	HY3010B	551016	Aug.31,22	Aug.30,24
Hygrothermograph	DELI	20210528	SZ014	Sep.06,22	Sep.05,24
PC	LENOVO	E14	HRSW0024	N/A	N/A
TMC-AMI18843A(CA BLE)	R&S	HF290-NMNM-7 .00M	N/A	N/A	N/A
TMC-AMI18843A(CA BLE)	R&S	HF290-NMNM-4 .00M	N/A	N/A	N/A
CABLE	R&S	W13.02	N/A	Apr.28,23	Oct.27,23
CABLE	R&S	W12.14	N/A	Apr.28,23	Oct.27,23

NOTE: 1. The calibration interval of the above test instruments is 6 months or 24 months or 36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

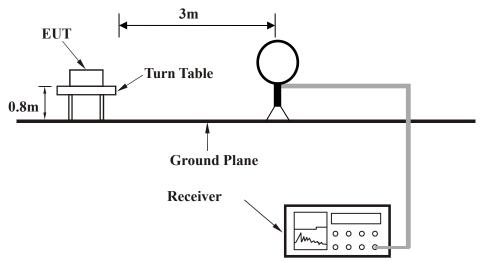
- 2. The test was performed in 3m Chamber.
- 3. The FCC Site Registration No. is 525120; The Designation No. is CN1171.

3.2.3 TEST PROCEDURES

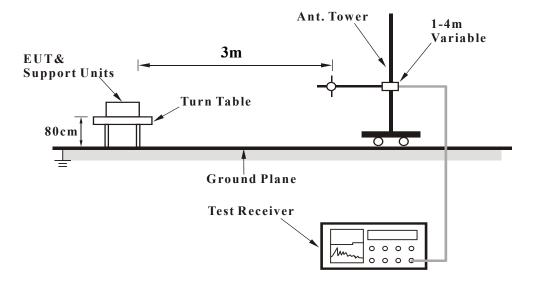
- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average (Duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 5. All modes of operation were investigated and the worst-case emissions are reported.

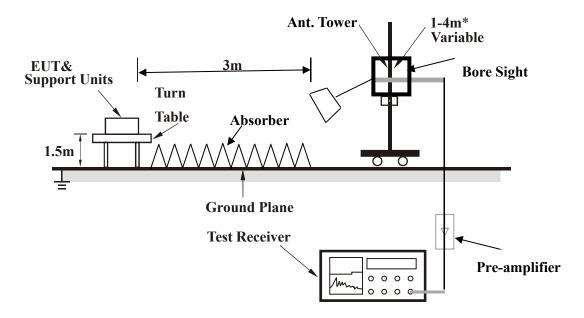

3.2.4 DEVIATION FROM TEST STANDARD

No deviation



3.2.5 TEST SETUP

<Frequency Range 9KHz~30MHz >



< Frequency Range 30MHz~1GHz >

<Frequency Range above 1GHz>

Note: Above 1G is a directional antenna

Depends on the EUT height and the antenna 3dB beamwidth both, refer to section 7.3 of CISPR 16-2-3.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.2.6 EUT OPERATING CONDITIONS

- a. Set the EUT under full load condition and placed them on a testing table.
- b. Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.
- c. The necessary accessories enable the EUT in full functions.

VERITAS Test Report No.: PSU-QSU2309010110RF06

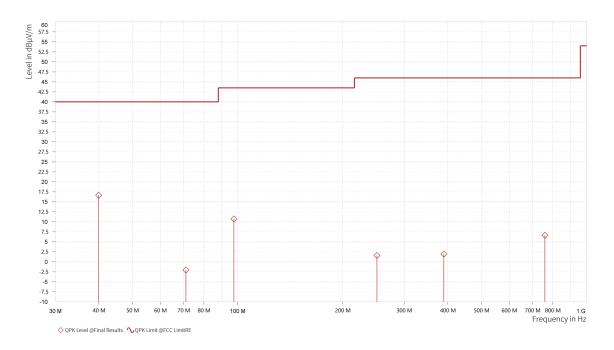
3.2.7 TEST RESULTS

NOTE: The 9K~30MHz amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

BELOW 1GHz WORST-CASE DATA:

30 MHz - 1GHz data:

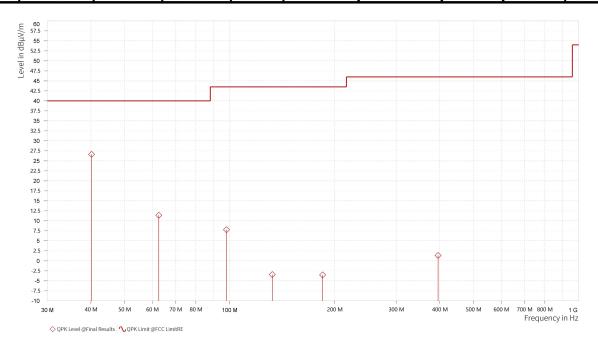
802.11b


CHANNEL	TX Channel 6	DETECTOR FUNCTION	Ouasi Poak (OP)
FREQUENCY RANGE		DETECTOR FUNCTION	Quasi-reak (Qr)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M	

Rg	Frequency [MHz]	QPK Level [dBµV/m]	QPK Limit [dBµV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]
1	39.943	16.65	40.00	23.35	-18.43	Н	8.9	1	120.000
1	71.031	-2.07	40.00	42.07	-24.25	Н	251.6	2	120.000
1	97.561	10.71	43.50	32.79	-21.46	Н	355	2	120.000
1	250.772	1.58	46.00	44.42	-23.18	Н	251.6	2	120.000
1	389.919	1.93	46.00	44.07	-20.05	Н	144.2	2	120.000
1	759.392	6.63	46.00	39.37	-14.37	Н	359.1	1	120.000

REMARKS:


 Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value – Emission level.

CHANNEL	TX Channel 6	DETECTOR ELINCTION	Ouggi Book (OB)
FREQUENCY RANGE		DETECTOR FUNCTION	Quasi-Peak (QP)

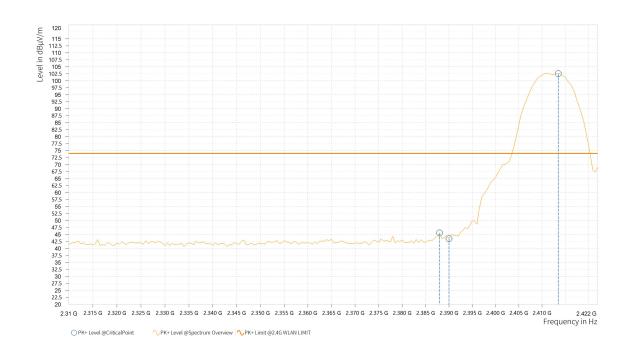
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M										
Rg	Frequency [MHz]		QPK Limit [dBµV/m]	Margin	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]		
1	40.185	26.63	40.00	13.37	-18.29	V	217.6	1	120.000		
1	62.641	11.39	40.00	28.61	-19.72	V	217.6	1	120.000		
1	97.900	7.76	43.50	35.74	-21.37	V	0.9	2	120.000		
1	132.384	-3.46	43.50	46.96	-25.32	V	217.6	1	120.000		
1	184.667	-3.54	43.50	47.04	-24.76	V	250.7	2	120.000		
1	395.690	1.33	46.00	44.67	-20.50	V	5	1	120.000		

REMARKS:

 Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value – Emission level.

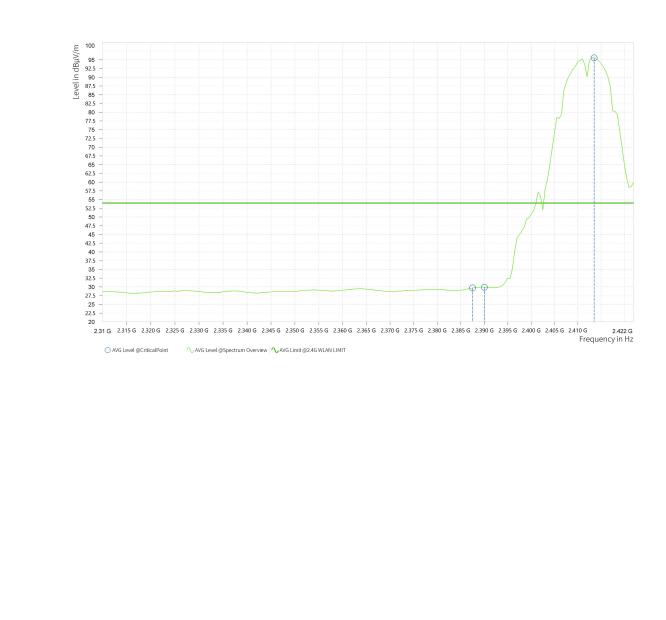
ABOVE 1GHz WORST-CASE DATA:

Note: 1. For radiated emissions testing \cdot the full testing range of different modes have been scanned \cdot only the worst case harmonic data is reported in the sheet.


2. All other emissions were greater than 20dB below the limit was not recorded

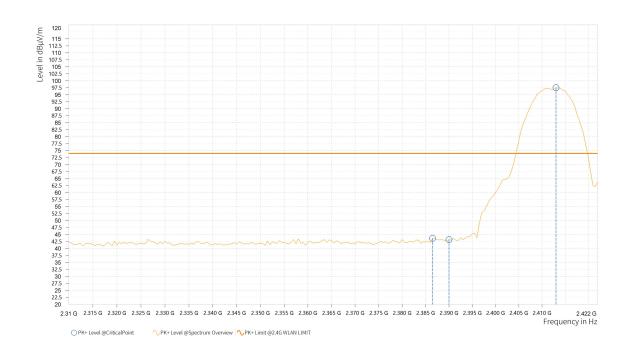
802.11b:

CHANNEL	TX Channel 1	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE		DETECTOR FUNCTION	Average (AV)


ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

Rg	Frequency [MHz]		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,388.000	45.54	74.00	28.46	9.82	Н	1	1
1	2,390.000	43.51	74.00	30.49	9.84	Н	203.9	2
1	2,413.500	102.54			9.87	Н	250.4	2

Rg	Frequency [MHz]		AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,387.500	29.70	54.00	24.30	9.82	Н	7.3	1
1	2,390.000	29.91	54.00	24.09	9.84	Н	7.3	1
1	2,413.500	95.57			9.87	Н	7.3	1



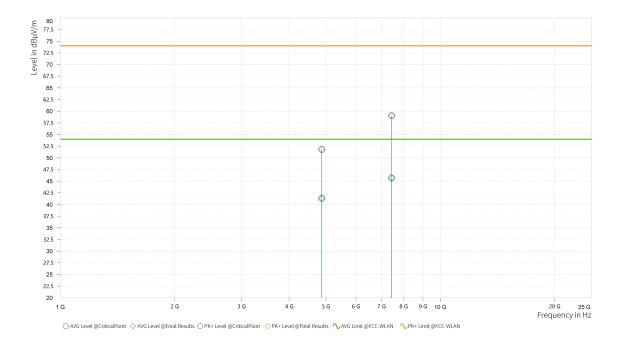
CHANNEL	TX Channel 1		Peak (PK)
FREQUENCY RANGE		DETECTOR FUNCTION	Average (AV)

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

Rg	Frequency [MHz]		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,386.500	43.61	74.00	30.39	9.81	V	87.9	1
1	2,390.000	43.16	74.00	30.84	9.84	V	178.7	2
1	2,413.000	97.52			9.87	V	181.1	1

Rg	Frequency [MHz]		AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,387.500	29.64	54.00	24.36	9.82	V	0.9	2
1	2,390.000	29.84	54.00	24.16	9.84	V	5.1	1
1	2,411.000	86.58			9.87	V	0.9	2

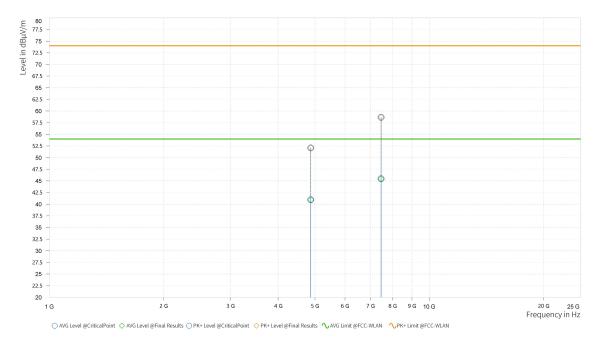
REMARKS:


- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value – Emission level..
- 2. 2412MHz: Fundamental frequency.

CHANNEL	TX Channel 6	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE		DETECTOR FUNCTION	Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

R	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	Margin	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	Margin	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	4,873.721	51.81	74.00	22.19	41.30	54.00	12.70	<mark>1</mark> 5.94	Н	1	1
4	7,441.125	59.02	74.00	14.98	45.68	54.00	8.32	23.91	Н	359.1	1



CHANNEL	TX Channel 6		Peak (PK)
FREQUENCY RANGE		DETECTOR FUNCTION	Average (AV)

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

Rg	Frequency [MHz]		PK+ Limit [dBµV/m]	Margin	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	Margin	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	4,874.206	52.07	74.00	21.93	40.95	54.00	13.05	15.94	V	125	2
4	7,461.525	58.64	74.00	15.36	45.46	54.00	8.54	23.82	V	1	2

REMARKS:

- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value – Emission level.
 - 2. 2437MHz: Fundamental frequency.

CHANNEL	TX Channel 11		Peak (PK)	
FREQUENCY RANGE		DETECTOR FUNCTION	Average (AV)	

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

Rg	Frequency [MHz]		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,463.000	102.11			9.96	Н	225.4	2
1	2,483.500	45.60	74.00	28.40	9.88	Н	225.4	2
1	2,484.000	46.61	74.00	27.39	9.88	Н	249.3	2

