TEST REPORT # No. I21N04067-RF-UMTS for HMD Global Oy. **Smart Phone** Model Name: TA-1446 FCC ID: 2AJOTTA-1446 with **Hardware Version: V01** Software Version: 00WW_0_031 Issued Date: 2022-03-22 #### Note: The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT. #### **Test Laboratory:** ## SAICT, Shenzhen Academy of Information and Communications Technology Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000. Tel:+86(0)755-33322000, Fax:+86(0)755-33322001 Email: yewu@caict.ac.cn. www.saict.ac.cn # **REPORT HISTORY** | Report Number | Revision | Description | Issue Date | |-------------------|----------|-------------|------------| | I21N04067-RF-UMTS | Rev.0 | 1st edition | 2022-03-22 | # **CONTENTS** | 1. | SUMMARY OF TEST REPORT | | |-----------|---|----| | 1.1. | TEST ITEMS | 4 | | 1.2. | TEST STANDARDS | 4 | | 1.3. | TEST RESULT | 4 | | 1.4. | TESTING LOCATION | 4 | | 1.5. | PROJECT DATA | 4 | | 1.6. | SIGNATURE | 4 | | 2. | CLIENT INFORMATION | 5 | | 2.1. | APPLICANT INFORMATION | 5 | | 2.2. | MANUFACTURER INFORMATION | 5 | | 3. | EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) | 6 | | 3.1. | ABOUT EUT | 6 | | 3.2. | INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST | 6 | | 3.3. | | | | 3.4. | | | | 4. | REFERENCE DOCUMENTS | | | 5. | LABORATORY ENVIRONMENT | | | 6. | SUMMARY OF TEST RESULTS | | | 7. | STATEMENT | | | , .
8. | TEST EQUIPMENTS UTILIZED | | | | NEX A: MEASUREMENT RESULTS | | | | | | | | .1 OUTPUT POWER | _ | | | 2 FIELD STRENGTH OF SPURIOUS RADIATION | | | | .4 OCCUPIED BANDWIDTH | _ | | | .5 EMISSION BANDWIDTH | | | | .6 BAND EDGE COMPLIANCE | | | | .7 CONDUCTED SPURIOUS EMISSION | | | Α | .8 PEAK-TO-AVERAGE POWER RATIO | 73 | # 1. SUMMARY OF TEST REPORT ## 1.1. Test Items Description Smart Phone Model Name TA-1446 Applicant's name HMD Global Oy. Manufacturer's Name HMD Global Oy. ## 1.2. Test Standards FCC Part 2/22/24/27 10-1-19 Edition ANSI C63.26 2015 KDB971168 D01 v03r01 ## 1.3. Test Result All test items are passed. Please refer to "6 Summary of Test Results" for detail. ## 1.4. Testing Location Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000 ## 1.5. Project Data Testing Start Date: 2022-02-14 Testing End Date: 2022-03-21 ## 1.6. Signature Tan Pei (Prepared this test report) **Huang Qiuqin** (Reviewed this test report) **Zhang Hao** (Approved this test report) # 2. CLIENT INFORMATION ## 2.1. Applicant Information Company Name: HMD Global Oy. Address /Post: Bertel Jungin aukio 9, 02600 Espoo, Finland Contact Person: Reza Serafat Contact Email reza.serafat@hmdglobal.com Telephone: +393 31 6272922 Fax: / ## 2.2. Manufacturer Information Company Name: HMD Global Oy. Address / Post: Bertel Jungin aukio 9, 02600 Espoo, Finland Contact Person: Reza Serafat Contact Email reza.serafat@hmdglobal.com Telephone: +393 31 6272922 Fax: / # 3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT # (AE) ## 3.1. About EUT Description Smart Phone Model Name TA-1446 FCC ID 2AJOTTA-1446 Frequency Bands WCDMA Band 2,4,5 Antenna Integrated Extreme vol. Limits 3.60V to 4.35V (nominal: 3.8V) Condition of EUT as received No abnormality in appearance Note1: Components list, please refer to documents of the manufacturer; it is also included in the original test record of SAICT. Note2: The Declaration of changes from Initial TA-1471 to Variant TA-1446 is as below: TA-1446 is single SIM, TA-1471 is dual SIM. ## 3.2. Internal Identification of EUT used during the test | EUT ID* | IMEI | HW Version | SW Version | Sample Arrival Date | |---------|-----------------|-------------------|------------|---------------------| | UT04aa | 353906800005721 | V01 | 00WW_0_031 | 2022-02-14 | | UT03aa | 353906800005507 | V01 | 00WW_0_031 | 2022-02-14 | ^{*}EUT ID: is used to identify the test sample in the lab internally. UT03aa is used for conduction test, UT04aa is used for radiation test. ## 3.3. Internal Identification of AE used during the test # AE ID* Description AE1 Battery AE2 RF Cable #### AE1 Model GH5781 Manufacturer Shenzhen Aerospace Electronic Co.,Ltd Capacitance 2400 mAh Nominal Voltage 3.8V #### 3.4. General Description The Equipment Under Test (EUT) is a model Smart Phone with integrated antenna. It consists of normal options: lithium battery, charger. Manual and specifications of the EUT were provided to fulfil the test. Samples undergoing test were selected by the Client. ^{*}AE ID: is used to identify the test sample in the lab internally. # 4. REFERENCE DOCUMENTS The following documents listed in this section are referred for testing. | • | • | | |---------------|--|---------| | Reference | Title | Version | | FCC Part 22 | PUBLIC MOBILE SERVICES | 10-1-19 | | | | Edition | | FCC Part 2 | FREQUENCY ALLOCATIONS AND RADIO TREATY | 10-1-19 | | | MATTERS; GENERAL RULES AND REGULATIONS | Edition | | FCC Part 24 | PERSONAL COMMUNICATIONS SERVICES | 10-1-19 | | FCC Pail 24 | PERSONAL COMMUNICATIONS SERVICES | Edition | | FCC Part 27 | MISCELLANEOUS WIRELESS COMMUNICATIONS | 10-1-19 | | FCC Pail 21 | SERVICES | Edition | | ANSI C63.26 | American National Standard for Compliance Testing of | 2015 | | ANSI 003.20 | Transmitters Used in Licensed Radio Services | 2015 | | KDB971168 D01 | Power Meas License Digital Systems | v03r01 | # 5. LABORATORY ENVIRONMENT **Shielded room** did not exceed following limits along the RF testing: | | 3 9 | |--------------------------|--| | Temperature | Min. = 15 $^{\circ}$ C, Max. = 35 $^{\circ}$ C | | Relative humidity | Min. = 20 %, Max. = 75 % | | Shielding effectiveness | 0.014MHz-1MHz>60 dB; 1MHz-18000MHz>90 dB | | Electrical insulation | >2 MΩ | | Ground system resistance | < 4 Ω | ## Fully-anechoic chamber did not exceed following limits along the EMC testing | Temperature | Min. = 15 °C, Max. = 35 °C | |------------------------------------|---| | Relative humidity | Min. = 20 %, Max. = 75 % | | Shielding effectiveness | 0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB | | Electrical insulation | > 2MΩ | | Ground system resistance | < 4 Ω | | Voltage Standing Wave Ratio (VSWR) | ≤ 6 dB, from 1 to 18 GHz, 3 m distance | | Uniformity of field strength | Between 0 and 6 dB, from 80 to 6000 MHz | # 6. SUMMARY OF TEST RESULTS | Abbreviations used in this clause: | | | |------------------------------------|---------|---| | | Р | Pass | | Verdict Column | F | Fail | | Verdict Column | NA | Not applicable | | | NM | Not measured | | Location Column | A/B/C/D | The test is performed in test location A, B, C or D | | Location Column | A/b/C/D | which are described in section 1.1 of this report | ## **WCDMA Band II** | Items | Test Name | Clause in FCC rules | Section in this report | Verdict | |-------|--------------------------------------|----------------------|------------------------|---------| | 1 | Output Power | 2.1046/24.232 | A.1 | Р | | 2 | Field Strength of Spurious Radiation | 2.1053/24.238 | A.2 | Р | | 3 | Frequency Stability | 2.1055/24.235 | A.3 | Р | | 4 | Occupied Bandwidth | 2.1049/24.238 | A.4 | Р | | 5 | Emission Bandwidth | 2.1049/24.238 | A.5 | Р | | 6 | Band Edge Compliance | 2.1051/24.238 | A.6 | Р | | 7 | Conducted Spurious
Emission | 2.1051/24.238 | A.7 | Р | | 8 | Peak-to-Average Power
Ratio | 24.232/KDB971168 D01 | A.8 | Р | ## **WCDMA Band V** | Items | Test Name | Clause in FCC rules | Section in this report | Verdict | |-------|--------------------------------------|---------------------|------------------------|---------| | 1 | Output Power | 2.1046/22.913 | A.1 | Р | | 2 | Field Strength of Spurious Radiation | 2.1053/22.917 | A.2 | Р | | 3 | Frequency Stability | 2.1055/22.355 | A.3 | Р | | 4 | Occupied Bandwidth | 2.1049/22.917 | A.4 | Р | | 5 | Emission Bandwidth | 2.1049/22.917 | A.5 | Р | | 6 | Band Edge Compliance | 2.1051/22.917 | A.6 | Р | | 7 | Conducted Spurious
Emission | 2.1051/22.917 | A.7 | Р | | 8 | Peak-to-Average Power
Ratio | KDB971168 D01 | A.8 | Р | ## **WCDMA Band IV** | Items | Test Name | Clause in FCC rules | Section in this report | Verdict | |-------|--------------------------------------|----------------------------|------------------------|---------| | 1 | Output Power | 2.1046/27.50(d) | A.1 | Р | | 2 | Field Strength of Spurious Radiation | 2.1053/27.53(h) | A.2 | Р | | 3 | Frequency Stability | 2.1055/27.54 | A.3 | Р | | 4 | Occupied Bandwidth | 2.1049/27.53(g) | A.4 | Р | | 5 | Emission Bandwidth | 2.1049/27.53(g) | A.5 | Р | | 6 | Band Edge Compliance | 2.1051/27.53(h) | A.6 | Р | | 7 | Conducted Spurious
Emission | 2.1051/27.53(h) | A.7 | Р | | 8 | Peak-to-Average Power
Ratio | 27.50(d) /KDB971168
D01 | A.8 | Р | # 7. STATEMENT This report is the same as No.I21N04075-RF-UMTS. All the original values are quoted directly. We did not perform any additional test case. Since the information of samples in this report is provided by the client, the laboratory is not responsible for the authenticity of sample information. This report takes measured values as criterion of test conclusion. The test conclusion meets the li mit requirements. # 8. TEST EQUIPMENTS UTILIZED | NO. | Description | TYPE | Manufacture | series number | CAL DUE
DATE | |-----|--|-----------------------|-------------------------|---------------|-----------------| | 1 | Test Receiver | ESR7 | R&S | 101676 | 2022-11-24 | | 2 | BiLog Antenna | 3142E | ETS-Lindgren | 0224831 | 2024-05-27 | | 3 | Horn Antenna | 3117 | ETS-Lindgren | 00066577 |
2022-04-02 | | 4 | Horn Antenna | QSH-SL-18
-26-S-20 | Q-par | 17013 | 2023-01-06 | | 5 | Antenna | BBHA
9120D | Schwarzbeck | 1593 | 2022-12-05 | | 6 | Antenna | VUBA 9117 | Schwarzbeck | 207 | 2023-07-15 | | 7 | Antenna | QWH-SL-18
-40-K-SG | Q-par | 15979 | 2023-01-06 | | 8 | preamplifier | 83017A | Agilent | MY39501110 | / | | 9 | Signal Generator | SMB100A | R&S | 179725 | 2022-11-24 | | 10 | Fully Anechoic
Chamber | FACT3-2.0 | ETS-Lindgren | 1285 | 2023-05-29 | | 11 | Spectrum Analyzer | FSV40 | R&S | 101192 | 2023-01-12 | | 12 | Universal Radio
Communication
Tester | CMU200 | R&S | 114545 | 2023-01-12 | | 13 | Universal Radio
Communication
Tester | CMU200 | R&S | 123210 | 2022-12-13 | | 14 | Temperature
Chamber | SH-241 | ESPEC | 92007516 | 2022-10-15 | | 15 | DC Power Supply | U3606A | Agilent
Technologies | MY50450012 | 2022-11-13 | | 16 | Spectrum Analyzer | FSW26 | R&S | 102197 | 2022.11.24 | ## **Test software** | ltem | Name | Vesion | |----------|-------|-----------| | Radiated | EMC32 | V10.50.40 | ## **ANNEX A: MEASUREMENT RESULTS** #### **A.1 OUTPUT POWER** #### Reference FCC: CFR Part 2.1046, 22.913, 24.232, 27.50(d) ## A.1.1 Summary During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMU-200) to ensure max power transmission and proper modulation. This result contains max output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits. #### A.1.2 Conducted #### A.1.2.1 Method of Measurements The EUT was set up for the max output power with pseudo random data modulation. These measurements were done at 3 frequencies, 1852.4 MHz, 1880.0MHz and 1907.6MHz for WCDMA Band II;826.4MHz, 836.6MHz and 846.6MHz for WCDMA Band V and 1712.4MHz, 1740.0MHz and 1752.6MHz for WCDMA Band IV (bottom, middle and top of operational frequency range). #### Limit According to FCC Part 2.1046 #### **WCDMA Band II** #### A.1.2.2 Measurement result #### **QPSK** | | CH | Frequency(MHz) | output power(dBm) | |-----------|------|----------------|-------------------| | WCDMA | 9262 | 1852.4 | 22.11 | | (Band II) | 9400 | 1880.0 | 22.05 | | | 9538 | 1907.6 | 21.91 | ## 16QAM | | CH | Frequency(MHz) | output power(dBm) | |-----------|------|----------------|-------------------| | WCDMA | 9262 | 1852.4 | 21.06 | | (Band II) | 9400 | 1880.0 | 21.52 | | | 9538 | 1907.6 | 21.76 | # WCDMA Band V Measurement result QPSK | | CH | Frequency(MHz) | output power(dBm) | |----------|------|----------------|-------------------| | WCDMA | 4132 | 826.4 | 23.75 | | (Band V) | 4183 | 836.6 | 23.73 | | | 4233 | 846.6 | 23.15 | #### **16QAM** | | CH | Frequency(MHz) | output power(dBm) | |----------|------|----------------|-------------------| | WCDMA | 4132 | 826.4 | 22.51 | | (Band V) | 4183 | 836.6 | 22.31 | | | 4233 | 846.6 | 22.22 | ## WCDMA Band IV Measurement result QPSK | | CH | Frequency(MHz) | output power(dBm) | |-----------|------|----------------|-------------------| | WCDMA | 1312 | 1712.4 | 22.12 | | (Band IV) | 1450 | 1740.0 | 22.12 | | | 1513 | 1752.6 | 22.11 | ## 16QAM | | CH | Frequency(MHz) | output power(dBm) | |-----------|------|----------------|-------------------| | WCDMA | 1312 | 1712.4 | 21.56 | | (Band IV) | 1450 | 1740.0 | 21.14 | | | 1513 | 1752.6 | 21.35 | Note: Expanded measurement uncertainty is U = 0.49dB, k = 1.96 #### A.1.3 Radiated #### A.1.3.1 Description This is the test for the maximum radiated power from the EUT. Rule Part 24.232(b) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."Rule Part 22.913(a) specifies "The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts." #### A.1.3.2 Method of Measurement 1. For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, EUT was placed on a 80 cm high non-conductive stand at a 3 meter test distance from the receive antenna. For radiated measurements performed at frequencies above 1 GHz, EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. Receiving antenna was placed on the antenna mast 3 meters from the EUT. For emission measurements. The receiving antenna shall be varied from 1 m to 4 m in height above the reference ground in a search for the relative positioning that produces the maximum radiated signal level. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector. - 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr). - 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. - 4. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. - The cable loss (P_{cl}) , the Substitution Antenna Gain(dBi) (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. - The measurement results are obtained as described below: - Power(EIRP)= $P_{Mea} P_{Ag} P_{cl} + G_a$ - 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power. - 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dB. #### **WCDMA Band II-EIRP** #### Limits | | Burst Peak EIRP (dBm) | |---------------|-----------------------| | WCDMA Band II | ≤33dBm (2W) | #### Measurement result #### QPSK | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB)+
P _{Ag} (dB) | Ga Antenna Gain(dBi) | EIRP(dBm) | Limit(dBm) | Polarization | |----------------|------------------------|---|----------------------|-----------|------------|--------------| | 1852.40 | -18.94 | -29.30 | 8.10 | 18.46 | 33.00 | Н | | 1880.00 | -18.89 | -29.40 | 8.10 | 18.61 | 33.00 | Н | | 1907.60 | -18.04 | -29.30 | 8.10 | 19.37 | 33.00 | Н | #### **16QAM** | Frequency(MHz) P _{Mea} (dBm) | | P _{cl} (dB)+ | Ga Antenna Gain(dBi) | EIRP(dBm) | Limit(dBm) | Polarization | |---------------------------------------|---------------|-----------------------|------------------------|--------------|------------|--------------| | | · wea(&=····) | P _{Ag} (dB) | Ga / Intermia Gam(a2.) | 1111 (32111) | 2(32) | . 0.020 | | 1852.40 | -19.05 | -29.30 | 8.10 | 18.35 | 33.00 | V | | 1880.00 | -19.02 | -29.40 | 8.10 | 18.48 | 33.00 | V | | 1907.60 | -18.24 | -29.30 | 8.10 | 19.16 | 33.00 | V | Frequency: 1907.60MHz Peak EIRP(dBm)= PMea(-18.04dBm)-(Pcl+PAg)(-29.30dB)+Ga (8.10dB) =19.37dBm ANALYZER SETTINGS: RBW = VBW = 5MHz #### **WCDMA Band V-ERP** #### Limits | | Burst Peak ERP (dBm) | | |--------------|----------------------|--| | WCDMA Band V | ≤38.45dBm | | ## Measurement result #### **QPSK** | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB)+
P _{Ag} (dB) | Ga Antenna
Gain(dBi) | Correction(dB) | ERP(dBm) | Limit(dBm) | Polarization | |----------------|------------------------|---|-------------------------|----------------|----------|------------|--------------| | 826.40 | -10.11 | -33.60 | -0.84 | 2.15 | 20.50 | 38.45 | V | | 836.60 | -10.00 | -33.50 | -0.74 | 2.15 | 20.61 | 38.45 | V | | 846.60 | -9.15 | -33.50 | -0.73 | 2.15 | 21.47 | 38.45 | ٧ | #### **16QAM** | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB)+
P _{Ag} (dB) | Ga Antenna
Gain(dBi) | Correction
(dB) | ERP(dBm) | Limit(dBm) | Polarization | |----------------|------------------------|---|-------------------------|--------------------|----------|------------|--------------| | 826.40 | -10.31 | -33.60 | -0.84 | 2.15 | 20.30 | 38.45 | V | | 836.60 | -10.27 | -33.50 | -0.74 | 2.15 | 20.34 | 38.45 | V | | 846.60 | -9.38 | -33.50 | -0.73 | 2.15 | 21.24 | 38.45 | V | Frequency: 846.60MHz Peak ERP(dBm)= PMea(-9.15dBm)-(Pcl+PAg)(-33.50dB)+Ga (-0.73dB)-2.15dB=21.47dBm ANALYZER SETTINGS: RBW = VBW = 5MHz #### **WCDMA Band IV-EIRP** #### Limits | | Burst Peak EIRP (dBm) | |---------------|-----------------------| | WCDMA Band IV | ≤30.00dBm | #### **Measurement result** #### **QPSK** | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB)+ P _{Ag} (dB) | Ga Antenna Gain(dBi) | EIRP(dBm) | Limit(dBm) | Polarization | |----------------|------------------------|--|----------------------|-----------|------------|--------------| | 1712.40 | -19.33 | -29.60 | 8.10 | 18.37 | 30.00 | Н | | 1740.00 | -19.15 | -29.50 | 8.10 | 18.45 | 30.00 | Н | | 1752.60 | -18.34 | -29.50 | 8.10 | 19.26 | 30.00 | Н | #### **16QAM** | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB)+ P _{Ag} (dB) | Ga Antenna Gain(dBi) | EIRP(dBm) | Limit(dBm) | Polarization | |----------------|------------------------
--|----------------------|-----------|------------|--------------| | 1712.40 | -19.45 | -29.60 | 8.10 | 18.25 | 30.00 | Н | | 1740.00 | -19.22 | -29.50 | 8.10 | 18.38 | 30.00 | Н | | 1752.60 | -18.51 | -29.50 | 8.10 | 19.09 | 30.00 | Н | Frequency: 1752.60MHz Peak EIRP(dBm)= PMea(-18.34dBm)-(Pcl+PAg)(-29.50dB)+Ga (8.10dB)= 19.26 dBm ANALYZER SETTINGS: RBW = VBW = 5MHz Note: The maximum value of expanded measurement uncertainty for this test item is U = 2.87dB(30MHz-3GHz)/3.35dB(3GHz-18GHz)/2.68dB(18GHz-26.5GHz), k = 2 Note: Both of Vertical and Horizontal polarizations are evaluated, but only the worst case is recorded in this report. ## A.2 FIELD STRENGTH OF SPURIOUS RADIATION #### Reference FCC: CFR 2.1053, 22.917, 24.238, 27.53(h). #### A.2.1 Measurement Method The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment. The resolution bandwidth is set 1MHz as outlined in Part 24.238, Part 22.917 and Part 27.53. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of WCDMA Band II, WCDMA Band V and WCDMA Band IV. #### The procedure of radiated spurious emissions is as follows: 1. For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, EUT was placed on a 80 cm high non-conductive stand at a 3 meter test distance from the receive antenna. For radiated measurements performed at frequencies above 1 GHz, EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. Receiving antenna was placed on the antenna mast 3 meters from the EUT. For emission measurements. The receiving antenna shall be varied from 1 m to 4 m in height above the reference ground in a search for the relative positioning that produces the maximum radiated signal level. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector. - 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr). - 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. - 4. The Path loss (P_{pl}) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain(dBi) (G_a) should be recorded after test. - A amplifier should be connected in for the test. - The Path loss (P_{pl}) is the summation of the cable loss and the gain of the amplifier. - The measurement results are obtained as described below: - Power(EIRP)= $P_{Mea} P_{pl} + G_a$ - 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power. - 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dB. #### A.2.2 Measurement Limit Part 24.238, Part 22.917 and Part 27.50 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out. #### A.2.3 Measurement Results Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of WCDMA Band II (1852.4 MHz, 1880.0MHz and 1907.6MHz), WCDMA Band V(826.4MHz, 836.6MHz and 846.6MHz) and WCDMA Band IV (1712.4MHz, 1740.0MHz and 1752.6MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the WCDMA Band II,WCDMA Band V and WCDMA Band IV into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this. ## A.2.4 Measurement Results Table | Frequency | Channel | Frequency Range | Result | |---------------|---------|-----------------|--------| | | Low | 30MHz-10GHz | Pass | | WCDMA Band V | Middle | 30MHz-10GHz | Pass | | | High | 30MHz-10GHz | Pass | | | Low | 30MHz-20GHz | Pass | | WCDMA Band II | Middle | 30MHz-20GHz | Pass | | | High | 30MHz-20GHz | Pass | | | Low | 30MHz-20GHz | Pass | | WCDMA Band IV | Middle | 30MHz-20GHz | Pass | | | High | 30MHz-20GHz | Pass | ## A.2.5 Sweep Table | Working
Frequency | Subrange (GHz) | RBW | VBW | Sweep time (s) | |----------------------|----------------|--------|--------|----------------| | | 0.03~1 | 100KHz | 300KHz | 10 | | | 1-2 | 1 MHz | 3 MHz | 2 | | WCDMA Band V | 2~5 | 1 MHz | 3 MHz | 3 | | | 5~8 | 1 MHz | 3 MHz | 3 | | | 8~10 | 1 MHz | 3 MHz | 3 | | | 0.03~1 | 100KHz | 300KHz | 10 | | | 1-2 | 1 MHz | 3 MHz | 2 | | | 2~5 | 1 MHz | 3 MHz | 3 | | WCDMA Band II | 5~8 | 1 MHz | 3 MHz | 3 | | WCDIVIA BAHU II | 8~11 | 1 MHz | 3 MHz | 3 | | | 11~14 | 1 MHz | 3 MHz | 3 | | | 14~18 | 1 MHz | 3 MHz | 3 | | | 18~20 | 1 MHz | 3 MHz | 2 | | | 0.03~1 | 100KHz | 300KHz | 10 | | | 1-2 | 1 MHz | 3 MHz | 2 | | | 2~5 | 1 MHz | 3 MHz | 3 | | WCDMA Band IV | 5~8 | 1 MHz | 3 MHz | 3 | | WODIVIA DANG IV | 8~11 | 1 MHz | 3 MHz | 3 | | | 11~14 | 1 MHz | 3 MHz | 3 | | | 14~18 | 1 MHz | 3 MHz | 3 | | | 18~20 | 1 MHz | 3 MHz | 3 | ## WCDMA BAND II Mode Channel 9662/1932.4MHz (QPSK) | | PMea(dB | Path | Antenna | Peak | Limit(dB | Dolorization | |----------------|---------|------|-----------|-----------|----------|--------------| | Frequency(MHz) | m) | loss | Gain(dBi) | EIRP(dBm) | m) | Polarization | | 16951.43 | -45.49 | 2.90 | 16.50 | -31.89 | -13.00 | Н | | 17232.38 | -43.23 | 3.20 | 14.50 | -31.93 | -13.00 | Н | | 17417.62 | -42.38 | 2.90 | 14.50 | -30.78 | -13.00 | Н | | 17578.57 | -40.04 | 3.30 | 12.80 | -30.54 | -13.00 | Н | | 17839.52 | -39.88 | 3.60 | 12.80 | -30.68 | -13.00 | Н | | 17995.24 | -38.38 | 3.20 | 12.80 | -28.78 | -13.00 | Н | ## WCDMA BAND II Mode Channel 9800/1960MHz (QPSK) | [| PMea(dB | Path | Antenna | Peak | Limit(dB | Delegization | |----------------|---------|------|-----------|-----------|----------|--------------| | Frequency(MHz) | m) | loss | Gain(dBi) | EIRP(dBm) | m) | Polarization | | 17001.90 | -42.81 | 2.90 | 14.50 | -31.21 | -13.00 | Н | | 17295.71 | -43.43 | 3.20 | 14.50 | -32.13 | -13.00 | Н | | 17437.62 | -42.05 | 2.90 | 14.50 | -30.45 | -13.00 | Н | | 17594.76 | -40.12 | 3.30 | 12.80 | -30.62 | -13.00 | Н | | 17834.76 | -39.92 | 3.60 | 12.80 | -30.72 | -13.00 | Н | | 17998.10 | -37.98 | 3.20 | 12.80 | -28.38 | -13.00 | Н | ## WCDMA BAND II Mode Channel 9938/1987.6MHz (QPSK) | Fraguenov/MHz) | PMea(dB | Path | Antenna | Peak | Limit(dB | Polarization | |----------------|---------|------|-----------|-----------|----------|--------------| | Frequency(MHz) | m) | loss | Gain(dBi) | EIRP(dBm) | m) | Polarization | | 16987.14 | -45.68 | 2.90 | 16.50 | -32.08 | -13.00 | Н | | 17254.29 | -43.16 | 3.20 | 14.50 | -31.86 | -13.00 | Н | | 17501.90 | -40.31 | 2.90 | 12.80 | -30.41 | -13.00 | H | | 17627.14 | -39.44 | 3.30 | 12.80 | -29.94 | -13.00 | Н | | 17829.05 | -40.26 | 3.60 | 12.80 | -31.06 | -13.00 | Н | | 17922.86 | -38.00 | 3.20 | 12.80 | -28.40 | -13.00 | Н | ## WCDMA BAND II Mode Channel 9662/1932.4MHz (16QAM) | Fraguency(MHz) D (dPm) | Path | Antenna | Peak | Limit(dB | Dolorization | | | |------------------------|------------------------|--------------------------|-------|-----------|--------------|----|--------------| | Frequency(MHz) | P _{Mea} (dBm) | P _{Mea} (ubiii) | loss | Gain(dBi) | EIRP(dBm) | m) | Polarization | | 17187.14 | -43.46 | 2.90 | 14.50 | -31.86 | -13.00 | Н | | | 17292.38 | -43.01 | 3.20 | 14.50 | -31.71 | -13.00 | Н | | | 17458.10 | -42.09 | 2.90 | 14.50 | -30.49 | -13.00 | Н | | | 17580.00 | -39.64 | 3.30 | 12.80 | -30.14 | -13.00 | Н | | | 17836.67 | -40.66 | 3.60 | 12.80 | -31.46 | -13.00 | Н | | | 17961.90 | -37.95 | 3.20 | 12.80 | -28.35 | -13.00 | Н | | ## WCDMA BAND II Mode Channel 9800/1960MHz (16QAM) | F (MIL) D. / | D (dD:) | Path | Antenna | Peak | Limit(dB | Dalarinatian | |----------------|--------------------|------|-----------|-----------|----------|--------------| | Frequency(MHz) | $Iz) P_{Mea}(dBm)$ | loss | Gain(dBi) | EIRP(dBm) | m) | Polarization | | 16957.62 | -44.88 | 2.90 | 16.50 | -31.28 | -13.00 | Н | | 17298.57 | -43.01 | 3.20 | 14.50 | -31.71 | -13.00 | Н | | 17479.05 | -41.64 | 2.90 | 14.50 | -30.04 | -13.00 | Н | | 17592.86 | -39.53 | 3.30 | 12.80 | -30.03 | -13.00 | Н | | 17840.00 | -40.37 | 3.60 | 12.80 |
-31.17 | -13.00 | Н | | 17990.95 | -38.29 | 3.20 | 12.80 | -28.69 | -13.00 | Н | ## WCDMA BAND II Mode Channel 9938/1987.6MHz (16QAM) | Fragues (MUz) | Frequency(MHz) P _{Mea} (dBm) | Path | Antenna | Peak | Limit(dB | Polarization | |----------------|---------------------------------------|------|-----------|-----------|----------|--------------| | Frequency(MHZ) | | loss | Gain(dBi) | EIRP(dBm) | m) | Polarization | | 16987.62 | -45.55 | 2.90 | 16.50 | -31.95 | -13.00 | Н | | 17166.19 | -43.48 | 2.90 | 14.50 | -31.88 | -13.00 | Н | | 17416.19 | -42.32 | 2.90 | 14.50 | -30.72 | -13.00 | Н | | 17533.33 | -40.08 | 2.90 | 12.80 | -30.18 | -13.00 | Н | | 17816.67 | -40.43 | 3.60 | 12.80 | -31.23 | -13.00 | Н | | 17936.67 | -38.50 | 3.20 | 12.80 | -28.90 | -13.00 | Н | ## WCDMA BAND V Mode Channel 4357/871.4 MHz (QPSK) | Fragues av(MIIIz) | Fraguency/MHz) D (dBm) | Path | Antenna | Peak | Limit(dB | Delegization | |-------------------|------------------------|------|-----------|----------|----------|--------------| | Frequency(MHz) | P _{Mea} (dBm) | loss | Gain(dBi) | ERP(dBm) | m) | Polarization | | 8492.63 | -52.09 | 1.80 | 11.30 | -44.74 | -13.00 | Н | | 9099.50 | -51.74 | 2.20 | 11.60 | -44.49 | -13.00 | Н | | 9301.00 | -50.49 | 2.00 | 11.60 | -43.04 | -13.00 | Н | | 9474.75 | -50.89 | 2.10 | 11.60 | -43.54 | -13.00 | V | | 9724.38 | -50.42 | 2.20 | 11.20 | -43.57 | -13.00 | Н | | 9797.25 | -50.34 | 2.30 | 11.20 | -43.59 | -13.00 | Н | ## WCDMA BAND V Mode Channel 4408/881.6MHz (QPSK) | | PMea(dB | Path | Antenna | Peak | Limit(dB | Delegization | |----------------|---------|------|-----------|----------|----------|--------------| | Frequency(MHz) | m) | loss | Gain(dBi) | ERP(dBm) | m) | Polarization | | 8473.50 | -51.78 | 1.80 | 11.30 | -44.43 | -13.00 | Н | | 9098.25 | -51.39 | 2.20 | 11.60 | -44.14 | -13.00 | Н | | 9307.38 | -49.85 | 2.00 | 11.60 | -42.40 | -13.00 | Н | | 9472.50 | -51.07 | 2.10 | 11.60 | -43.72 | -13.00 | V | | 9757.63 | -50.86 | 2.20 | 11.20 | -44.01 | -13.00 | Н | | 9790.00 | -50.77 | 2.30 | 11.20 | -44.02 | -13.00 | Н | ## WCDMA BAND V Mode Channel 4458/891.6MHz (QPSK) | Fraguenov(MHz) | PMea(dB | Path | Antenna | Peak | Limit(dB | Polarization | |----------------|---------|------|-----------|----------|----------|--------------| | Frequency(MHz) | m) | loss | Gain(dBi) | ERP(dBm) | m) | Polarization | | 8737.13 | -51.54 | 2.00 | 12.00 | -43.69 | -13.00 | V | | 9117.75 | -51.63 | 2.10 | 11.60 | -44.28 | -13.00 | V | | 9302.63 | -49.93 | 2.00 | 11.60 | -42.48 | -13.00 | H | | 9473.63 | -50.77 | 2.10 | 11.60 | -43.42 | -13.00 | V | | 9738.63 | -50.28 | 2.20 | 11.20 | -43.43 | -13.00 | Н | | 9780.00 | -51.40 | 2.30 | 11.20 | -44.65 | -13.00 | V | ## WCDMA BAND V Mode Channel 4357/871.4 MHz (16QAM) | Fraguenov/MHz) | PMea(dB | Path | Antenna | Peak | Limit(dB | Polarization | |----------------|---------|------|-----------|----------|----------|--------------| | Frequency(MHz) | m) | loss | Gain(dBi) | ERP(dBm) | m) | Polanzation | | 7377.75 | -52.72 | 1.70 | 12.00 | -44.57 | -13.00 | Н | | 9103.50 | -51.53 | 2.20 | 11.60 | -44.28 | -13.00 | Н | | 9304.63 | -50.58 | 2.00 | 11.60 | -43.13 | -13.00 | Н | | 9477.75 | -50.32 | 2.10 | 11.60 | -42.97 | -13.00 | V | | 9742.13 | -50.87 | 2.20 | 11.20 | -44.02 | -13.00 | Н | | 9803.25 | -51.04 | 2.30 | 11.20 | -44.29 | -13.00 | Н | ## WCDMA BAND V Mode Channel 4408/881.6MHz (16QAM) | Fraguesov/MHz) | PMea(dB | Path | Antenna | Peak | Limit(dB | Polarization | |----------------|---------|------|-----------|----------|----------|--------------| | Frequency(MHz) | m) | loss | Gain(dBi) | ERP(dBm) | m) | Polanzation | | 8721.75 | -52.05 | 2.00 | 12.00 | -44.20 | -13.00 | V | | 9098.63 | -50.64 | 2.20 | 11.60 | -43.39 | -13.00 | Н | | 9298.13 | -50.08 | 2.00 | 11.60 | -42.63 | -13.00 | Н | | 9341.13 | -50.72 | 2.00 | 11.60 | -43.27 | -13.00 | V | | 9694.38 | -50.59 | 2.20 | 11.20 | -43.74 | -13.00 | Н | | 9794.63 | -50.62 | 2.30 | 11.20 | -43.87 | -13.00 | Н | ## WCDMA BAND V Mode Channel 4458/891.6MHz (16QAM) | Fraguency/MHz) | PMea(dB | Path | Antenna | Peak | Limit(dB | Polarization | |----------------|---------|------|-----------|----------|----------|--------------| | Frequency(MHz) | m) | loss | Gain(dBi) | ERP(dBm) | m) | Polarization | | 8464.88 | -52.10 | 1.80 | 11.30 | -44.75 | -13.00 | Н | | 9098.75 | -50.97 | 2.20 | 11.60 | -43.72 | -13.00 | H | | 9296.63 | -50.05 | 2.00 | 11.60 | -42.60 | -13.00 | H | | 9475.38 | -50.78 | 2.10 | 11.60 | -43.43 | -13.00 | V | | 9741.13 | -50.55 | 2.20 | 11.20 | -43.70 | -13.00 | Н | | 9809.63 | -50.17 | 2.30 | 11.20 | -43.42 | -13.00 | Н | ## WCDMA BAND IV Mode Channel 1537/1753.4MHz (QPSK) | Fraguanov/MHz) | D (dD:ss) | Path | Antenna | Peak | Limit(dB | Dolorization | |----------------|------------------------|------|-----------|-----------|----------|--------------| | Frequency(MHz) | P _{Mea} (dBm) | loss | Gain(dBi) | EIRP(dBm) | m) | Polarization | | 11979.52 | -35.72 | 2.60 | 11.00 | -27.32 | -13.00 | Н | | 17286.67 | -43.05 | 3.20 | 14.50 | -31.75 | -13.00 | Н | | 17488.57 | -41.40 | 2.90 | 14.50 | -29.80 | -13.00 | Н | | 17610.00 | -40.06 | 3.30 | 12.80 | -30.56 | -13.00 | Н | | 17835.71 | -39.11 | 3.60 | 12.80 | -29.91 | -13.00 | Н | | 17998.10 | -38.28 | 3.20 | 12.80 | -28.68 | -13.00 | Н | ## WCDMA BAND IV Mode Channel 1638/1777.6MHz (QPSK) | [| D (dD:ss) | Path | Antenna | Peak | Limit(dB | Dolovinstian | |----------------|------------------------|------|-----------|-----------|----------|--------------| | Frequency(MHz) | P _{Mea} (dBm) | loss | Gain(dBi) | EIRP(dBm) | m) | Polarization | | 12120.00 | -42.20 | 2.70 | 12.60 | -32.30 | -13.00 | Н | | 16939.05 | -45.21 | 2.90 | 16.50 | -31.61 | -13.00 | Н | | 17440.48 | -41.61 | 2.90 | 14.50 | -30.01 | -13.00 | Н | | 17613.33 | -40.02 | 3.30 | 12.80 | -30.52 | -13.00 | Н | | 17839.52 | -40.01 | 3.60 | 12.80 | -30.81 | -13.00 | Н | | 17992.38 | -37.74 | 3.20 | 12.80 | -28.14 | -13.00 | Н | ## WCDMA BAND IV Mode Channel 1738/1797.6MHz (QPSK) | Fraguency/MUz) | D (dDm) | Path | Antenna | Peak | Limit(dB | Polarization | |----------------|------------------------|------|-----------|-----------|----------|--------------| | Frequency(MHz) | P _{Mea} (dBm) | loss | Gain(dBi) | EIRP(dBm) | m) | Polarization | | 17097.62 | -43.61 | 2.90 | 14.50 | -32.01 | -13.00 | Н | | 17219.52 | -44.07 | 3.20 | 14.50 | -32.77 | -13.00 | Н | | 17519.52 | -40.95 | 2.90 | 12.80 | -31.05 | -13.00 | H | | 17595.24 | -39.67 | 3.30 | 12.80 | -30.17 | -13.00 | H | | 17791.43 | -40.43 | 3.60 | 12.80 | -31.23 | -13.00 | H | | 17935.71 | -37.67 | 3.20 | 12.80 | -28.07 | -13.00 | Н | ## WCDMA BAND IV Mode Channel 1537/1753.4MHz (16QAM) | Fragues av (MIII) | D (dDm) | Path | Antenna | Peak | Limit(dB | Dolorization | |-------------------|------------------------|------|-----------|-----------|----------|--------------| | Frequency(MHz) | P _{Mea} (dBm) | loss | Gain(dBi) | EIRP(dBm) | m) | Polarization | | 11977.62 | -35.80 | 2.60 | 11.00 | -27.40 | -13.00 | Н | | 16949.52 | -45.41 | 2.90 | 16.50 | -31.81 | -13.00 | Н | | 17408.10 | -42.41 | 2.90 | 14.50 | -30.81 | -13.00 | Н | | 17571.43 | -39.42 | 3.30 | 12.80 | -29.92 | -13.00 | Н | | 17812.86 | -40.34 | 3.60 | 12.80 | -31.14 | -13.00 | Н | | 17962.38 | -38.47 | 3.20 | 12.80 | -28.87 | -13.00 | I | ## WCDMA BAND IV Mode Channel 1638/1777.6MHz (16QAM) | Frequency(MHz) |) P _{Mea} (dBm) | Path | Antenna | Peak | Limit(dB | Polarization | |-------------------|--------------------------|------|-----------|-----------|----------|--------------| | Frequency(IVIFIZ) | P _{Mea} (ubiii) | loss | Gain(dBi) | EIRP(dBm) | m) | Polatization | | 12119.52 | -41.41 | 2.70 | 12.60 | -31.51 | -13.00 | Н | | 16975.71 | -44.65 | 2.90 | 16.50 | -31.05 | -13.00 | Н | | 17495.24 | -42.98 | 2.90 | 14.50 | -31.38 | -13.00 | Н | | 17591.43 | -39.78 | 3.30 | 12.80 | -30.28 | -13.00 | Н | | 17758.57 | -40.55 | 3.60 | 12.80 | -31.35 | -13.00 | Н | | 17995.24 | -38.72 | 3.20 | 12.80 | -29.12 | -13.00 | Н | #### WCDMA BAND IV Mode Channel 1738/1797.6MHz ((16QAM) | Fraguency/MUz) | D (dDm) | Path | Antenna | Peak | Limit(dB | Polarization | |----------------|------------------------|------|-----------|-----------|----------|--------------| | Frequency(MHz) | P _{Mea} (dBm) | loss | Gain(dBi) | EIRP(dBm) | m) | Polarization | | 16985.24 | -44.22 | 2.90 | 16.50 | -30.62 | -13.00 | Н | | 17302.38 | -42.93 | 3.20 | 14.50 | -31.63 | -13.00 | H | | 17524.29 | -39.59 | 2.90 | 12.80 | -29.69 | -13.00 | H | | 17586.67 | -40.22 | 3.30 | 12.80 | -30.72 | -13.00 | H | | 17781.90 | -39.84 | 3.60 | 12.80 | -30.64 | -13.00 | H | | 17992.86 | -38.05 | 3.20 | 12.80 | -28.45 | -13.00 | Н | Note: The maximum value of expanded measurement uncertainty for this test item is U = 2.87dB(30MHz-3GHz)/3.35dB(3GHz-18GHz)/2.68dB(18GHz-40GHz), k = 2 ## **A.3 FREQUENCY STABILITY** #### Reference FCC: CFR Part 2.1055, 22.355, 24.235, 27.54 #### A.3.1 Method of Measurement In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU200 DIGITAL RADIO COMMUNICATION TESTER. - 1. Measure the carrier frequency at room temperature. - 2. Subject the EUT to overnight soak at -30°C. - 3. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on mid channel of WCDMA Band II, WCDMA Band V and WCDMA Band IV, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming. - 4. Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements. - 5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 1
1/2 hours unpowered, to allow any self-heating to stabilize, before continuing. - 6. Subject the EUT to overnight soak at $+50^{\circ}$ C. - 7. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming. - 8. Repeat the above measurements at 10℃ increments from -30℃ to +50℃. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements. - 9. At all temperature levels hold the temperature to $\pm 0.5^{\circ}$ during the measurement procedure. #### A.3.2 Measurement Limit #### A.3.2.1 For Hand carried battery powered equipment According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.60V and 4.35V, with a nominal voltage of 3.80V. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of -5.5 % and +12.6 %. For the purposes of measuring frequency stability these voltage limits are to be used. #### A.3.2.2 For equipment powered by primary supply voltage According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies. This requires varying primary supply voltage from 95 to 114 percent of the nominal value for other than hand carried battery equipment. #### A.3.3 Measurement results #### **WCDMA Band II** ## Frequency Error vs Voltage-QPSK | Voltage(V) | Frequency error(Hz) | Frequency error(ppm) | |------------|---------------------|----------------------| | 3.60 | -8 | 0.010 | | 3.80 | -7 | 0.009 | | 4.35 | -11 | 0.013 | ## **Frequency Error vs Temperature-QPSK** | temperature(°C) | Frequency error(Hz) | Frequency error(ppm) | |-----------------|---------------------|----------------------| | -30 | -9 | 0.011 | | -20 | -10 | 0.012 | | -10 | -9 | 0.011 | | 0 | -10 | 0.012 | | 10 | -6 | 0.007 | | 20 | -10 | 0.011 | | 30 | -6 | 0.007 | | 40 | -6 | 0.007 | | 50 | -9 | 0.011 | ## Frequency Error vs Voltage-16QAM | Voltage(V) | Frequency error(Hz) | Frequency error(ppm) | |------------|---------------------|----------------------| | 3.60 | -7 | 0.004 | | 3.80 | -16 | 0.008 | | 4.35 | -12 | 0.007 | ## Frequency Error vs Temperature-16QAM | temperature(°C) | Frequency error(Hz) | Frequency error(ppm) | |-----------------|---------------------|----------------------| | -30 | -13 | 0.007 | | -20 | -11 | 0.006 | | -10 | -14 | 0.007 | | 0 | -18 | 0.010 | | 10 | -17 | 0.009 | | 20 | -16 | 0.009 | | 30 | -22 | 0.011 | | 40 | -17 | 0.009 | | 50 | -15 | 0.008 | ## **WCDMA Band V** # Frequency Error vs Voltage-QPSK | Voltage(V) | Frequency error(Hz) | Frequency error(ppm) | |------------|---------------------|----------------------| | 3.60 | -12 | 0.015 | | 3.80 | -12 | 0.014 | | 4.35 | -11 | 0.013 | # Frequency Error vs Temperature-QPSK | temperature(°C) | Frequency error(Hz) | Frequency error(ppm) | |-----------------|---------------------|----------------------| | -30 | -14 | 0.017 | | -20 | -7 | 0.009 | | -10 | -15 | 0.018 | | 0 | -12 | 0.015 | | 10 | -9 | 0.011 | | 20 | -12 | 0.015 | | 30 | -14 | 0.016 | | 40 | -5 | 0.006 | | 50 | -14 | 0.017 | # Frequency Error vs Voltage-16QAM | Voltage(V) | Frequency error(Hz) | Frequency error(ppm) | |------------|---------------------|----------------------| | 3.60 | -4 | 0.005 | | 3.80 | -9 | 0.011 | | 4.35 | -17 | 0.021 | # Frequency Error vs Temperature-16QAM | $temperature(^{\circ}\!\mathbb{C})$ | Frequency error(Hz) | Frequency error(ppm) | |-------------------------------------|---------------------|----------------------| | -30 | -6 | 0.008 | | -20 | -13 | 0.016 | | -10 | -9 | 0.011 | | 0 | -12 | 0.015 | | 10 | -11 | 0.014 | | 20 | -10 | 0.013 | | 30 | -10 | 0.012 | | 40 | -16 | 0.019 | | 50 | -13 | 0.016 | ## **WCDMA Band IV** ## Frequency Error vs Voltage-QPSK | Voltage(V) | Frequency error(Hz) | Frequency error(ppm) | |------------|---------------------|----------------------| | 3.60 | -17 | 0.009 | | 3.80 | -15 | 0.008 | | 4.35 | -11 | 0.006 | ## **Frequency Error vs Temperature-QPSK** | temperature(°C) | Frequency error(Hz) | Frequency error(ppm) | |-----------------|---------------------|----------------------| | -30 | -18 | 0.010 | | -20 | -12 | 0.006 | | -10 | -11 | 0.006 | | 0 | -11 | 0.006 | | 10 | -9 | 0.005 | | 20 | -16 | 0.009 | | 30 | -18 | 0.010 | | 40 | -18 | 0.010 | | 50 | -18 | 0.010 | # Frequency Error vs Voltage-16QAM | Voltage(V) | Frequency error(Hz) | Frequency error(ppm) | |------------|---------------------|----------------------| | 3.60 | -16 | 0.009 | | 3.80 | -12 | 0.007 | | 4.35 | -18 | 0.010 | ## Frequency Error vs Temperature-16QAM | temperature(°C) | Frequency error(Hz) | Frequency error(ppm) | |-----------------|---------------------|----------------------| | -30 | -11 | 0.006 | | -20 | -10 | 0.006 | | -10 | -12 | 0.007 | | 0 | -19 | 0.011 | | 10 | -14 | 0.008 | | 20 | -19 | 0.011 | | 30 | -15 | 0.008 | | 40 | -18 | 0.010 | | 50 | -19 | 0.011 | Expanded measurement uncertainty is 10Hz, k = 2 ## **A.4 OCCUPIED BANDWIDTH** #### Reference FCC: CFR Part 2.1049, 22.917, 24.238, 27.53(g). #### A.4.1 Occupied Bandwidth Results - a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (i.e., two to five times the OBW). - b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW. - c) Set the reference level of the instrument as required to keep the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level. - d) Set the detection mode to peak, and the trace mode to max hold. - e) Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth. ## A.4.2 Occupied Bandwidth Results Occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the US Cellular/PCS frequency bands. The table below lists the measured 99% BW. Spectrum analyzer plots are included on the following pages. ## WCDMA Band II (99% BW)-QPSK | Frequency(MHz) | Occupied Bandwidth (99% BW)(MHz) | |----------------|----------------------------------| | 1852.4 | 4.17 | | 1880.0 | 4.17 | | 1907.6 | 4.18 | #### **WCDMA Band II** ## Channel 9262-Occupied Bandwidth (99% BW)-QPSK ## Channel 9400-Occupied Bandwidth (99% BW)-QPSK # Channel 9538-Occupied Bandwidth (99% BW)-QPSK ## WCDMA Band II (99% BW)-16QAM | Frequency(MHz) | Occupied Bandwidth (99% BW)(MHz) | |----------------|----------------------------------| | 1852.4 | 4.17 | | 1880.0 | 4.15 | | 1907.6 | 4.19 | #### **WCDMA Band II** ## Channel 9262-Occupied Bandwidth (99% BW)-16QAM # Channel 9400-Occupied Bandwidth (99% BW)-16QAM # Channel 9538-Occupied Bandwidth (99% BW)-16QAM ### WCDMA Band V(99% BW)-QPSK | Frequency(MHz) | Occupied Bandwidth (99% BW)(MHz) | |----------------|----------------------------------| | 826.4 | 4.15 | | 836.6 | 4.16 | | 846.6 | 4.17 | #### **WCDMA Band V** ### Channel 4132-Occupied Bandwidth (99% BW)-QPSK # Channel 4183-Occupied Bandwidth (99% BW)-QPSK # Channel 4233-Occupied Bandwidth (99% BW)-QPSK ### WCDMA Band V(99% BW)-16QAM | Frequency(MHz) | Occupied Bandwidth (99% BW)(MHz) | |----------------|----------------------------------| | 826.4 | 4.15 | | 836.6 | 4.16 | | 846.6 | 4.16 | #### **WCDMA Band V** ### Channel 4132-Occupied Bandwidth (99% BW)-16QAM # Channel 4183-Occupied Bandwidth (99% BW)-16QAM # Channel 4233-Occupied Bandwidth (99% BW)-16QAM ### WCDMA Band IV(99% BW)-QPSK | Frequency(MHz) | Occupied Bandwidth (99% BW)(MHz) | |----------------|----------------------------------| | 1712.4 | 4.19 | | 1740.0 | 4.16 | | 1752.6 | 4.16 | #### **WCDMA Band IV** ### Channel 1312-Occupied Bandwidth (99% BW)-QPSK ### Channel 1450-Occupied Bandwidth (99% BW)-QPSK # Channel 1513-Occupied Bandwidth (99% BW)-QPSK ### WCDMA Band IV(99% BW)-16QAM | Frequency(MHz) | Occupied Bandwidth (99% BW)(MHz) | |----------------|----------------------------------| | 1712.4 | 4.16 | | 1740.0 | 4.16 | | 1752.6 | 4.17 | #### **WCDMA Band IV** ### Channel 1312-Occupied Bandwidth (99% BW)-16QAM ### Channel 1450-Occupied Bandwidth (99% BW)-16QAM # Channel 1513-Occupied Bandwidth (99% BW)-16QAM Note: Expanded measurement uncertainty is U = 3428Hz, k = 2 ### **A.5 EMISSION BANDWIDTH** #### Reference FCC: CFR Part 2.1049, 22.917, 24.238, 27.53(g). #### A.5.1Emission Bandwidth Results #### A.5.1 Measurement Procedure The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the
transmitter power. - a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (i.e., two to five times the OBW). - b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW. - c) Set the reference level of the instrument as required to keep the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level. - d) Set the detection mode to peak, and the trace mode to max hold. - e) Use the 26dB bandwidth function of the spectrum analyzer and report the measured bandwidth. #### A.5.2Emission Bandwidth Results Similar to conducted emissions; Emission bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of WCDMA Band II WCDMA Band V and WCDMA Band IV. Table below lists the measured -26dBc BW. Spectrum analyzer plots are included on the following pages. #### WCDMA Band II (-26dBc BW)-QPSK | Frequency(MHz) | Emission Bandwidth (-26dBc BW)(MHz) | |----------------|-------------------------------------| | 1852.4 | 4.71 | | 1880.0 | 4.70 | | 1907.6 | 4.70 | #### **WCDMA Band II** Channel 9262-Emission Bandwidth (-26dBc BW)-QPSK ### Channel 9400-Emission Bandwidth (-26dBc BW)-QPSK ### Channel 9538-Emission Bandwidth (-26dBc BW)-QPSK ### WCDMA Band II (-26dBc BW)-16QAM | Frequency(MHz) | Emission Bandwidth (-26dBc BW)(MHz) | |----------------|-------------------------------------| | 1852.4 | 4.71 | | 1880.0 | 4.68 | | 1907.6 | 4.71 | #### **WCDMA Band II** ### Channel 9262-Emission Bandwidth (-26dBc BW)-16QAM ### Channel 9400-Emission Bandwidth (-26dBc BW)-16QAM # Channel 9538-Emission Bandwidth (-26dBc BW)-16QAM ### WCDMA Band V(-26dBc BW)-QPSK | Frequency(MHz) | Emission Bandwidth (-26dBc BW)(MHz) | |----------------|-------------------------------------| | 826.40 | 4.67 | | 836.60 | 4.68 | | 846.60 | 4.70 | #### **WCDMA Band V** ### Channel 4132-Emission Bandwidth (-26dBc BW)-QPSK ### Channel 4183-Emission Bandwidth (-26dBc BW)-QPSK # Channel 4233-Emission Bandwidth (-26dBc BW)-QPSK ### WCDMA Band V(-26dBc BW)-16QAM | Frequency(MHz) | Emission Bandwidth (-26dBc BW)(MHz) | |----------------|-------------------------------------| | 826.40 | 4.67 | | 836.60 | 4.70 | | 846.60 | 4.71 | #### **WCDMA Band V** ### Channel 4132-Emission Bandwidth (-26dBc BW)-16QAM ### Channel 4183-Emission Bandwidth (-26dBc BW)-16QAM # Channel 4233-Emission Bandwidth (-26dBc BW)-16QAM ### WCDMA Band IV(-26dBc BW)-QPSK | Frequency(MHz) | Emission Bandwidth (-26dBc BW)(MHz) | |----------------|-------------------------------------| | 1712.4 | 4.71 | | 1740.0 | 4.71 | | 1752.6 | 4.68 | #### **WCDMA Band IV** ### Channel 1312-Emission Bandwidth (-26dBc BW)-QPSK ### Channel 1450-Emission Bandwidth (-26dBc BW)-QPSK # Channel 1513-Emission Bandwidth (-26dBc BW)-QPSK ### WCDMA Band IV(-26dBc BW)-16QAM | Frequency(MHz) | Emission Bandwidth (-26dBc BW)(MHz) | |----------------|-------------------------------------| | 1712.4 | 4.71 | | 1740.0 | 4.71 | | 1752.6 | 4.68 | #### **WCDMA Band IV** ### Channel 1312-Emission Bandwidth (-26dBc BW)-16QAM ### Channel 1450-Emission Bandwidth (-26dBc BW)-16QAM ### Channel 1513-Emission Bandwidth (-26dBc BW)-16QAM Note: Expanded measurement uncertainty is U = 3428Hz, k = 2 ### A.6 BAND EDGE COMPLIANCE #### Reference FCC: CFR Part 2.1051, 22.917, 24.238, 27.53(h). #### A.6.1 Measurement limit On any frequency outside frequency band of the US Cellular/PCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log (P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm. A relaxation of the reference bandwidth is often provided for measurements within a specified frequency range at the edge of the authorized frequency block/band. This is often implemented by permitting the use of a narrower RBW (typically limited to a minimum RBW of 1% of the OBW) for measuring the out-of-band emissions without a requirement to integrate the result over the full reference bandwidth. #### A.6.2Measurement Procedure The testing follows ANSI C63.26 - a) The EUT was connected to spectrum analyzer and system simulator via a power divider. - b) The band edges of low and high channels for the highest RF powers were measured. - c) Set RBW >= 1% EBW in the 1MHz band immediately outside and adjacent to the band edge. - d) Set spectrum analyzer with RMS detector. - e) The RF fundamental frequency should be excluded against the limit line in the operating frequency band. - f) Checked that all the results comply with the emission limit line. Only worst case result is given below WCDMA Band II **LOW BAND EDGE BLOCK-A-Channel 9262** ### **HIGH BAND EDGE BLOCK-C-Channel 9538** # WCDMA Band $\,\mathrm{V}\,$ LOW BAND EDGE BLOCK-A-Channel 4132 ### HIGH BAND EDGE BLOCK-C (WCDMA Band V) - Channel 4233 ## WCDMA Band IV LOW BAND EDGE BLOCK-A -Channel 1312 #### **HIGH BAND EDGE BLOCK-C-Channel 1513** Note: Expanded measurement uncertainty is U = 0.49 dB(100KHz-2GHz)/1.21 dB (2GHz-26.5GHz), k = 1.96 #### **A.7 CONDUCTED SPURIOUS EMISSION** #### Reference FCC: CFR Part 2.1051, 22.917, 24.238, 27.53(h). #### A.7.1 Measurement Method The following steps outline the procedure used to measure the conducted emissions from the EUT. - Determine frequency range for measurements: From CFR 2.1051 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 9 GHz, data taken from 10 MHz to 25 GHz. - 2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing. #### **WCDMA Band II Transmitter** | Channel | Frequency (MHz) | |---------|-----------------| | 9262 | 1852.4 | | 9400 | 1880.0 | | 9538 | 1907.6 | #### **WCDMA Band V Transmitter** | Channel | Frequency (MHz) | |---------|-----------------| | 4132 | 826.4 | | 4183 | 836.6 | | 4233 | 846.6 | #### **WCDMA Band IV Transmitter** | Channel | Frequency (MHz) | |---------|-----------------| | 1312 | 1712.4 | | 1450 | 1740.0 | | 1513 | 1752.6 | #### A.7.2 Measurement Limit Part 24.238, Part 22.917 and Part 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out. A.7.3 Measurement result Only worst case result is given below WCDMA Band $\, \mathrm{II} \,$ **Channel 9262: 30MHz –19.1GHz**Spurious emission limit –13dBm. **Channel 9400: 30MHz –19.1GHz** Spurious emission limit –13dBm. # **Channel 9538: 30MHz –19.1GHz** Spurious emission limit –13dBm. WCDMA Band V **Channel 4132: 30MHz –8.49GHz**Spurious emission limit –13dBm. NOTE: peak above the limit line is the carrier frequency. **Channel 4183: 30MHz –8.49GHz** Spurious emission limit –13dBm. NOTE: peak above the limit line is the carrier frequency. Channel 4233: 30MHz –8.49GHz Spurious emission limit –13dBm. NOTE: peak above the limit line is the carrier frequency. **WCDMA Band IV** Channel 1312: 30MHz -17.55GHz Spurious emission limit -13dBm. **Channel 1450: 30MHz –17.55GHz** Spurious emission limit –13dBm. **Channel 1513: 30MHz –17.55GHz** Spurious emission limit –13dBm. Note: Expanded measurement uncertainty is U = 0.49 dB(100 KHz-2GHz)/1.21 dB (2GHz-26.5GHz), k = 1.96 ### **A.8 PEAK-TO-AVERAGE POWER RATIO** #### Reference FCC: CFR Part 24.232, 27.50(d), KDB971168 D01. The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission. - a)Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function; - b) Set resolution/measurement bandwidth ≥ signal's occupied bandwidth; - c) Set the number of counts to a value that stabilizes the measured CCDF curve; - d) Set the measurement interval to 1 ms - e)Record the maximum PAPR level associated with a probability of 0.1% #### A.8.1 Measurement limit not exceed 13 dB #### A.8.2 Measurement results #### Only worst case result is given below #### WCDMA Band II (PAPR)-QPSK | Frequency(MHz) | Peak-To-Average Power Ratio(PAPR)(dB) | |----------------|---------------------------------------| | 1852.4 | 2.72 | | 1880.0 | 2.88 | | 1907.6 | 2.76 | ### WCDMA Band II ### Channel 9262-Peak-To-Average Power Ratio(PAPR)-QPSK ### Channel 9400- Peak-To-Average Power Ratio(PAPR)-QPSK ## Channel 9538- Peak-To-Average Power Ratio(PAPR)-QPSK ### WCDMA Band II (PAPR)-16QAM | Frequency(MHz) | Peak-To-Average Power Ratio(PAPR)(dB) | |----------------|---------------------------------------| | 1852.4 | 5.20 | | 1880.0 | 4.88 | | 1907.6 | 5.38 |
WCDMA Band II ## Channel 9262- Peak-To-Average Power Ratio(PAPR)-16QAM ### Channel 9400- Peak-To-Average Power Ratio(PAPR)-16QAM # Channel 9538- Peak-To-Average Power Ratio(PAPR)-16QAM ### WCDMA Band V (PAPR)-QPSK | Frequency(MHz) | Peak-To-Average Power Ratio(PAPR)(dB) | |----------------|---------------------------------------| | 826.4 | 3.04 | | 836.6 | 3.00 | | 846.6 | 3.06 | #### **WCDMA Band V** ## Channel 4132- Peak-To-Average Power Ratio(PAPR)-QPSK ### Channel 4183- Peak-To-Average Power Ratio(PAPR)-QPSK # Channel 4233- Peak-To-Average Power Ratio(PAPR)-QPSK ### WCDMA Band V (PAPR)-16QAM | Frequency(MHz) | Peak-To-Average Power Ratio(PAPR)(dB) | |----------------|---------------------------------------| | 826.4 | 4.74 | | 836.6 | 6.00 | | 846.6 | 4.76 | #### **WCDMA Band V** ### Channel 4132- Peak-To-Average Power Ratio(PAPR)-16QAM ### Channel 4183- Peak-To-Average Power Ratio(PAPR)-16QAM # Channel 4233- Peak-To-Average Power Ratio(PAPR)-16QAM ### WCDMA Band IV (PAPR)-QPSK | Frequency(MHz) | Peak-To-Average Power Ratio(PAPR)(dB) | |----------------|---------------------------------------| | 1712.4 | 2.84 | | 1740.0 | 2.94 | | 1752.6 | 2.88 | #### **WCDMA Band IV** ### Channel 1312- Peak-To-Average Power Ratio(PAPR)-QPSK ### Channel 1450- Peak-To-Average Power Ratio(PAPR)-QPSK # Channel 1513- Peak-To-Average Power Ratio(PAPR)-QPSK ### WCDMA Band IV (PAPR)-16QAM | Frequency(MHz) | Peak-To-Average Power Ratio(PAPR)(dB) | |----------------|---------------------------------------| | 1712.4 | 4.66 | | 1740.0 | 5.70 | | 1752.6 | 5.68 | #### **WCDMA Band IV** ### Channel 1312- Peak-To-Average Power Ratio(PAPR)-16QAM ### Channel 1450- Peak-To-Average Power Ratio(PAPR)-16QAM # WCDMA Band IV Channel 1513- Peak-To-Average Power Ratio(PAPR)-16QAM Note: Expanded measurement uncertainty is U = 0.48 dB, k = 2 ***END OF REPORT***