

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2101682

FCC REPORT

Applicant: HMD global Oy

Address of Applicant: Bertel Jungin aukio 9, 02600 Espoo, Finland

Equipment Under Test (EUT)

Product Name: Smart Phone

Model No.: TA-1390

Trade mark: NOKIA

FCC ID: 2AJOTTA-1390

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 19 Aug., 2021

Date of Test: 20 Aug., to 28 Aug., 2021

Date of report issued: 29 Aug., 2021

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Version

Version No.	Date	Description
00	29 Aug., 2021	Original

Tested by: Date: 29 Aug., 2021

Winner Thang

Project Engineer Reviewed by: Date: 29 Aug., 2021

Contents

			Page
1	C	OVER PAGE	1
2	VI	ERSION	2
3	C	ONTENTS	3
4		EST SUMMARY	
5		ENERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	7
	5.4	Measurement Uncertainty	7
	5.5	DESCRIPTION OF SUPPORT UNITS	8
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	8
	5.7	DESCRIPTION OF CABLE USED	8
	5.8	Additions to, deviations, or exclusions from the method	
	5.9	LABORATORY FACILITY	8
	5.10	LABORATORY LOCATION	8
	5.11	TEST INSTRUMENTS LIST	9
6	TF	EST RESULTS AND MEASUREMENT DATA	10
	6.1	CONDUCTED EMISSION	10
	6.2	RADIATED EMISSION	13
7	TI	EST SETUP PHOTO	19
R	FI	UT CONSTRUCTIONAL DETAILS	19

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

4 Test Summary

Test Item	Section in CFR 47	Result		
Conducted Emission	Part 15.107	Pass		
Radiated Emission	Part 15.109	Pass		
Remark: 1. Pass: The EUT complies with the essential requirements in the standard.				
Test Method: ANSI C63.4:2014				

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5 General Information

5.1 Client Information

Applicant:	HMD global Oy	
Address:	Bertel Jungin aukio 9, 02600 Espoo, Finland	
Manufacturer:	HMD global Oy	
Address:	Bertel Jungin aukio 9, 02600 Espoo, Finland	

5.2 General Description of E.U.T.

Product Name:	Smart Phone			
Model No.:	TA-1390			
Frequency Bands:	Band	TX Frequency (MHz)	RX Frequency (MHz)	
	GSM850:	824~849	869~894	
	GSM1900	1850~1910	1930~1990	
	WCDMA Band II:	1850~1910	1930~1990	
	WCDMA Band IV:	1710~1755	2110~2155	
	WCDMA Band V:	824~849	869~894	
	LTE Band 2:	1850~1910	1930~1990	
	LTE Band 4:	1710~1755	2110~2155	
	LTE Band 5:	824~849	869~894	
	LTE Band 7:	2500~2570	2620~2690	
	LTE Band 12:	699~716	729~746	
	LTE Band 13:	777~787	746~756	
	LTE Band 17:	704~716	734~746	
	LTE Band 25:	1850~1915	1930~1995	
	LTE Band 26:	814~849	859~894	
	LTE Band 38:	2570~2620	2570~2620	
	LTE Band 41:	2496~2690	2496~2690	
	LTE Band 66:	1710~1780	2110~2200	
	LTE Band CA_7C:	2500~2570	2620~2690	
	LTE Band CA_38C:	2570~2620	2570~2620	
	LTE Band CA_41C:	2496~2690	2496~2690	
	NR n2:	1850~1910	1930~1990	
	NR n5:	824~849	869~894	
	NR n7	2500~2570	2620~2690	
	NR n38:	2570~2620	2570~2620	
	NR n41:	2496~2690	2496~2690	
	NR n66:	1710~1780	2110~2200	
	NR n71:	663~698	617~652	
	NR n78:	3450~3550	3450~3550	
	Wi-Fi 2.4G	2412~2462	2412~2462	
	Bluetooth	2402~2480	2402~2480	
	Wi-Fi 5G	5150~5850	5150~5850	
	GNSS(GPS + Galileo + Glonass + Beidou)	/	1599~1610	
	NFC	13.56	13.56	
	FM	/	88~108	

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Power supply:	Rechargeable Lithium ion Polymer Battery DC3.85V, 4.85Ah
AC adapter:	Adapter 1:
	Model: TN-050200U3, TN-050200E3, TN-050200C3A
	Input: AC100-240V, 50/60Hz, 0.35A
	Output: DC 5.0V, 2.0A 10.0W
	Note: Only the pins are different between different models
	Adapter 2:
	Model: TN-050200U3, TN-050200A3, TN-050200C3A
	Input: AC100-240V, 50/60Hz, 0.35A
	Output: DC 5.0V, 2.0A 10.0W
	Note: Only the pins are different between different models
	Adapter 3:
	Model: AD-010A, AD-010X
	Input: AC100-240V, 50/60Hz, 0.35A
	Output: DC 5.0V, 2.0A 10.0W
	Note: Only the pins are different between different models
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Page 6 of 19

5.3 Test Mode

Operating mode	Detail description	
TM 1 mode	Keep the EUT and PC data exchange (Worst case)	
TM 2 mode	Keep the EUT in Charging+Recording mode	
TM 3 mode	Keep the EUT in Charging+Playing mode	
TM 4 mode	Keep the EUT in FM receiver mode	
TM 5 mode	Keep the EUT in GPS receiver mode	
TM 6 mode	GSM850 Idle+BT+WLAN +GPS Rx+playing MP4 (SD card)+NFC+adapter	
TM 7 mode	WCDMA Band V Idle+BT+WLAN +GPS Rx+playing MP4 (SD card)+NFC+adapter	
TM 8 mode	LTE Band 5 Idle+BT+WLAN +GPS Rx+playing MP4 (SD card)+NFC+adapter	
TM 9 mode	LTE Band 12 Idle +BT+WLAN +GPS Rx+playing MP4 (SD card)+NFC+adapter	
TM 10 mode	LTE Band 13 Idle +BT+WLAN +GPS Rx+playing MP4 (SD card)+NFC+adapter	
TM 11 mode	LTE Band 17 Idle +BT+WLAN +GPS Rx+playing MP4 (SD card)+NFC+adapter	
TM 12 mode	NR n5 Idle +BT+WLAN +GPS Rx+playing MP4 (SD card)+NFC+adapter	
TM 13 mode	NR n71 Idle +BT+WLAN +GPS Rx+playing MP4 (SD card)+NFC+adapter	
Remark :	 During the test, pre-scan all mode, found TM 1 was worse case mode. Pre-scan all adapter and all USB Cable, found adapter 1 and USB Cable 1 was worse case mode. The report only reflects the worst mode. 	

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
±2.62 dB (k=2)
±3.13 dB
±4.45 dB
±5.34 dB
±5.34 dB

Note: The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.26-2015. All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: JYTSZB-R12-2101682

5.5 Description of Support Units

Manufacturer	Description	Model	Model Serial Number	
LENOVO	Laptop	SL510	2847A65	DoC
DELL	MOUSE	MS116t1	N/A	DoC
MERCURY	Wireless router	MW150R	12922104015	FCC ID

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type Vendor		Model Name	Spec Info	Supplier PN
Detached USB Cable 1	Shenzhen Chuangyitong Technology Co., Ltd.	88806-025	Type-C/2A data cable/1M/AWG2 4/Black/CYT	P103-BVJ130- 010
Detached USB Cable 2	Detached USB Cable 2 Shenzhen Yihuaxing Electronics CO.,Ltd.		Type-C/2A data cable/1M/AWG2 4/Black/YHX	P103-BVJ130- 000
Detached headset cable	DongGuan LongTa Xin Electronics Co.,Ltd	LTX-LH021	3.5 round wire semi-in-ear type/low end with wheat/black 1.2m	P106-BTX130- 000

5.8 Additions to, deviations, or exclusions from the method

No

5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

■ ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.10 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

JianYan Testing Group Shenzhen Co., Ltd.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.11 Test Instruments list

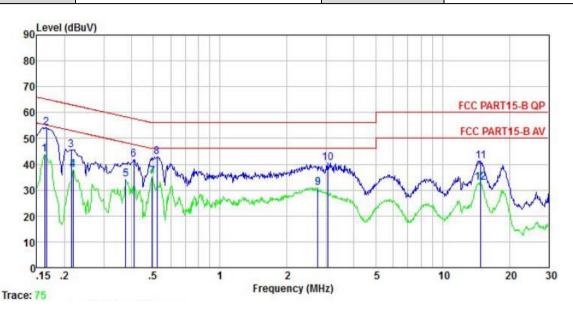
Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Management Number	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	WXJ001-1	01-19-2021	01-18-2024	
BiConiLog Antenna	SCHWARZBECK	VULB9163	WXJ002	03-03-2021	03-02-2022	
Horn Antenna	SCHWARZBECK	BBHA9120D	WXJ002-2	03-03-2021	03-02-2022	
Pre-amplifier	HP	8447D	WXG001-2	03-07-2021	03-06-2022	
Pre-amplifier	SKET	LNPA_0118G-50	WXG001-3	03-07-2021	03-06-2022	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	03-03-2021	03-02-2022	
Spectrum analyzer	Rohde & Schwarz	FSP30	WXJ004	03-03-2021	03-02-2022	
Signal Generator	Agilent	N5173B	WXJ006-7	03-25-2021	03-24-2022	
Simulated Station	Rohde & Schwarz	CMW500	WXJ008-3	06-17-2021	06-16-2022	
RF Switch Unit	Tonscend	JS0806-F	WXJ089	N	I/A	
Test Software	Tonscend	TS+	1	/ersion: 3.0.0.1		

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Management Number	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	WXJ003	03-03-2021	03-02-2022	
LISN	Rohde & Schwarz	ENV432	WXJ005-2	04-06-2021	04-05-2022	
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	06-17-2020	06-16-2022	
Coaxial Cable	JYT	JYTCE-1G-NN- 2M	WXG003-1	03-03-2021	03-02-2022	
Simulated Station	Rohde & Schwarz	CMW500	WXJ008-3	06-17-2021	06-16-2022	
UXM 5G Wireless Test Platform	KEYSIGHT	E7515B	MY60192444	11-27-2020	11-26-2021	
RF Switch	Top Precision	RSU0301	WXG003	N/A	N/A	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

Test results and Measurement Data

6.1 Conducted Emission

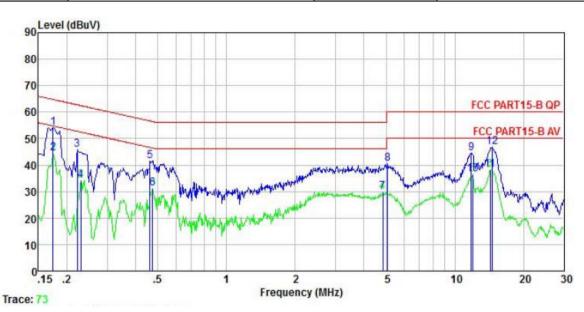
Test Requirement:	FCC Part 15 B Section 15.107							
Test Frequency Range:	150kHz to 30MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9kHz, VBW=30kHz							
Limit:	Limit (dRu\/)							
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	0.5-30	60	50					
	* Decreases with the logarithm	of the frequency.						
Test setup:	Reference Plane							
Took was so done	Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Filter — AC power						
Test procedure	 The E.U.T and simulators are impedance stabilization network coupling impedance for the network. The peripheral devices are a LISN that provides a 50ohm/termination. (Please refers to photographs). Both sides of A.C. line are interference. In order to fin positions of equipment and according to ANSI C63.4(let). 	rork(L.I.S.N.). The provineasuring equipment. Iso connected to the mission of the block diagram of the checked for maximum distance the interface call.	ride a 50ohm/50uH rain power through a nce with 50ohm rhe test setup and conducted on, the relative bles must be changed					
Test Instruments:	Refer to section 5.11 for details	Refer to section 5.11 for details						
Test mode:	Refer to section 5.3 for details							
Test results:	Pass							


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Measurement data:

Product name:	Smart Phone	Product model:	TA-1390
Test by:	Mike	Test mode:	TM 1 mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
7	MHz	dBu₹	<u>dB</u>	dB	d₿	dBu₹	dBu∜	dB	
1	0.162	33.59	10.22	-0.08	0.01	43.74			Average
2	0.166	43.95	10.22	-0.09	0.01	54.09	65.16	-11.07	QP
3	0.214	35.56	10.24	-0.18	0.03	45.65	63.05	-17.40	QP
4	0.219	27.72	10.24	-0.18	0.03	37.81	52.88	-15.07	Average
5	0.377	23.61	10.27	0.27	0.03	34.18	48.34	-14.16	Average
6	0.410	31.06	10.28	0.33	0.04	41.71	57.64	-15.93	QP
7	0.497	25.22	10.29	-0.32	0.03	35.22	46.05	-10.83	Average
8	0.521	32.96	10.29	-0.36	0.03	42.92	56.00	-13.08	QP
2 3 4 5 6 7 8 9	2.750	20.61	10.35	-0.23	0.10	30.83	46.00	-15.17	Average
10	3.041	30.23	10.35	-0.20	0.07	40.45	56.00	-15.55	QP
11	14.828	26.73	10.76	3.54	0.14	41.17	60.00	-18.83	QP
12	14.828	18.43	10.76	3.54	0.14	32.87			Average


Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 11 of 19

Product name:	Smart Phone	Product model:	TA-1390
Test by:	Mike	Test mode:	TM 1 mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

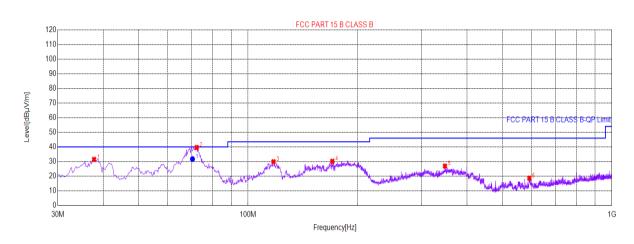
	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u>	−−−−dB	dB	dBu₹	dBu∜	<u>dB</u>	
1	0.174	44.03	10.21	0.00	0.01	54.25	64.77	-10.52	QP
2	0.174	34.24	10.21	0.00	0.01	44.46	54.77	-10.31	Average
3	0.222	35.72	10.23	0.00	0.03	45.98	62.74	-16.76	QP
2 3 4 5 6 7	0.230	23.85	10.23	0.00	0.02	34.10	52.44	-18.34	Average
5	0.461	31.18	10.28	0.00	0.03	41.49	56.67	-15.18	QP
6	0.474	20.77	10.28	0.01	0.03	31.09	46.45	-15.36	Average
7	4.822	18.85	10.41	0.65	0.09	30.00	46.00	-16.00	Average
8	5.085	29.41	10.41	0.68	0.09	40.59	60.00	-19.41	QP
9	11.807	31.71	10.65	2.09	0.10	44.55	60.00	-15.45	QP
10	11.933	23.74	10.65	2.12	0.10	36.61	50.00	-13.39	Average
11	14.288	24.44	10.71	2.91	0.13	38.19	50.00	-11.81	Average
12	14.594	33.14	10.72	2.98	0.13	46.97	60.00	-13.03	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.2 Padiated Emission

6.2 Radiated Emission			10						
Test Requirement:	FCC Part 15 B Se)9						
Test Frequency Range:	30MHz to 6000M	Hz							
Test site:	Measurement Dis	stance: 3m	Sem	i-Anechoic (Chamber)				
Receiver setup:	Frequency	y Detector		RBW	VBW	Remark			
	30MHz-1GHz	30MHz-1GHz Quasi-pea		120kHz	300kHz	Quasi-peak Value			
	Above 1GHz	Peak		1MHz	3MHz	Peak Value			
		RMS 1MHz 3MHz Average Value Frequency Limit (dBuV/m @3m) Remark							
Limit:	Frequence 30MHz-88N		LIM	40.0	@3m)	Remark Quasi-peak Value			
	88MHz-216			43.5		Quasi-peak Value			
	216MHz-960			46.0		Quasi-peak Value			
	960MHz-10			54.0		Quasi-peak Value			
				54.0		Average Value			
	Above 1G	HZ		74.0		Peak Value			
Test setup:	Below 1GHz Tum 0.8m Table 0.8m Above 1GHz	4m	7777	RFT					
	AE		3m		Antenna Tower				
Test Procedure:	ground at a 3 r degrees to dete 2. The EUT was s which was mou 3. The antenna h ground to dete	meter semi- ermine the page 3 meters unted on the eight is vari rmine the m	aneclositions aware top et of et o	hoic camber on of the hig by from the in of a variable om one mete um value of	The table The table	e-receiving antenna, ntenna tower. neters above the			


	 For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the
	limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.11 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz ware the niose floor , which were no recorded

Measurement Data:

Below 1GHz:

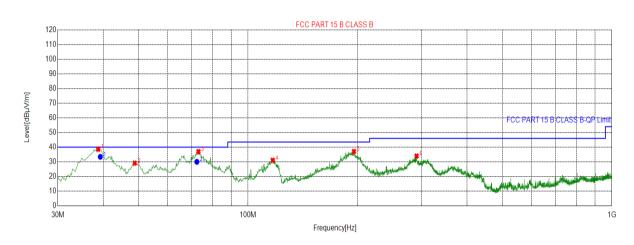
Product Name:	Smart Phone	Product Model:	TA-1390
Test By:	Mike	Test mode:	TM 1 mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24°C Huni: 57%

QP Detector

Suspected List

Susp	Suspected List										
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dalawita		
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	37.7616	54.75	31.50	-23.25	40.00	8.50	286	16	Vertical		
2	72.3005	63.61	39.63	-23.98	40.00	0.37	242	2	Vertical		
3	117.511	52.79	29.90	-22.89	43.50	13.60	331	283	Vertical		
4	170.484	54.02	30.21	-23.81	43.50	13.29	378	126	Vertical		
5	347.835	44.26	26.95	-17.31	46.00	19.05	255	349	Vertical		
6	593.294	30.95	18.66	-12.29	46.00	27.34	177	132	Vertical		

Final Data List


Final I	Final Data List									
NO	Freq.	Factor	QP Value	QP Limit	QP Margin	Height	Angle	Dolority		
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	70.3625	-23.97	31.73	40.00	8.27	193	65.5	Vertical		

Remark:

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart Phone	Product Model:	TA-1390
Test By:	Mike	Test mode:	TM 1 mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24°C Huni: 57%

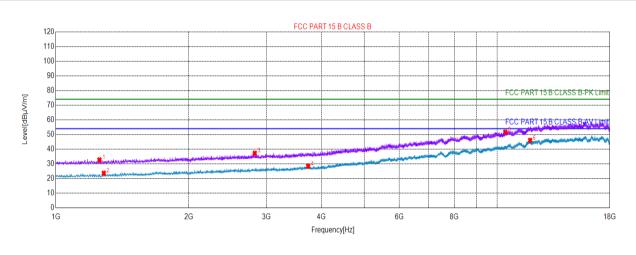
QP Detector

Suspected List

Susp	Suspected List									
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Data	
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	38.7317	61.62	38.54	-23.08	40.00	1.46	263	317	Horizonta	
2	48.8218	51.32	29.11	-22.21	40.00	10.89	172	290	Horizonta	
3	73.0766	61.02	36.98	-24.04	40.00	3.02	203	172	Horizonta	
4	116.929	53.95	31.08	-22.87	43.50	12.42	272	220	Horizonta	
5	195.515	59.92	37.05	-22.87	43.50	6.45	282	43	Horizonta	
6	290.594	52.91	33.93	-18.98	46.00	12.07	376	103	Horizonta	

Final Data List

Final Data List									
NO.	Freq.	Factor	QP Value	QP Limit	QP Margin	Height	Angle	Polarity	
110.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	l	
1	39.2607	-23.08	33.42	40.00	6.58	192	69.7	Horizontal	
2	72.3376	-24.04	30.02	40.00	9.98	194	282.6	Horizontal	


Remark.

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz:

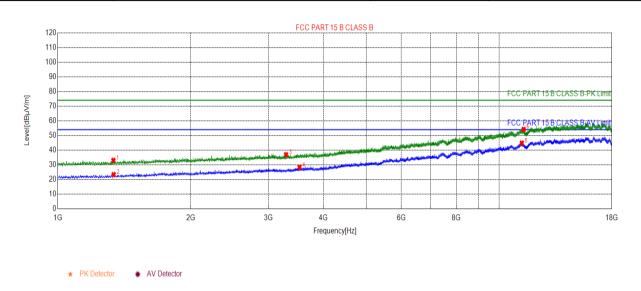
Product Name:	Smart Phone	Product Model:	TA-1390
Test By:	Mike	Test mode:	TM 1 mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%

★ PK Detector
★ AV Detector

Suspected List

Suspected List									
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity
	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[°]	· oranty
1	1255.86	63.34	32.69	-30.65	74.00	41.31	173	315	Vertical
2	1284.76	54.13	23.63	-30.50	54.00	30.37	136	185	Vertical
3	2824.19	62.42	37.25	-25.17	74.00	36.75	175	130	Vertical
4	3731.18	51.50	28.47	-23.03	54.00	25.53	255	259	Vertical
5	10434.6	54.49	51.64	-2.85	74.00	22.36	167	359	Vertical
6	11878.8	45.18	46.03	0.85	54.00	7.97	158	70	Vertical

Remark:


- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 17 of 19

Product Name:	Smart Phone	Product Model:	TA-1390
Test By:	Mike	Test mode:	TM 1 mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%

Suspected List

- dapotica List									
Suspected List									
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	1336.61	63.25	33.07	-30.18	74.00	40.93	263	306	Horizonta
2	1338.31	53.51	23.34	-30.17	54.00	30.66	373	336	Horizonta
3	3290.01	61.23	36.92	-24.31	74.00	37.08	363	46	Horizonta
4	3529.72	52.03	28.38	-23.65	54.00	25.62	211	184	Horizonta
5	11253.2	46.44	44.84	-1.60	54.00	9.16	353	2	Horizonta
6	11363.7	55.21	54.20	-1.01	74.00	19.80	205	291	Horizonta

Remark.

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

7 Test Setup Photo

Reference to the test setup photos: 15B-Test Setup Photo

8 EUT Constructional Details

Reference to the External photo and Internal photo.

-----End of report-----