

TEST REPORT

No. I21N02048-BLE

for

HMD global Oy

Tablet PC

Model Name: TA-1392

with

Hardware Version: V1.0

Software Version: 00WW_0_23B

FCC ID: 2AJOTTA-1392

Issued Date: 2021-09-10

Designation Number: CN1210

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

SAICT, Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000.

Tel:+86(0)755-33322000, Fax:+86(0)755-33322001

Email: yewu@caict.ac.cn. www.saict.ac.cn

©Copyright. All rights reserved by SAICT.

CONTENTS

C	ONTE	ENTS	2
1.	SU	MMARY OF TEST REPORT	3
	1.1.	TEST ITEMS	3
	1.2.	TEST STANDARDS	3
	1.3.	TEST RESULT	3
	1.4.	TESTING LOCATION	3
	1.5.	PROJECT DATA	3
	1.6.	Signature	3
2.	CL	LIENT INFORMATION	4
	2.1.	APPLICANT INFORMATION	4
	2.2.	MANUFACTURER INFORMATION	4
3.	EQ	QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	5
	3.1.	ABOUT EUT	5
	3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	5
	3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	5
	3.4.	GENERAL DESCRIPTION	6
4.	RE	EFERENCE DOCUMENTS	7
	4.1.	DOCUMENTS SUPPLIED BY APPLICANT	7
	4.2.	REFERENCE DOCUMENTS FOR TESTING	7
5.	TE	EST RESULTS	8
	5.1.	TESTING ENVIRONMENT	8
	5.2.	TEST RESULTS	8
	5.3.	STATEMENTS	8
6.	TE	EST EQUIPMENTS UTILIZED	9
7.	LA	ABORATORY ENVIRONMENT	10
8.	MI	EASUREMENT UNCERTAINTY	.11
Αľ	NNEX	X A: DETAILED TEST RESULTS	12
	TEST	CONFIGURATION	12
	A.0 A	NTENNA REQUIREMENT	14
	A.1 N	MAXIMUM PEAK OUTPUT POWER	15
	A.2 P	PEAK POWER SPECTRAL DENSITY	16
	A.3 6	DB BANDWIDTH	23
	A.4 B	SAND EDGES COMPLIANCE	30
	A.5 T	RANSMITTER SPURIOUS EMISSION - CONDUCTED	35
	A.6 T	RANSMITTER SPURIOUS EMISSION - RADIATED	54
	A.7 A	AC Power line Conducted Emission	74

1. Summary of Test Report

1.1. Test Items

Product Name Tablet PC Model Name TA-1392

Applicant's name HMD global Oy Manufacturer's Name HMD global Oy

1.2. Test Standards

FCC CFR 47, Part 15, Subpart C 2019

1.3. Test Result

Pass

Please refer to "5.2. Test Results"

1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China

1.5. Project data

Testing Start Date: 2021-07-01
Testing End Date: 2021-09-09

1.6. Signature

Lin Zechuang

(Prepared this test report)

An Ran

(Reviewed this test report)

Zhang Bojun

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: HMD global Oy

Address: Bertel Jungin aukio 9, 02600 Espoo, Finland.

Contact Person Rosario Casillo

E-Mail Rosario Casillo@hmdglobal.com

Telephone: +393 316272922

Fax: /

2.2. Manufacturer Information

Company Name: HMD global Oy

Address: Bertel Jungin aukio 9, 02600 Espoo, Finland.

Contact Person Rosario Casillo

E-Mail Rosario Casillo@hmdglobal.com

Telephone: +393 316272922

Fax: /

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Product Name Tablet PC Model Name TA-1392

Frequency Range 2400MHz~2483.5MHz

Type of Modulation GFSK Number of Channels 40

Antenna Type Integrated
Antenna Gain 0.8dBi

Power Supply 3.85V DC by Battery FCC ID 2AJOTTA-1392

Condition of EUT as received No abnormality in appearance

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of Shenzhen Academy of Information and Communications Technology.

3.2. Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version	Receive Date
UT04aa	4000TA1392L61500311	V1.0	00WW_0_23B	2021-07-01
UT08aa	4000TA1392L61500360	V1.0	00WW_0_23B	2021-07-01
UT06aa	4000TA1392L61500339	V1.0	00WW_0_23B	2021-07-01

^{*}EUT ID: is used to identify the test sample in the lab internally.

UT04aa is used for conduction test, UT08aa is used for radiation test, and UT06aa is used for AC Power line Conducted Emission test.

3.3. Internal Identification of AE used during the test

AE ID*	Description	AE ID
AE1	Battery	/
AE2	Charger	/
AE3	Data Cable	/

AE1

Model EMT80

Manufacturer HUNAN GAOYUAN BATTERY COMPANY LIMITED

Capacity 8000mAh

Nominal Voltage 5V

AE2

Model CH-21B

Manufacturer Shen zhen Tianyin Electronic Co.,Ltd

AE3

Model /

Manufacturer

Shen zhen baijundaElectronic Co.,Ltd

*AE ID: is used to identify the test sample in the lab internally.

3.4. General Description

The Equipment under Test (EUT) is a model of Tablet PC with integrated antenna and battery. It consists of normal options: Lithium Battery and Charger.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 15	FCC CFR 47, Part 15, Subpart C:	2019
	15.205 Restricted bands of operation;	
	15.209 Radiated emission limits, general requirements;	
	15.247 Operation within the bands 902–928MHz,	
	2400-2483.5 MHz, and 5725-5850 MHz	
ANSI C63.10	American National Standard of Procedures for Compliance	2013
	Testing of Unlicensed Wireless Devices	

5. Test Results

5.1. <u>Testing Environment</u>

Normal Temperature: 15~35°C Relative Humidity: 20~75%

5.2. Test Results

No	Test cases	Sub-clause of Part 15C	Verdict
0	Antenna Requirement	15.203	Р
1	Maximum Peak Output Power	15.247 (b)	Р
2	Peak Power Spectral Density	15.247 (e)	Р
3	6dB Bandwidth	15.247 (a)	Р
4	Band Edges Compliance	15.247 (d)	Р
5	Transmitter Spurious Emission - Conducted	15.247 (d)	Р
6	Transmitter Spurious Emission - Radiated	15.247, 15.205, 15.209	Р
7	AC Power line Conducted Emission	15.107, 15.207	Р

See ANNEX A for details.

5.3. Statements

SAICT has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.2 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.

6. Test Equipments Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period
1	Vector Signal Analyzer	FSV40	100903	Rohde & Schwarz	2021-12-30	1 year
2	RF Control Unit	JS0806-2	21C8060398	Tonscend	2022-05-09	1 year
3	Test Receiver	ESCI	100701	Rohde & Schwarz	2022-08-08	1 year
4	LISN	ENV216	102067	Rohde & Schwarz	2022-07-15	1 year

Radiated emission test system

	Radiated emission test system						
No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period	
			Nullibei		Due date	renou	
1	Loop Antenna	HLA6120	35779	TESEQ	2022-04-25	3 years	
2	BiLog Antenna	3142E	0224831	ETS-Lindgren	2024-05-27	3 years	
3	Horn Antenna	3117	00066577	ETS-Lindgren	2022-04-02	3 years	
4	Horn Antenna	QSH-SL-18	17013 C	Onor	2023-01-06	3 years	
4		-26-S-20		Q-par			
5	Horn Antenna	QSH-SL-8-	17014	Q-par	2023-01-06	3 years	
5		26-40-K-20	17014				
6	Test Receiver	ESR7	101676	Rohde & Schwarz	2021-11-25	1 year	
7	Spectrum	FSV40	101192	Rohde & Schwarz	2022-01-13	1.400	
'	Analyser	F3V40	101192	Runue & Schwarz	2022-01-13	1 year	
8	Chamber	FACT3-2.0	1285	ETS-Lindgren	2023-05-29	2 years	

Test software

No.	Equipment	Manufacturer	Version
1	JS1120-3	Tonscend	2.6
2	EMC32	Rohde & Schwarz	10.50.40

EUT is engineering software provided by the customer to control the transmitting signal.

The EUT was programmed to be in continuously transmitting mode.

Anechoic chamber

Fully anechoic chamber by ETS-Lindgren

7. Laboratory Environment

Semi-anechoic chamber

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 4 Ω
Normalised site attenuation (NSA)	<±4 dB, 3 m distance, from 30 to 1000 MHz

Shielded room

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-1000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 4 Ω

Fully-anechoic chamber

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 4 Ω
Voltage Standing Wave Ratio (VSWR)	≤ 6 dB, from 1 to 18 GHz, 3 m distance
Uniformity of field strength	Between 0 and 6 dB, from 80 to 6000 MHz

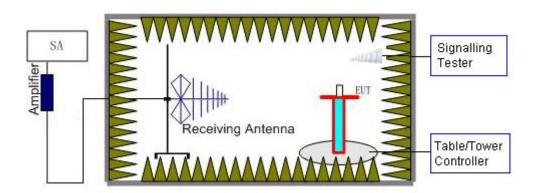
8. Measurement Uncertainty

Test Name	Uncertain	ty (<i>k</i> =2)
Maximum Peak Output Power	1.32	dB
Peak Power Spectral Density	2.32	dB
3. 6dB Bandwidth	66H	łz
4. Band Edges Compliance	1.92	dB
	30MHz≤f<1GHz	1.41dB
5 Transmitter Spurious Emission Conducted	1GHz≤f<7GHz	1.92dB
5. Transmitter Spurious Emission - Conducted	7GHz≤f<13GHz	2.31dB
	13GHz≤f≤26GHz	2.61dB
	9kHz≤f<30MHz	1.74dB
6 Transmitter Churique Emission Redicted	30MHz≤f<1GHz	4.84dB
6. Transmitter Spurious Emission - Radiated	1GHz≤f<18GHz	4.68dB
	18GHz≤f≤40GHz	3.76dB
7. AC Power line Conducted Emission	150kHz≤f≤30MHz	3.00dB

ANNEX A: Detailed Test Results

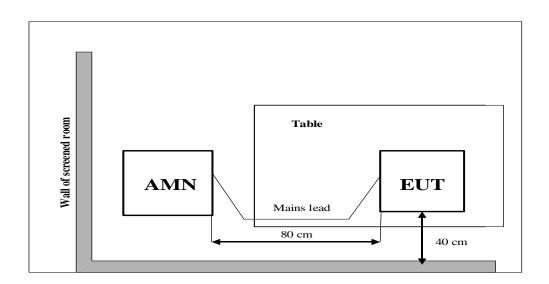
Test Configuration

The measurement is made according to ANSI C63.10.


1) Conducted Measurements

- 1. Connect the EUT to the test system correctly.
- 2. Set the EUT to the required work mode.
- 3. Set the EUT to the required channel.
- 4. Set the spectrum analyzer to start measurement.
- 5. Record the values.

2) Radiated Measurements


Test setup: EUT was placed on a 1.5 meter high non-conductive table at a 3 meter test distance from the receive antenna. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT and adjusting the receiving antenna polarization.

3) AC Power line Conducted Emission Measurement

For Bluetooth LE, the EUT is working under test mode. The EUT is commanded to operate at maximum transmitting power.

A.0 Antenna requirement

Measurement Limit:

Standard	Requirement
Otandard	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of
FCC CRF Part 15.203	this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is
	employed so that the limits in this part are not exceeded.

Conclusion: The Directional gains of antenna used for transmitting is 0.8dBi.

The RF transmitter uses an integrate antenna without connector.

A.1 Maximum Peak Output Power

Method of Measurement: See ANSI C63.10-clause 11.9.1.3

The maximum peak conducted output power may be measured using a broadband peak RF power meter.

Measurement Limit:

Standard	Limit (dBm/3 kHz)
FCC 47 CRF Part 15.247(e)	< 8 dBm/3 kHz

Measurement Results:

Mode	Frequency (MHz)	Peak Conducted Output Power (dBm)	Conclusion
	2402(CH0)	5.19	Р
LE 1M	2440(CH19)	5.73	Р
	2480(CH39)	5.66	Р
	2402(CH0)	5.09	Р
LE 2M	2440(CH19)	5.59	Р
	2480(CH39)	5.52	Р
LE Codod	2402(CH0)	5.00	Р
LE Coded S=8	2440(CH19)	5.46	Р
3=0	2480(CH39)	5.34	Р
LE Codod	2402(CH0)	5.13	Р
LE Coded	2440(CH19)	5.62	Р
S=2	2480(CH39)	5.47	Р

Conclusion: Pass

A.2 Peak Power Spectral Density

Method of Measurement: See ANSI C63.10-clause 11.10.2

Measurement Limit:

Standard	Limit
FCC 47 CRF Part 15.247(e)	< 8 dBm/3 kHz

Measurement Results:

Mode	Frequency (MHz)	Peak Power Spectral Density (dBm)		Conclusion
	2402(CH0)	Fig.1	-4.46	Р
LE 1M	2440(CH19)	Fig.2	-3.78	Р
	2480(CH39)	Fig.3	-4.17	Р
LE 2M	2402(CH0)	Fig.4	-8.43	Р
	2440(CH19)	Fig.5	-7.58	Р
	2480(CH39)	Fig.6	-7.84	Р
LE Coded S=8	2402(CH0)	Fig.7	0.31	Р
	2440(CH19)	Fig.8	0.61	Р
	2480(CH39)	Fig.9	0.86	Р
LE Coded S=2	2402(CH0)	Fig.10	-0.56	Р
	2440(CH19)	Fig.11	0.01	Р
	2480(CH39)	Fig.12	-0.36	Р

See below for test graphs.

Conclusion: PASS

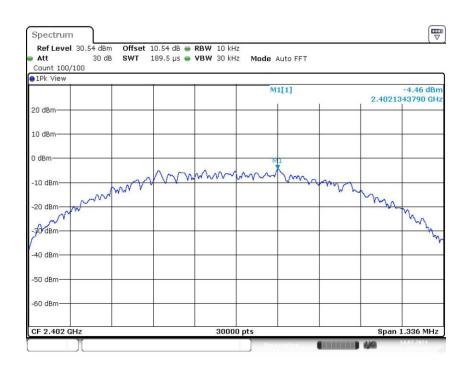


Fig.1 Power Spectral Density (CH0), LE 1M

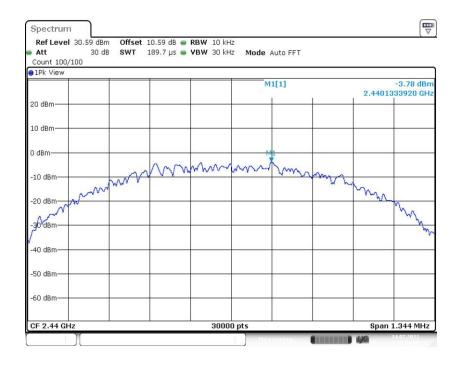


Fig.2 Power Spectral Density (CH19), LE 1M

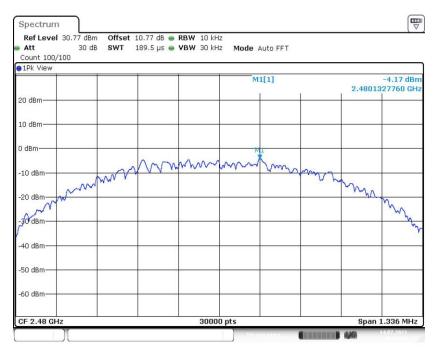


Fig.3 Power Spectral Density (CH39), LE 1M

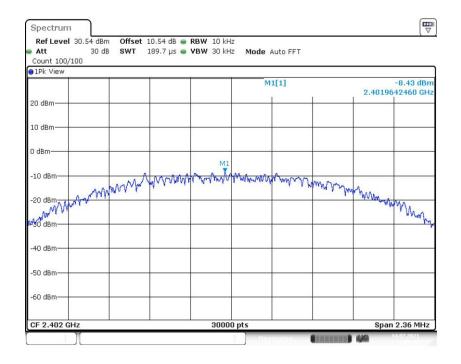


Fig.4 Power Spectral Density (CH0), LE 2M

Fig.5 Power Spectral Density (CH19), LE 2M

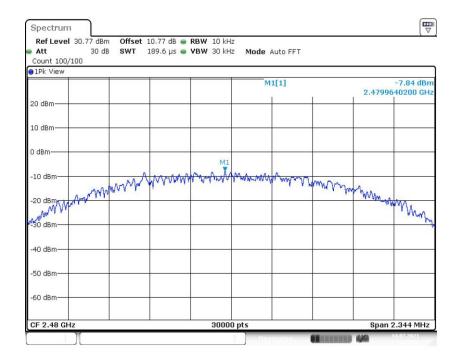


Fig.6 Power Spectral Density (CH39), LE 2M

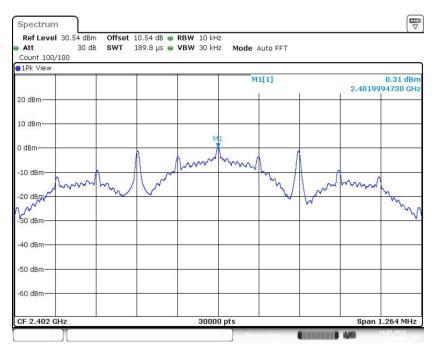


Fig.7 Power Spectral Density (CH0), LE Coded S=8

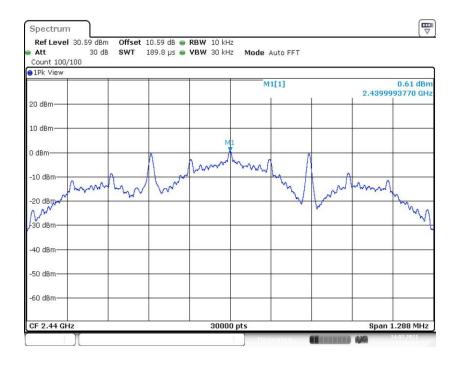


Fig.8 Power Spectral Density (CH19), LE Coded S=8

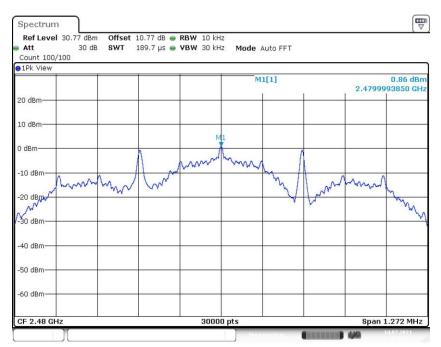


Fig.9 Power Spectral Density (CH39), LE Coded S=8

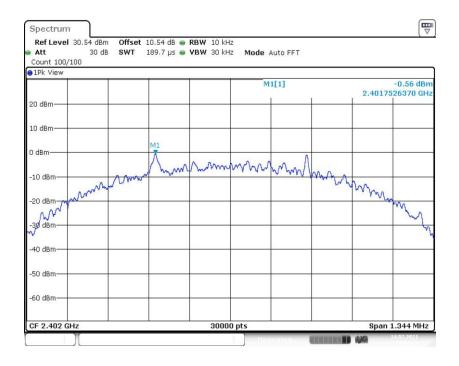


Fig.10 Power Spectral Density (CH0), LE Coded S=8

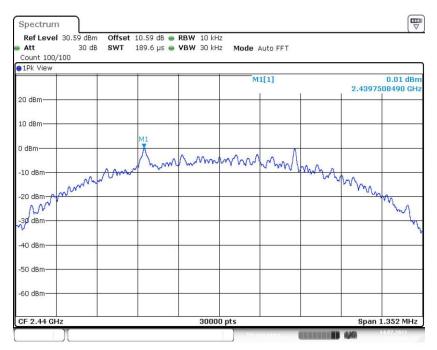


Fig.11 Power Spectral Density (CH19), LE Coded S=8

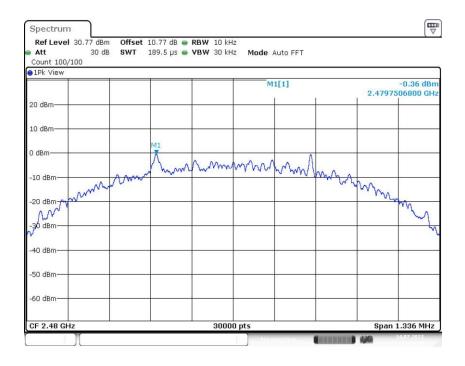


Fig.12 Power Spectral Density (CH39), LE Coded S=8

A.3 6dB Bandwidth

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.247 (a)	≥ 500

Measurement Result:

Mode	Frequency (MHz)	Test Results (kHz)		Conclusion
	2402(CH0)	Fig.13	668.00	Р
LE 1M	2440(CH19)	Fig.14	672.00	Р
	2480(CH39)	Fig.15	668.00	Р
	2402(CH0)	Fig.16	1180.00	Р
LE 2M	2440(CH19)	Fig.17	1176.00	Р
	2480(CH39)	Fig.18	1172.00	Р
LE Codod	2402(CH0)	Fig.19	632.00	Р
LE Coded S=8	2440(CH19)	Fig.20	644.00	Р
	2480(CH39)	Fig.21	636.00	Р
LE Coded S=2	2402(CH0)	Fig.22	672.00	Р
	2440(CH19)	Fig.23	676.00	Р
	2480(CH39)	Fig.24	668.00	Р

See below for test graphs.

Conclusion: PASS

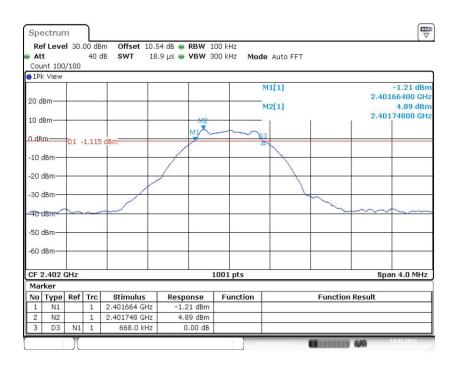


Fig.13 6dB Bandwidth (CH0), LE 1M

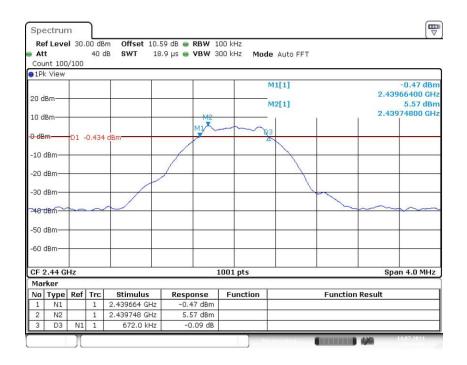


Fig.14 6dB Bandwidth (CH19), LE 1M

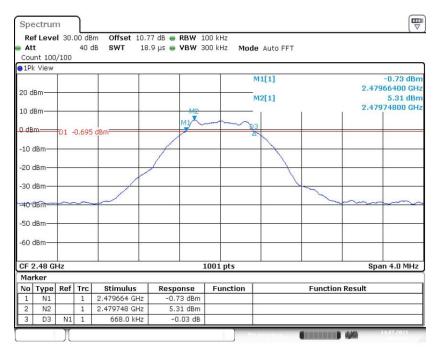


Fig.15 6dB Bandwidth (CH39), LE 1M

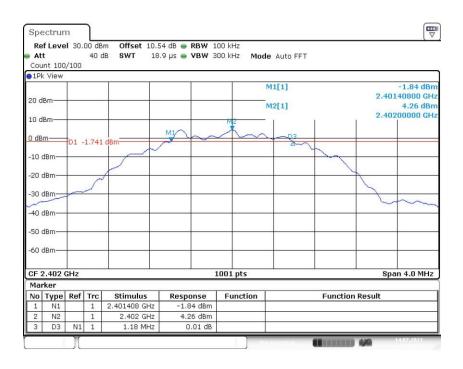


Fig.16 6dB Bandwidth (CH0), LE 2M

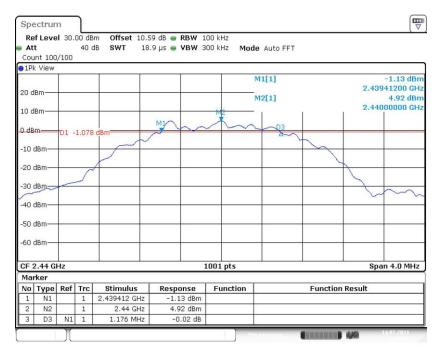


Fig.17 6dB Bandwidth (CH19), LE 2M

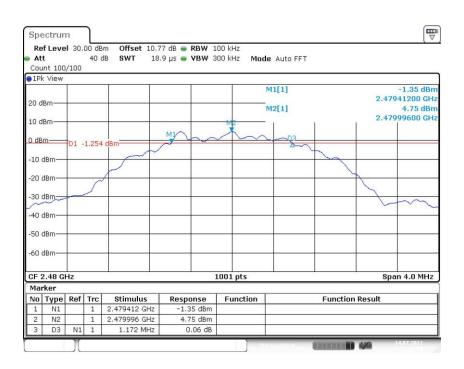


Fig.18 6dB Bandwidth (CH39), LE 2M

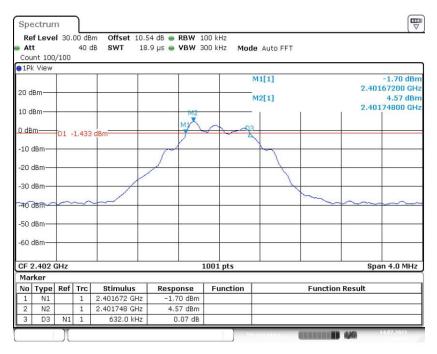


Fig.19 6dB Bandwidth (CH0), LE Coded S=8

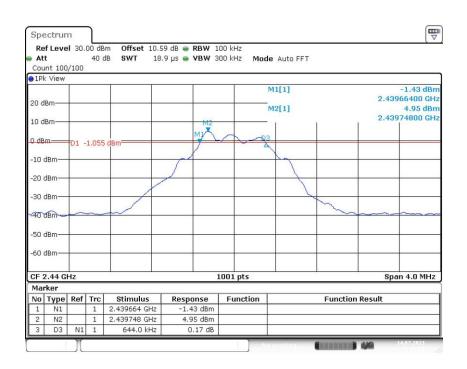


Fig.20 6dB Bandwidth (CH19), LE Coded S=8

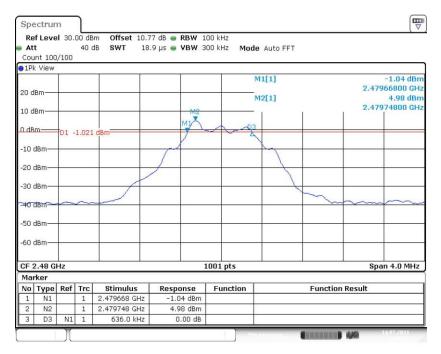


Fig.21 6dB Bandwidth (CH39), LE Coded S=8

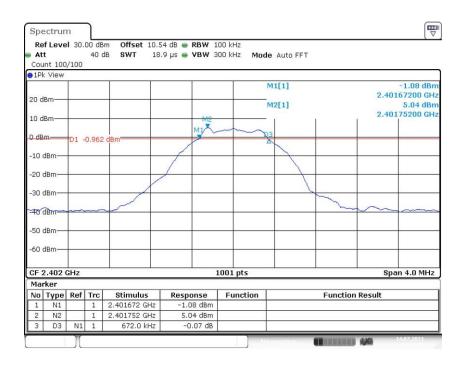


Fig.22 6dB Bandwidth (CH0), LE Coded S=2

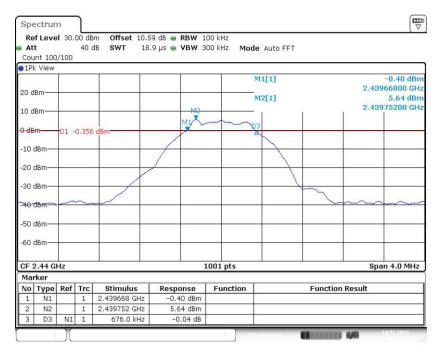


Fig.23 6dB Bandwidth (CH19), LE Coded S=2

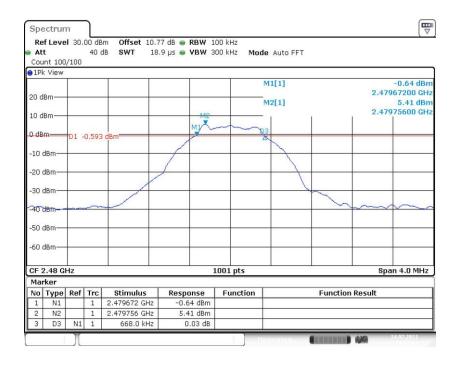


Fig.24 6dB Bandwidth (CH39), LE Coded S=2

A.4 Band Edges Compliance

Measurement Limit:

Standard	Limit (dBm)
FCC 47 CFR Part 15.247 (d)	> 20

Measurement Result:

Mode	Frequency (MHz)	Test Results (dBm)		Conclusion
1 = 4 N4	2402(CH0)	Fig.25	47.37	Р
LE 1M	2480(CH39)	Fig.26	48.00	Р
LE 2M	2402(CH0)	Fig.27	51.20	Р
	2480(CH39)	Fig.28	51.60	Р
LE Coded	2402(CH0)	Fig.29	45.83	Р
S=8	2480(CH39)	Fig.30	50.75	Р
LE Coded	2402(CH0)	Fig.31	51.39	Р
S=2	2480(CH39)	Fig.32	51.88	Р

See below for test graphs.

Conclusion: PASS

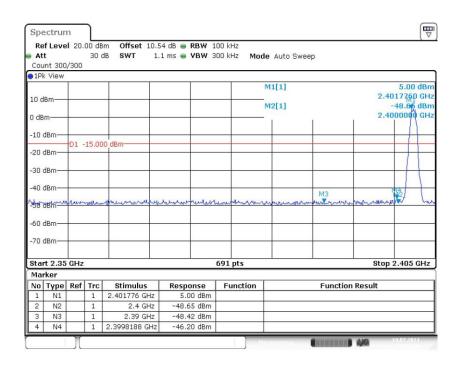


Fig.25 Band Edges (CH0), LE 1M

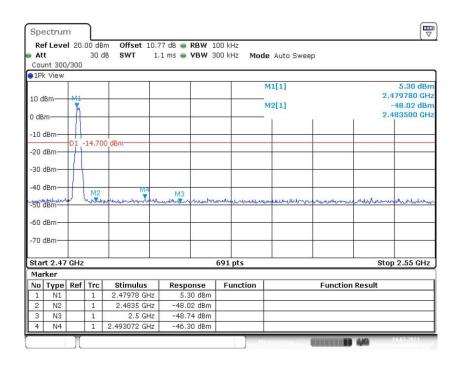


Fig.26 Band Edges (CH39), LE 1M

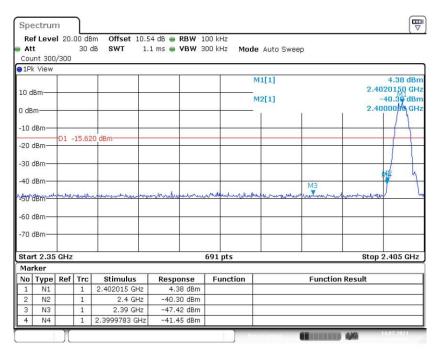


Fig.27 Band Edges (CH0), LE 2M

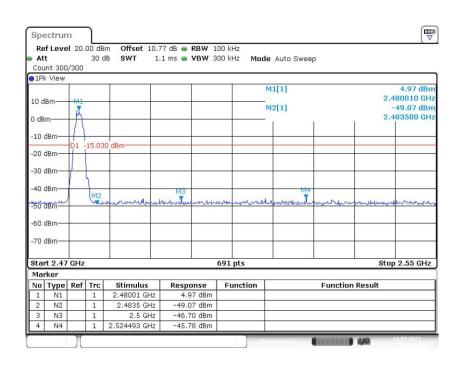


Fig.28 Band Edges (CH39), LE 2M

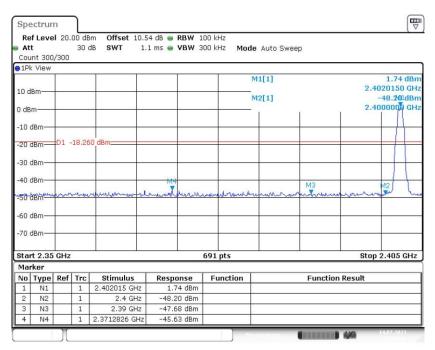


Fig.29 Band Edges (CH0), LE Coded S=8

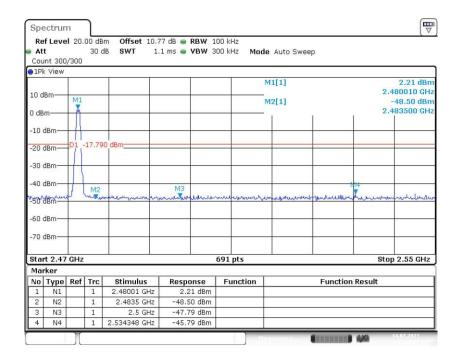


Fig.30 Band Edges (CH39), LE Coded S=8

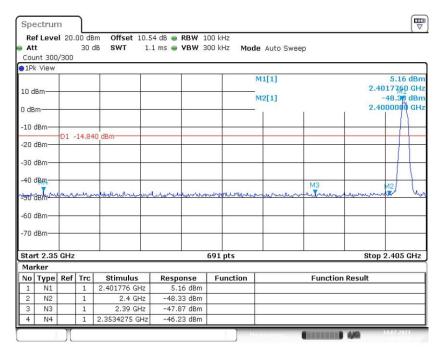


Fig.31 Band Edges (CH0), LE Coded S=2

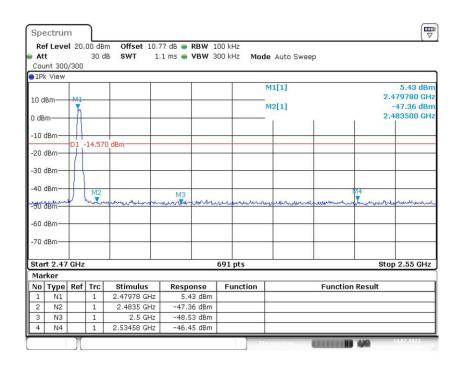


Fig.32 Band Edges (CH39), LE Coded S=2

A.5 Transmitter Spurious Emission - Conducted

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247 (d)	20dB below peak output power in 100 kHz
	bandwidth

Measurement Results:

MODE	Channel	Frequency Range	Test Results	Conclusion
0	2.402 GHz	Fig.33	Р	
	0	30MHz -1GHz	Fig.34	Р
		1GHz-26.5GHz	Fig.35	Р
		2.440 GHz	Fig.36	Р
LE 1M	19	30MHz -1GHz	Fig.37	Р
		1GHz-26.5GHz	Fig.38	Р
		2.480 GHz	Fig.39	Р
	39	30MHz -1GHz	Fig.40	Р
		1GHz-26.5GHz	Fig.41	Р
		2.402 GHz	Fig.42	Р
	0	30MHz -1GHz	Fig.43	Р
		1GHz-26.5GHz	Fig.44	Р
		2.440 GHz	Fig.45	Р
LE 2M	19	30MHz -1GHz	Fig.46	Р
		1GHz-26.5GHz	Fig.47	Р
		2.480 GHz	Fig.48	Р
	39	30MHz -1GHz	Fig.49	Р
		1GHz-26.5GHz	Fig.50	Р
0		2.402 GHz	Fig.51	Р
	30MHz -1GHz	Fig.52	Р	
		1GHz-26.5GHz	Fig.53	Р
LE Coded		2.440 GHz	Fig.54	Р
S=8	19	30MHz -1GHz	Fig.55	Р
3_0		1GHz-26.5GHz	Fig.56	Р
		2.480 GHz	Fig.57	Р
	39	30MHz -1GHz	Fig.58	Р
		1GHz-26.5GHz	Fig.59	Р
		2.402 GHz	Fig.60	Р
	0	30MHz -1GHz	Fig.61	Р
LE Coded		1GHz-26.5GHz	Fig.62	Р
S=2		2.440 GHz	Fig.63	Р
U=Z	19	30MHz -1GHz	Fig.64	Р
		1GHz-26.5GHz	Fig.65	Р
	39	2.480 GHz	Fig.66	Р

30MHz -1GHz	Fig.67	Р	
1GHz-26.5GHz	Fig.68	Р	

See below for test graphs.

Conclusion: Pass

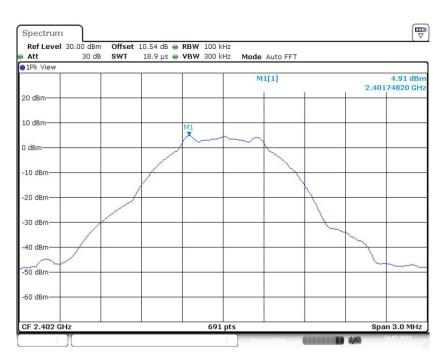


Fig.33 Conducted Spurious Emission (CH0, Center Frequency), LE 1M

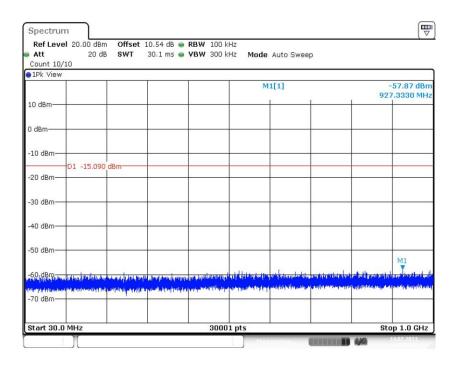


Fig.34 Conducted Spurious Emission (CH0, 30MHz -1GHz), LE 1M

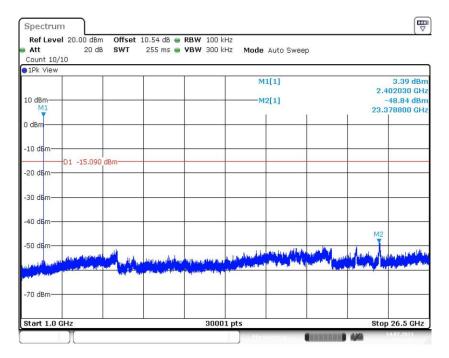


Fig.35 Conducted Spurious Emission (CH0, 1GHz-26.5GHz), LE 1M

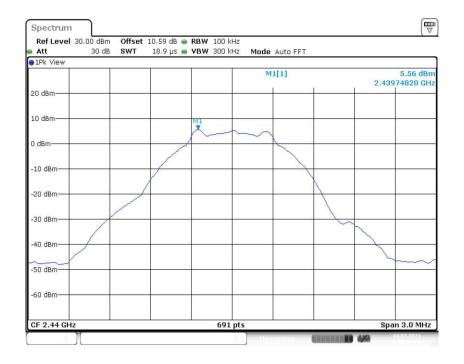


Fig.36 Conducted Spurious Emission (CH19, Center Frequency), LE 1M

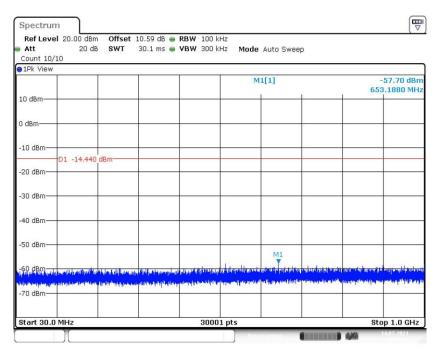


Fig.37 Conducted Spurious Emission (CH19, 30MHz -1GHz), LE 1M

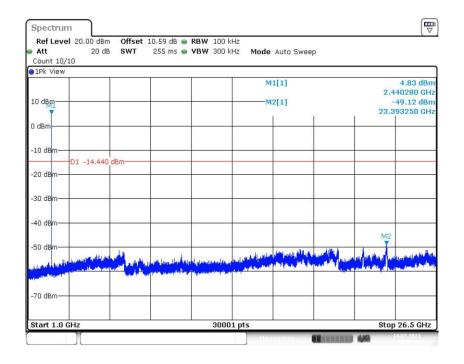


Fig.38 Conducted Spurious Emission (CH19, 1GHz-26.5GHz), LE 1M

Fig.39 Conducted Spurious Emission (CH39, Center Frequency), LE 1M

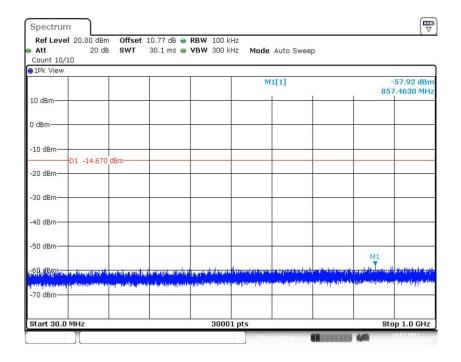


Fig.40 Conducted Spurious Emission (CH39, 30MHz -1GHz), LE 1M

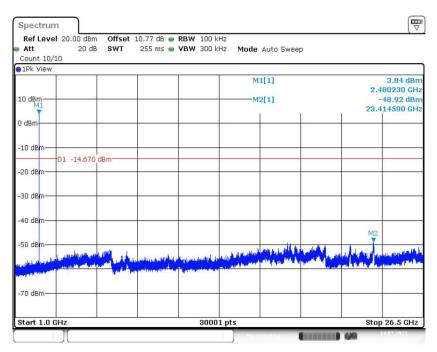


Fig.41 Conducted Spurious Emission (CH39, 1GHz-26.5GHz), LE 1M

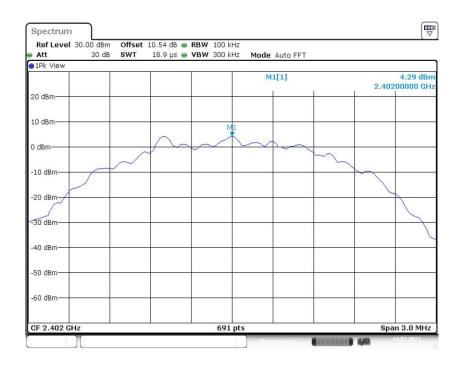


Fig.42 Conducted Spurious Emission (CH0, Center Frequency), LE 2M

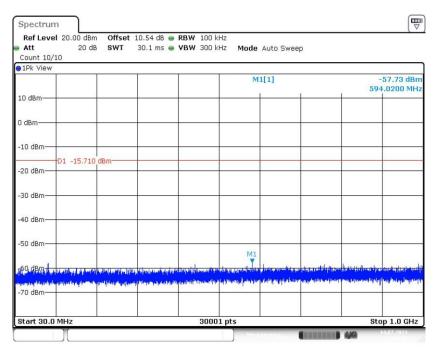


Fig.43 Conducted Spurious Emission (CH0, 30MHz -1GHz), LE 2M

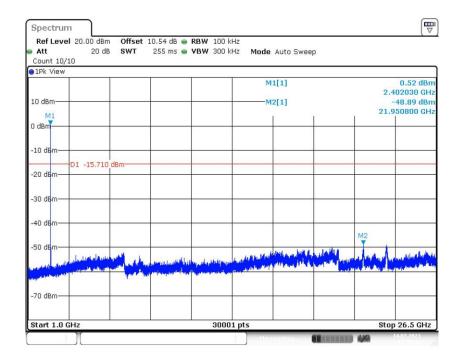


Fig.44 Conducted Spurious Emission (CH0, 1GHz-26.5GHz), LE 2M

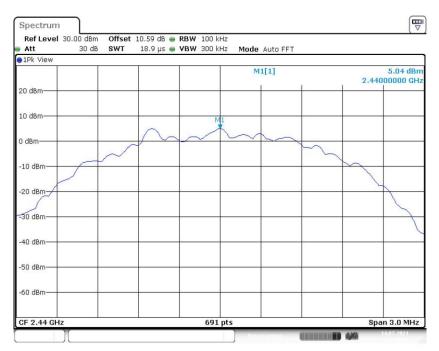


Fig.45 Conducted Spurious Emission (CH19, Center Frequency), LE 2M

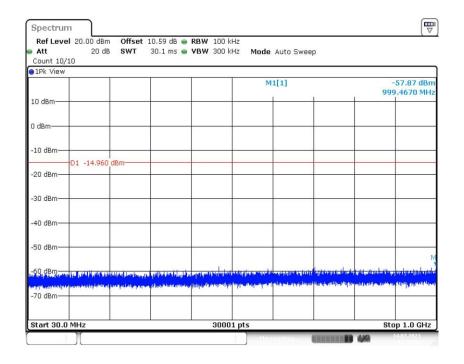


Fig.46 Conducted Spurious Emission (CH19, 30MHz -1GHz), LE 2M

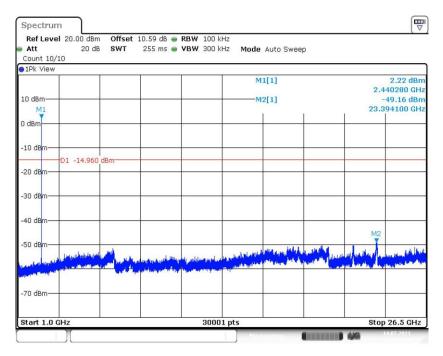


Fig.47 Conducted Spurious Emission (CH19, 1GHz-26.5GHz), LE 2M

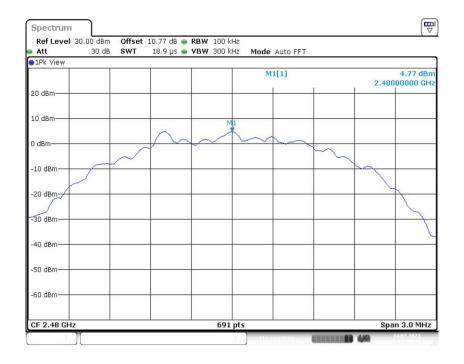


Fig.48 Conducted Spurious Emission (CH39, Center Frequency), LE 2M