

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

on o o o o o o o o o o o o o o o o o o	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1060_Jun21

Page 2 of 13

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5250 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	4.54 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.04 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.7 W/kg ± 19.9 % (k=2)
SAP averaged over 10 em3 (10 m) of the st TO		
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.29 W/kg

Certificate No: D5GHzV2-1060_Jun21

Page 3 of 13

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	4.59 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.01 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.5 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.29 W/kg

Head TSL parameters at 5300 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	4.64 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.2 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jun21

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.3 ± 6 %	4.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.80 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	87.2 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.47 W/kg

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.1 ± 6 %	4.95 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jun21

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.9 ± 6 %	5.10 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.0 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.30 W/kg

Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.8 ± 6 %	5.15 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.19 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jun21

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	47.6 Ω - 6.2 jΩ	
Return Loss	- 23.3 dB	

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	46.9 Ω - 4.8 jΩ	
Return Loss	- 24.5 dB	

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	46.2 Ω - 3.3 jΩ	
Return Loss	- 25.6 dB	

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	49.1 Ω - 4.2 jΩ
Return Loss	- 27.3 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	53.9 Ω + 0.4 jΩ	
Return Loss	- 28.4 dB	

Certificate No: D5GHzV2-1060_Jun21

Page 7 of 13

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	51.8 Ω - 0.8 jΩ
Return Loss	- 34.3 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	50.9 Ω - 2.7 jΩ	
Return Loss	- 31.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: D5GHzV2-1060_Jun21

Page 8 of 13

DASY5 Validation Report for Head TSL

Date: 22.06.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 4.54 S/m; ε_r = 34.7; ρ = 1000 kg/m³, Medium parameters used: f = 5250 MHz; σ = 4.59 S/m; ε_r = 34.6; ρ = 1000 kg/m³, Medium parameters used: f = 5300 MHz; σ = 4.64 S/m; ε_r = 34.6; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 4.85 S/m; ε_r = 34.3; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 4.95 S/m; ε_r = 34.1; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 5.1 S/m; ε_r = 33.9; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.15 S/m; ε_r = 33.8; ρ = 1000 kg/m³ Medium parameters used: f = 5800 MHz; σ = 5.15 S/m; ε_r = 33.8; ρ = 1000 kg/m³

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.49, 5.49, 5.49) @ 5300 MHz, ConvF(5.25, 5.25, 5.25) @ 5500 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 30.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.84 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 8.04 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 69.1% Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 80.04 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 27.2 W/kg SAR(1 g) = 8.01 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 70.3% Maximum value of SAR (measured) = 18.2 W/kg

Certificate No: D5GHzV2-1060_Jun21

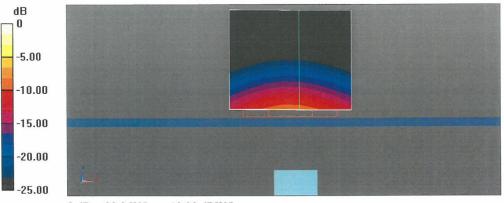
Page 9 of 13

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 80.15 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 28.9 W/kg SAR(1 g) = 8.25 W/kg; SAR(10 g) = 2.35 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 69.1% Maximum value of SAR (measured) = 19.1 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 80.07 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 33.6 W/kg SAR(1 g) = 8.80 W/kg; SAR(10 g) = 2.47 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.4% Maximum value of SAR (measured) = 20.9 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 80.82 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 30.8 W/kg SAR(1 g) = 8.45 W/kg; SAR(10 g) = 2.40 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.5% Maximum value of SAR (measured) = 19.9 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.22 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 31.8 W/kg SAR(1 g) = 8.18 W/kg; SAR(10 g) = 2.30 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.8% Maximum value of SAR (measured) = 19.5 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.53 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 31.9 W/kg SAR(1 g) = 8.19 W/kg; SAR(10 g) = 2.31 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 65.4% Maximum value of SAR (measured) = 19.2 W/kg

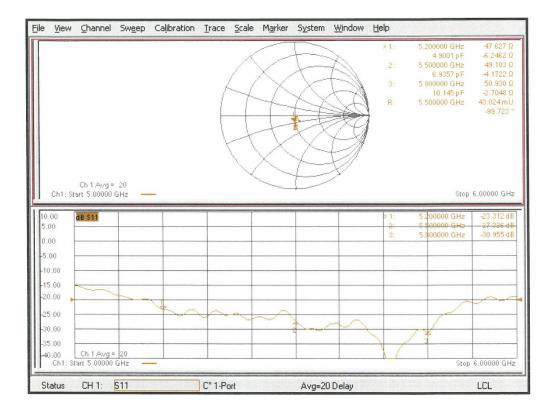
Certificate No: D5GHzV2-1060_Jun21

Page 10 of 13

0 dB = 20.9 W/kg = 13.20 dBW/kg

Certificate No: D5GHzV2-1060_Jun21

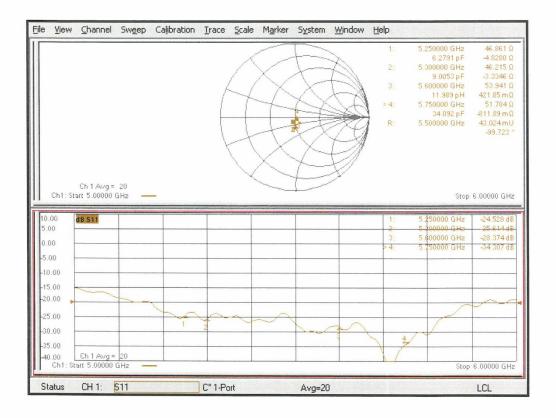
Page 11 of 13


©Copyright. All rights reserved by CTTL.

Page 349 of 357

Impedance Measurement Plot for Head TSL (5200, 5500, 5800 MHz)

Certificate No: D5GHzV2-1060_Jun21


Page 12 of 13

Page 350 of 357

Impedance Measurement Plot for Head TSL (5250, 5300, 5600, 5750 MHz)

Certificate No: D5GHzV2-1060_Jun21

Page 13 of 13

ANNEX I SAR Sensor Triggering Data Summary

Per FCC KDB Publication 616217 D04v01r02, this device was tested by the manufacturer to determine the proximity sensor triggering distances for the rear and bottom edge of the device. The measured output power within \pm 5mm of the triggering points (or until touching the phantom) is included for rear and each applicable edge.

To ensure all production units are compliant it is necessary to test SAR at a distance 1mm less than the smallest distance from the device and SAR phantom (determined from these triggering tests according to the KDB 616217 D04v01r02) with the device at maximum output power without power reduction. These SAR tests are included in addition to the SAR tests for the device touching the SAR phantom, with reduced power.

Cell phones use SAR Sensor, receiver and Hotspot to reduce power. When the receiver is on, the power will be reduced. When the Hotspot is on, the power will be reduced. When the object in front of the mobile phone is less than 15mm, trigger the SAR sensor to reduce the power, otherwise the power is normal. When the object on the left of the mobile phone is less than 17mm, trigger the SAR sensor to reduce the power, otherwise the power is normal. When the object above the mobile phone is less than 9mm, trigger the SAR sensor to reduce the power, otherwise the power is normal. When the object above the mobile phone is less than 9mm, trigger the SAR sensor to reduce the power, otherwise the power is normal. When the object above the mobile phone is less than 9mm, trigger the SAR sensor to reduce the power is normal. When the object under the mobile phone is less than 10mm, trigger the SAR sensor to reduce the power is normal. When the object behind the phone is close to less than 16mm, trigger the SAR sensor to reduce the power is normal.

Front Edge

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)												
Distance [mm] 20 19 18 17 16 15 14 13 12 11 10										10		
Main antenna	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes	

Moving device away from the phantom:

	sensor near or far(KDB 616217 6.2.6)											
Distance [mm] 10 11 12 13 14 15 16 17 18 19 20											20	
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far	

Rear Edge

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)												
Distance [mm]	21	20	19	18	17	16	15	14	13	12	11	
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near	
Maxing day	Maying daviag away from the phontomy											

Moving device away from the phantom:

	sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	11	12	13	14	15	16	17	18	19	20	21	
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far	

Top Edge

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)												
Distance [mm]	14	13	12	11	10	9	10	11	12	13	14	
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near	
NA a series as all as a												

Moving device away from the phantom:

	sensor near or far(KDB 616217 6.2.6)												
Distance [mm]	15	14	13	12	11	9	10	11	12	13	14		
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far		

Bottom Edge

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)												
Distance [mm]	15	14	13	12	11	10	9	8	7	6	5	
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near	
N4 · · ·												

Moving device away from the phantom:

	sensor near or far(KDB 616217 6.2.6)											
Distance [mm] 5 6 7 8 9 10 11 12 13 14 15												
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far	

Rignt Edge

Moving device toward the phantom: ©Copyright. All rights reserved by CTTL.

sensor near or far(KDB 616217 6.2.6)												
Distance [mm]	18	17	16	15	14	13	12	11	10	9	8	
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near	
Moving dovice away from the phantom:												

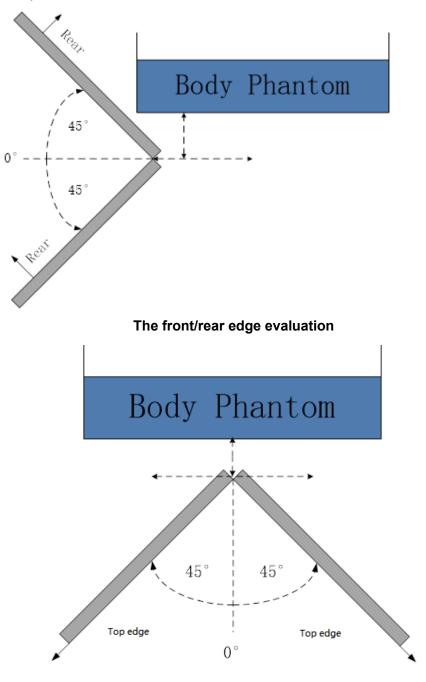
Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	8	9	10	11	12	13	14	15	16	17	18
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

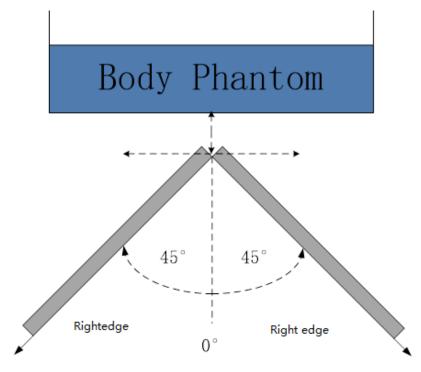
Left Edge

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)												
Distance [mm]	22	21	20	19	18	17	16	15	14	13	12	
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near	


Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	24	23	22	21	20	19	18	19	20	21	22
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far


Per FCC KDB Publication 616217 D04v01r02, the influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distanceby rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is ±45° or more from the vertical position at 0°.

The bottom/top edge evaluation

The left/right edge evaluation

Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the $\pm 45^{\circ}$ range at the smallest sensor triggering test distance declared by manufacturer.

ANNEX J Accreditation Certificate

Effective Dates

For the National Voluntary Laboratory Accreditation Program