Picture C.8: SAM Twin Phantom ## ANNEX D Position of the wireless device in relation to the phantom #### **D.1 General considerations** This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position. W_t Width of the handset at the level of the acoustic W_b Width of the bottom of the handset A Midpoint of the width W_t of the handset at the level of the acoustic output B Midpoint of the width W_b of the bottom of the handset Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset Picture D.2 Cheek position of the wireless device on the left side of SAM Picture D.3 Tilt position of the wireless device on the left side of SAM ## D.2 Body-worn device A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer. Picture D.4Test positions for body-worn devices ## D.3 Desktop device A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used. The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom. Picture D.5 Test positions for desktop devices # **D.4 DUT Setup Photos** Picture D.6 ## **ANNEX E Equivalent Media Recipes** The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209. **TableE.1: Composition of the Tissue Equivalent Matter** | Frequency | 835Head | 835Body | 1900 | 1900 | 2450 | 2450 | 5800 | 5800 | |-------------------|---------------------------|---------|--------|--------|--------|--------|--------|--------| | (MHz) | ossineau | ossbouy | Head | Body | Head | Body | Head | Body | | Ingredients (% by | Ingredients (% by weight) | | | | | | | | | Water | 41.45 | 52.5 | 55.242 | 69.91 | 58.79 | 72.60 | 65.53 | 65.53 | | Sugar | 56.0 | 45.0 | \ | \ | \ | \ | \ | \ | | Salt | 1.45 | 1.4 | 0.306 | 0.13 | 0.06 | 0.18 | \ | \ | | Preventol | 0.1 | 0.1 | \ | \ | \ | \ | \ | \ | | Cellulose | 1.0 | 1.0 | \ | \ | \ | \ | \ | \ | | Glycol | , | \ | 44.452 | 29.96 | 41.15 | 27.22 | \ | \ | | Monobutyl | \ | \ | 44.452 | 29.90 | 41.13 | 21.22 | \ | \ | | Diethylenglycol | , | \ | \ | , | , | , | 17.24 | 17.24 | | monohexylether | \ | \ | \ | \ | \ | \ | 17.24 | 17.24 | | Triton X-100 | \ | \ | \ | \ | \ | \ | 17.24 | 17.24 | | Dielectric | ε=41.5 | ε=55.2 | ε=40.0 | ε=53.3 | ε=39.2 | ε=52.7 | ε=35.3 | ε=48.2 | | Parameters | | | | | | | | | | Target Value | σ=0.90 | σ=0.97 | σ=1.40 | σ=1.52 | σ=1.80 | σ=1.95 | σ=5.27 | σ=6.00 | Note: There are a little adjustment respectively for 750, 1750, 2600, 5200, 5300 and 5600 based on the recipe of closest frequency in table E.1. ## **ANNEX F** System Validation The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components. **Table F.1: System Validation for 7673** | | | | 1 | 1 | |-----------|--------------|-----------------|-----------------|--------------------| | Probe SN. | Liquid name | Validation date | Frequency point | Status (OK or Not) | | 7673 | Head 750MHz | July.22,2022 | 750 MHz | OK | | 7673 | Head 900MHz | July.22,2022 | 900 MHz | OK | | 7673 | Head 1750MHz | July.22,2022 | 1750 MHz | OK | | 7673 | Head 1900MHz | July.22,2022 | 1900 MHz | OK | | 7673 | Head 2000MHz | July.22,2022 | 2000 MHz | OK | | 7673 | Head 2300MHz | July.22,2022 | 2300 MHz | OK | | 7673 | Head 2450MHz | July.22,2022 | 2450 MHz | OK | | 7673 | Head 2600MHz | July.22,2022 | 2600 MHz | OK | | 7673 | Head 3300MHz | July.23,2022 | 3300 MHz | OK | | 7673 | Head 3500MHz | July.23,2022 | 3500 MHz | OK | | 7673 | Head 3700MHz | July.23,2022 | 3700 MHz | OK | | 7673 | Head 3900MHz | July.23,2022 | 3900 MHz | OK | | 7673 | Head 4100MHz | July.23,2022 | 4100 MHz | OK | | 7673 | Head 4200MHz | July.23,2022 | 4200 MHz | OK | | 7673 | Head 4400MHz | July.24,2022 | 4400 MHz | OK | | 7673 | Head 4600MHz | July.24,2022 | 4600 MHz | OK | | 7673 | Head 4800MHz | July.24,2022 | 4800 MHz | OK | | 7673 | Head 4950MHz | July.24,2022 | 4950 MHz | OK | | 7673 | Head 5250MHz | July.25,2022 | 5250 MHz | OK | | 7673 | Head 5600MHz | July.25,2022 | 5600 MHz | OK | | 7673 | Head 5750MHz | July.25,2022 | 5750 MHz | OK | **Table F.1: System Validation for 7548** | Probe SN. | Liquid name | Validation date | Frequency point | Status (OK or Not) | |-----------|--------------|-----------------|-----------------|--------------------| | 7548 | Head 750MHz | August.2,2022 | 750 MHz | OK | | 7548 | Head 900MHz | August.2,2022 | 900 MHz | OK | | 7548 | Head 1450MHz | August.2,2022 | 1450 MHz | OK | | 7548 | Head 1750MHz | August.2,2022 | 1750 MHz | OK | | 7548 | Head 1900MHz | August.2,2022 | 1900 MHz | OK | | 7548 | Head 2000MHz | August.3,2022 | 2000 MHz | OK | | 7548 | Head 2300MHz | August.3,2022 | 2300 MHz | OK | | 7548 | Head 2450MHz | August.3,2022 | 2450 MHz | OK | | 7548 | Head 2600MHz | August.3,2022 | 2600 MHz | OK | | 7548 | Head 3300MHz | August.3,2022 | 3300 MHz | OK | | 7548 | Head 3500MHz | August.3,2022 | 3500 MHz | OK | | 7548 | Head 3700MHz | August.3,2022 | 3700 MHz | OK | | 7548 | Head 5250MHz | August.4,2022 | 5250 MHz | OK | | 7548 | Head 5600MHz | August.4,2022 | 5600 MHz | OK | | 7548 | Head 5750MHz | August.4,2022 | 5750 MHz | OK | ## ANNEX G Probe Calibration Certificate #### **Probe 7673 Calibration Certificate** Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEĆ 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No:Z22-60207 Page 2 of 9 E-mail: cttl@chinattl.com http://www.caict.ac.cn # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7673 ## **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------|----------|----------|----------|-----------| | $Norm(\mu V/(V/m)^2)^A$ | 0.62 | 0.63 | 0.61 | ±10.0% | | DCP(mV) ^B | 110.3 | 111.1 | 110.2 | | ## **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc ^E
(<i>k</i> =2) | |------|------------------------------|---|---------|-----------|-----|---------|----------|------------------------------------| | 0 CW | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 198.1 | ±2.1% | | | | Υ | 0.0 | 0.0 | 1.0 | | 199.1 | | | | | Z | 0.0 | 0.0 | 1.0 | | 193.0 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4). ^B Numerical linearization parameter: uncertainty not required. ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. E-mail: cttl@chinattl.com http://www.caict.ac.cn ## DASY/EASY – Parameters of Probe: EX3DV4 – SN:7673 ## Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.34 | 10.34 | 10.34 | 0.14 | 1.40 | ±12.1% | | 900 | 41.5 | 0.97 | 9.95 | 9.95 | 9.95 | 0.17 | 1.30 | ±12.1% | | 1750 | 40.1 | 1.37 | 8.49 | 8.49 | 8.49 | 0.26 | 0.98 | ±12.1% | | 1900 | 40.0 | 1.40 | 8.07 | 8.07 | 8.07 | 0.24 | 1.07 | ±12.1% | | 2000 | 40.0 | 1.40 | 8.08 | 8.08 | 8.08 | 0.20 | 1.31 | ±12.1% | | 2300 | 39.5 | 1.67 | 7.86 | 7.86 | 7.86 | 0.62 | 0.66 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.57 | 7.57 | 7.57 | 0.60 | 0.68 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.31 | 7.31 | 7.31 | 0.65 | 0.65 | ±12.1% | | 3300 | 38.2 | 2.71 | 6.93 | 6.93 | 6.93 | 0.36 | 0.99 | ±13.3% | | 3500 | 37.9 | 2.91 | 6.73 | 6.73 | 6.73 | 0.40 | 0.94 | ±13.3% | | 3700 | 37.7 | 3.12 | 6.50 | 6.50 | 6.50 | 0.30 | 1.20 | ±13.3% | | 3900 | 37.5 | 3.32 | 6.44 | 6.44 | 6.44 | 0.30 | 1.50 | ±13.3% | | 4100 | 37.2 | 3.53 | 6.46 | 6.46 | 6.46 | 0.30 | 1.40 | ±13.3% | | 4200 | 37.1 | 3.63 | 6.35 | 6.35 | 6.35 | 0.35 | 1.35 | ±13.3% | | 4400 | 36.9 | 3.84 | 6.26 | 6.26 | 6.26 | 0.30 | 1.50 | ±13.3% | | 4600 | 36.7 | 4.04 | 6.10 | 6.10 | 6.10 | 0.35 | 1.50 | ±13.3% | | 4800 | 36.4 | 4.25 | 5.99 | 5.99 | 5.99 | 0.35 | 1.60 | ±13.3% | | 4950 | 36.3 | 4.40 | 5.65 | 5.65 | 5.65 | 0.35 | 1.65 | ±13.3% | | 5250 | 35.9 | 4.71 | 5.21 | 5.21 | 5.21 | 0.40 | 1.42 | ±13.3% | | 5600 | 35.5 | 5.07 | 4.71 | 4.71 | 4.71 | 0.40 | 1.50 | ±13.3% | | 5750 | 35.4 | 5.22 | 4.70 | 4.70 | 4.70 | 0.40 | 1.50 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No:Z22-60207 Page 4 of 9 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No:Z22-60207 Page 5 of 9 E-mail: cttl@chinattl.com http://www.caict.ac.cn # Receiving Pattern (Φ), θ=0° ## f=600 MHz, TEM ## f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2) Certificate No:Z22-60207 Page 6 of 9 E-mail: cttl@chinattl.com http://www.caict.ac.cn # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Certificate No:Z22-60207 Page 7 of 9 ## **Conversion Factor Assessment** ## f=750 MHz,WGLS R9(H_convF) ## f=1750 MHz,WGLS R22(H_convF) # **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2) Certificate No:Z22-60207 Page 8 of 9 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7673 ## **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 145.7 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No:Z22-60207 Page 9 of 9 ## **Probe 7548 Calibration Certificate** Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Certificate No: Z22-60260 ## **CALIBRATION CERTIFICATE** Client CTTL Object EX3DV4 - SN: 7548 Calibration Procedure(s) FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes Calibration date: August 01, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificat | te No.) Scheduled Calibration | |---------------------|----------------|--|-------------------------------| | Power Meter NRP2 | 101919 | 14-Jun-22(CTTL, No.J22X04181 | 1) Jun-23 | | Power sensor NRP-Z | 91 101547 | 14-Jun-22(CTTL, No.J22X04181 | 1) Jun-23 | | Power sensor NRP-Z | 91 101548 | 14-Jun-22(CTTL, No.J22X04181 | 1) Jun-23 | | Reference 10dBAtter | nuator 18N50W- | 10dB 20-Jan-21(CTTL, No.J21X00486 | 6) Jan-23 | | Reference 20dBAtter | nuator 18N50W- | 20dB 20-Jan-21(CTTL, No.J21X00485 | 5) Jan-23 | | Reference Probe EX | 3DV4 SN 3846 | 20-May-22(SPEAG, No.EX3-384 | 46_May22) May-23 | | DAE4 | SN 771 | 20-Jan-22(SPEAG, No.DAE4-77 | 71_Jan22) Jan-23 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No | o.) Scheduled Calibration | | SignalGenerator MG | 3700A 62010526 | 05 14-Jun-22(CTTL, No.J22X04182 | 2) Jun-23 | | Network Analyzer E5 | 071C MY46110 | 673 14-Jan-22(CTTL, No.J22X00406 | 6) Jan-23 | | | Name | Function | Signature | | Calibrated by: | Yu Zongying | SAR Test Engineer | 100 | | Reviewed by: | Lin Hao | SAR Test Engineer | | | Approved by: | Qi Dianyuan | SAR Project Leader | TOU | | | | | | Certificate No: Z22-60260 Page 1 of 9 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Issued: August 08, 2022 E-mail: emf@caict.ac.cn http://www.caict.ac.cn #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No:Z22-60260 Page 2 of 9 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7548 ## **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |------------------------------|----------|----------|----------|-----------| | Norm(µV/(V/m)²) ^A | 0.62 | 0.70 | 0.63 | ±10.0% | | DCP(mV) ^B | 101.7 | 102.0 | 102.0 | | ## **Modulation Calibration Parameters** | UID | Communication | | Α | В | С | D | VR | Unc ^E | |-----|---------------|---|-----|------|-----|------|-------|------------------| | | System Name | | dB | dBõV | | dB | mV | (k=2) | | 0 | cw | Х | 0.0 | 0.0 | 1.0 | 0.00 | 193.2 | ±2.2% | | | | Υ | 0.0 | 0.0 | 1.0 | | 208.5 | | | | | Z | 0.0 | 0.0 | 1.0 | | 192.2 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No:Z22-60260 A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4). ^B Numerical linearization parameter: uncertainty not required. ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.