

FCC REPORT

Applicant:	HMD global Oy
Address of Applicant:	Bertel Jungin aukio 9, 02600 Espoo, Finland
Equipment Under Test (E	EUT)
Product Name:	Smart Phone
Model No.:	TA-1361
Trade mark:	NOKIA
FCC ID:	2AJOTTA-1361
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.225
Date of sample receipt:	19 Aug., 2021
Date of Test:	20 Aug., to 31 Aug., 2021
Date of report issue:	31 Aug., 2021
Test Result:	PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description
00	31 Aug., 2021	Original

 Tested by:
 Mike.OU
 Date:
 31 Aug., 2021

 Test Engineer
 Date:
 31 Aug., 2021

 Reviewed by:
 Winner thang
 Date:
 31 Aug., 2021

 Project Engineer
 Date:
 31 Aug., 2021

Date: 31 Aug., 2021

Project No.: JYTSZE2108102

Page

3 Contents

CO	VER PAGE	1
VE	RSION	
51		5
•••		
-		
5.4		
5.5		
5.6		
5.7		
5.8		
5.9		
TES	ST RESULTS ANDMEASUREMENT DATA	8
6.1	ANTENNA REQUIREMENT	
6.2		
6.3		
6.4		
TES	ST SETUP PHOTO	23
EU	T CONSTRUCTIONAL DETAILS	
	VEI CO TES 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 TES 6.1 6.2 6.3 6.4 6.5 TES	5.2 GENERAL DESCRIPTION OF E.U.T. 5.3 TEST MODE AND TEST SAMPLES PLANS 5.4 DESCRIPTION OF SUPPORT UNITS. 5.5 MEASUREMENT UNCERTAINTY. 5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD. 5.7 LABORATORY FACILITY. 5.8 LABORATORY LOCATION 5.9 TEST INSTRUMENTSLIST. TEST RESULTS ANDMEASUREMENT DATA 6.1 ANTENNA REQUIREMENT. 6.2 RADIATED EMISSION 6.3 20DB BANDWIDTH. 6.4 FREQUENCY TOLERANCE.

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
Field strength of the fundamental signal	15.225 (a)	Pass
Spurious emissions	15.225(d)& 15.209	Pass
20dB Bandwidth	15.215(c)	Pass
Frequency tolerance	15.225 (e)	Pass
Conducted Emission	15.207	Pass
Remark: 1. Pass: The EUT complies with the essential required by "BE Output Parties less used		

2. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method:	ANSI C63.4-2014
Test Method.	ANSI C63.10-2013

5 General Information

5.1 Client Information

Applicant:	HMD global Oy
Address:	Bertel Jungin aukio 9, 02600 Espoo, Finland
Manufacturer:	HMD global Oy
Address:	Bertel Jungin aukio 9, 02600 Espoo, Finland

5.2 General Description of E.U.T.

Product Name:	Smart Phone
Model No.:	TA-1361
Operation Frequency:	13.56MHz
Channel numbers:	1
Modulation type:	ASK
Antenna Type:	Induction Coil Antenna
Power supply:	Rechargeable Lithium ion Polymer Battery DC3.85V, 4.85Ah
AC adapter:	Adapter 1: Model: TN-050200U3, TN-050200E3, TN-050200C3A Input: AC100-240V, 50/60Hz, 0.35A Output: DC 5.0V, 2.0A 10.0W Note: Only the pins are different between different models Adapter 2: Model: TN-050200U3, TN-050200A3, TN-050200C3A Input: AC100-240V, 50/60Hz, 0.35A Output: DC 5.0V, 2.0A 10.0W Note: Only the pins are different between different models Adapter 3: Model: AD-010A, AD-010X Input: AC100-240V, 50/60Hz, 0.35A Output: DC 5.0V, 2.0A 10.0W
T (0 0 !!!	Note: Only the pins are different between different models
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

5.3 Test mode and test samples plans

	8						
Transmitting mode:	Keep the EUT in transmitting mode with modulation						
Pre-Test Mode:							
CCIS has verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:							
Axis	X Y Z						
Field Strength(dBuV/m)	Field Strength(dBuV/m) 54.78 55.90 54.32						
Final Test Mode:							
According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup": Y axis (see the test setup photo).							

5.4 Description of Support Units

Manufacturer	nufacturer Description M		Serial Number	FCC ID/DoC
N/A	N/A	N/A	N/A	N/A

5.5 Measurement Uncertainty

Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))		
±3.11 dB		
±2.26 dB		
±3.13 dB		
±4.45 dB		
±5.34 dB		

Note: The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.4-2014. All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

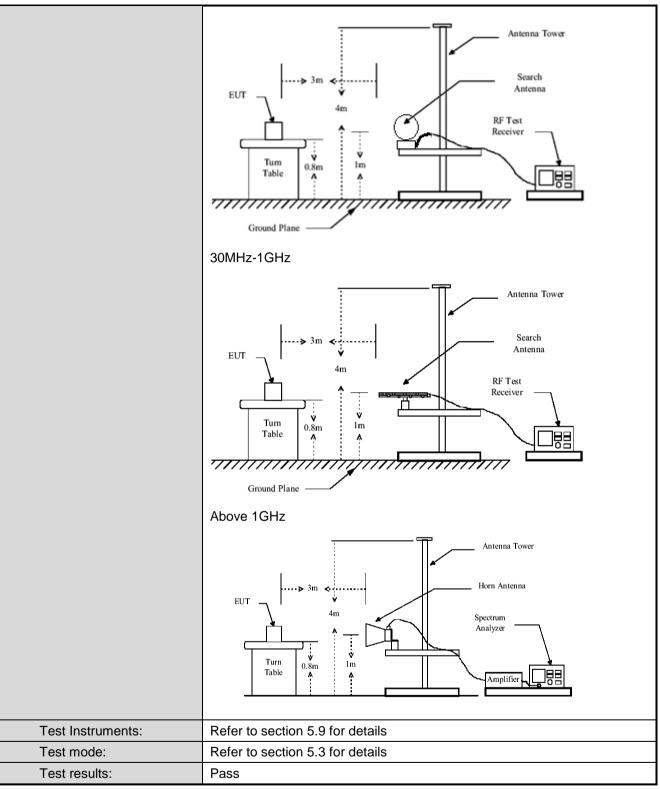
5.9 Test Instrumentslist

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Management Number	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	WXJ001-1	01-19-2021	01-18-2024	
BiConiLog Antenna	SCHWARZBECK	VULB9163	WXJ002	03-03-2021	03-02-2022	
Horn Antenna	SCHWARZBECK	BBHA9120D	WXJ002-2	03-03-2021	03-02-2022	
Loop Antenna	SCHWARZBECK	FMZB 1519 B	WXJ002-4	03-07-2021	03-06-2022	
Pre-amplifier	HP	8447D	WXG001-2	03-07-2021	03-06-2022	
Pre-amplifier	SKET	LNPA_0118G-50	WXG001-3	03-07-2021	03-06-2022	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	03-03-2021	03-02-2022	
Signal Generator	Agilent	N5173B	WXJ006-7	03-25-2021	03-24-2022	
RF Switch Unit	Tonscend	JS0806-F	WXJ089	N/A		
Test Software	Tonscend	TS+	Version: 3.0.0.1			

Conducted Emission & Conducted Method:						
Test Equipment	Manufacturer	Model No.	Management	Cal. Date	Cal. Due date	
			Number	(mm-dd-yy)	(mm-dd-yy)	
Spectrum analyzer	Rohde & Schwarz	FSP30	WXJ004	03-03-2021	03-02-2022	
EMI Test Receiver	Rohde & Schwarz	ESCI	WXJ003	03-03-2021	03-02-2022	
LISN	Rohde & Schwarz	ENV432	WXJ005-2	04-06-2021	04-05-2022	
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	06-17-2020	06-16-2022	
RF Switch	Top Precision	RSU0301	WXG003	N/A	N/A	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

6 Test results and Measurement Data

6.1 Antenna requirement


Standard requirement:	FCC Part15 C Section 15.203					
15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.						
E.U.T Antenna:						
The EUT make use of an Indu	uction coil antenna.					

6.2 Radiated Emission

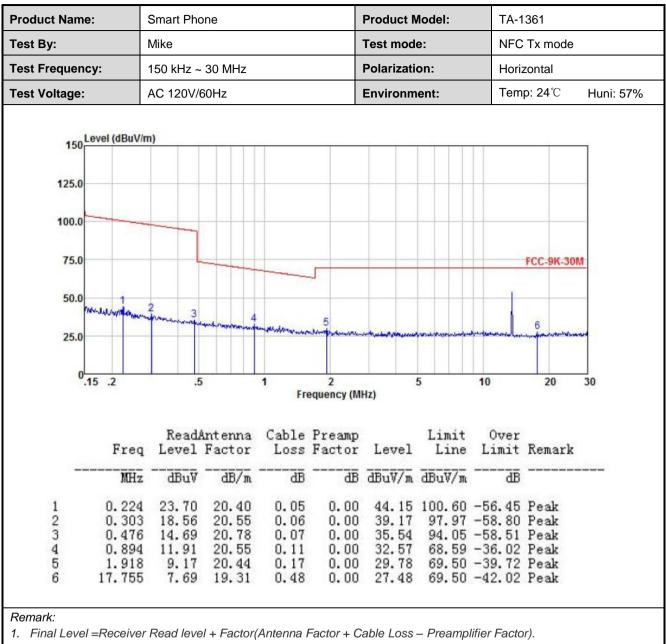
TestFrequencyRange: 9 kHz to 1000MHz Test site: Measurement Distance: 3m(Semi-Anechoic Chamber) Receiver setup: Frequency Detector Remark 9kHz-150kHz Quasi-peak 200Hz 600Hz Quasi-peak Value 30MHz-104L Quasi-peak 30KHz Quasi-peak Value 30KHz Quasi-peak Value 30MHz-16Hz Quasi-peak 120Hz 30KHz Quasi-peak Value 30KHz Quasi-peak Value 30MHz-16Hz Quasi-peak 120Hz 30KHz Quasi-peak Value 30KHz Quasi-peak Value 13.657MHz-13.557MHz 13410MHz-13.557MHz 15848 124.0 13410MHz-13.410MHz 106 80.5 13.110MHz-13.410MHz 106 80.5 Remark: Rereformark: Rereformark: Rereformark: Rereformark: Rereformark: Rereformark: Rerequency (MHz) 106 80.5 Remark: 11.100Hz-13.310MHz 106 80.5 Remark: Rereformark: Rereformark: Rereformark: Rereformark: Rereformark: Rereformark: Rereformark: <th>Test Requirement:</th> <th colspan="6">FCC Part15 C Section 15.225(a) and 15.209</th>	Test Requirement:	FCC Part15 C Section 15.225(a) and 15.209						
Receiver setup: Frequency Detector RBW VBW Remark 9kHz-150kHz Quasi-peak 200Hz 600Hz Quasi-peak Value 150kHz-160kHz Quasi-peak 120kHz Quasi-peak Value Quasi-peak Value 150kHz-16Hz Quasi-peak 120kHz Quasi-peak Value Quasi-peak Value Limit: Frequency Limit (uV/m @ 30m) Limit (dBV/m @ 30m) Limit (dBV/m @ 30m) Limit (dBV/m @ 30m) 13.150MHz-13.567MHz 334 90.5 13.567MHz-13.710MHz 334 90.5 13.110MHz-13.570HHz 13.110MHz-13.570HHz 106 80.5 Remark Per FCC part 15.31, when performing measurements at a distance which is closer than specified, the field strength results shall be extrapolation factor (i.e., 40 @B/decade) in conjunction with the slan-range distance defined in §15.3(ht) of this part. Limit: Frequency (MHz) Limit (uV/m @ 3m) Distance (m) (Spurious Emissions) 0.009-0.490 2400/F(kHz) 300 1.705-30 30 30 30 216-980 200 3	TestFrequencyRange:	9 kHz to 1000MHz						
9kHz-150kHz Quasi-peak 200Hz 600Hz Quasi-peak Value 30MHz Quasi-peak 9kHz 300Hz Quasi-peak Value Quasi-peak Value 30MHz-10Hz Quasi-peak 120kHz 300Hz Quasi-peak Value Above 10Hz Peak 10MHz 300Hz Quasi-peak Value (Field strength of the fundamental signal) 13.553MHz 43.5677MHz 15848 1124.0 13.553MHz-13.5677MHz 334 90.5 13.110MHz-13.6770MHz 13.110MHz-13.67770MHz 13.110MHz-13.410MHz & 106 80.5 13.710MHz 13.55770MHz 13.6770MHz 106 80.5 Remark: Per FCC part 15.31, when performing measurements at a distance which is closer than specified, the field strength results shall be extrapolated to the specified distance by using the square of an inverse linear distance defined in §15.3/th) of this part. Limit: Frequency (MHz) Limit (uV/m @3m) Distance (m) (Spurious Emissions) 0.009-0.4200/F(kHz) 30 30 0.400-0.705 2400/F(kHz) 30 30 1.705-30 30 3 30 <td< td=""><td>Test site:</td><td>Measurement D</td><td>istance: 3</td><td>3m(S</td><td>emi-Anechoic</td><td>Charr</td><td>nber)</td><td></td></td<>	Test site:	Measurement D	istance: 3	3m(S	emi-Anechoic	Charr	nber)	
IsokHz-30MHz Quasi-peak 9kHz 30kHz Quasi-peak Value 200MHz-1GHz Quasi-peak 120kHz 300Hz Quasi-peak Value Above 1GHz Peak 111 30Hz Quasi-peak Value (Field strength of the fundamental signal) 13.653MHz-13.567MHz 15848 124.0 13.410MHz-13.553MHz & 13.410MHz-13.710MHz 334 90.5 13.10MHz-13.410MHz & 106 80.5 13.710MHz 13.657MHz-13.710MHz 106 80.5 13.10MHz-13.410MHz & 106 80.5 13.710MHz 13.677MHz 13.677MHz 13.677MHz 13.677MHz 13.677MHz 13.677MHz 13.677MHz 13.677MHz 13.710MHz 13.710MHz 13.677MHz 13.710MHz 13.677MHz 13.710MHz 13.677MHz 13.677MHz 13.677MHz 13.677MHz 13.710MHz 13.677MHz 13.710MHz 13.677MHz 13.677MHz <td>Receiver setup:</td> <td>Frequency</td> <td>Detect</td> <td>or</td> <td>RBW</td> <td>V</td> <td>BW</td> <td>Remark</td>	Receiver setup:	Frequency	Detect	or	RBW	V	BW	Remark
30MHz-1GHz Quasi-peak 120kHz 300KHz Quasi-peak Value Above 1GHz Peak 11MHz Multz Peak Value Peak Value Limit Frequency Limit (UV/m @ 30m) Limit (W/m @ 30m)		9kHz-150kHz	Quasi-p	eak	200Hz	60	0Hz	Quasi-peak Value
Above 1GHz Peak IMHz 3MHz Peak Value Limit Frequency Limit (V/m @30m) Limit (dBuV/m @3m) 13.567MHz (Field strength of the fundamental signal) 13.557MHz 1584 124.0 13.410MHz-13.553MHz & 106 80.5 13.110MHz-13.310MHz 106 80.5 80.5 13.510MHz-14.010MHz 106 80.5 Remark: Per FCC part 15.31, when performing measurements at a distance which is closer than specified, the field strength results shall be extrapolation factor (i.e., 40 dB/decade) in conjunction with the slant-range distance defined in §15.3(hh) of this part. Limit: Frequency (MHz) Limit (u//m @3m) Distance (m) (Spurious Emissions) 0.490-1.705 24000/F(kHz) 300 0.490-1.705 24000/F(kHz) 30 30 1.705-30 30 30 30 3.216-960 200 3 Above 1GHz 500 3 2.10 The EUT was placed on the top of a crating table 0.8 meters above the ground ta 3 meter semi-anechoic camber. The table was rotated 360 degrees todetermine the maximum value of the field strength. Both horizontal and vertical polarizations of the anterna tabove the ground to determine the op		150kHz-30MHz	Quasi-p	eak	9kHz	30)kHz	Quasi-peak Value
Limit: Frequency Limit (uV/m @30m) Limit (dBuV/m @3m) 13.553MHz-13.557MHz 15848 124.0 13.553MHz-13.567MHz 1384 124.0 13.557MHz-13.710MHz 334 90.5 13.100Hrz-13.410MHz & 106 80.5 13.110Hrz-13.410MHz & 106 80.5 13.710Hrz-13.410MHz & 106 80.5 13.710Hrz-13.410MHz & 106 80.5 13.710Hrz-14.410MHz 106 80.5 Remark: Per FCC part 15.31, when performing measurements at a distance which is closer than specified, the field strength results shall be extrapolated to the specified distance by using the square of an inverse linear distance extrapolation factor (i.e., 40 dB/decade) in conjunction with the slant-range distance defined in §15.3(hh) of this part. Limit Frequency (MHz) Limit (uV/m @3m) Distance (m) (Spurious Emissions) 0.009-0.490 24000F(kHz) 30 0.490-1.705 24000F(kHz) 30 30 30-88 100 3 32 16-960 200 3 30 30-88 1000 3 32 </td <td></td> <td>30MHz-1GHz</td> <td>Quasi-p</td> <td>eak</td> <td>120kHz</td> <td>300</td> <td>0KHz</td> <td>Quasi-peak Value</td>		30MHz-1GHz	Quasi-p	eak	120kHz	300	0KHz	Quasi-peak Value
(Field strength of the fundamental signal) 13.553MH2-13.567MHz 15848 124.0 13.410MHz-13.553MHz & 334 90.5 13.100Hz-13.710MHz 334 90.5 13.110Hz-13.710MHz 106 80.5 Remark: Per FCC part 15.31, when performing measurements at a distance which is closer than specified, the field strength results shall be extrapolated to the specified distance by using the square of an inverse linear distance extrapolation factor (i.e., 40 dB/decade) in conjunction with the slant-range distance defined in §15.3(th) of this part. Limit: Frequency (MHz) Limit (uV/m @3m) Distance (m) 0.090-0.490 24000F(kHz) 300 30 0.490-1.705 24000F(kHz) 30 30 17.05-30 30 30 30 30.488 100 3 216-960 200 216-960 200 3 Above 1GHz 500 3 216-960 200 <		Above 1GHz	Peak	(1MHz	31	MHz	Peak Value
fundamental signal) 13.410MHz-13.553MHz & 334 90.5 13.567MHz-13.710MHz 334 90.5 13.700MHz-14.010MHz 106 80.5 Remark: Per FCC part 15.31, when performing measurements at a distance which is closer than specified, the field strength results shall be extrapolated to the specified distance by using the square of an inverse linear distance defined in §15.3(ht) of this part. Limit: Frequency (MHz) Limit (uV/m @3m) Distance (m) (Spurious Emissions) 0.009-0.490 2400/F(kHz) 300 0.009-0.490 2400/F(kHz) 300 30 30 1.705-30 30 30 30 30 216-960 200 3 216-960 200 3 216-960 200 3 anterna, whichwas mounted on the top of a variable-height anterna above the groundat a 3 meter semi-anechoic camber. The table was rotated 360 degrees todetermine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to	Limit:	Frequency	/	Li	imit (uV/m @30r	n)	Lim	iit (dBuV/m @3m)
13.567MHz-13.710MHz 334 90.5 13.110MHz-13.410MHz & 106 80.5 Remark: Per FCC part 15.31, when performing measurements at a distance which is closer than specified, the field strength results shall be extrapolated to the specified distance by using the square of an inverse linear distance extrapolation factor (i.e., 40 dB/decade) in conjunction with the slant-range distance defined in \$15.3(th) of this part. Limit: Frequency (MHz) Limit (uV/m @3m) Distance (m) (Spurious Emissions) 0.490-1.705 24000/F(kHz) 30 1.705-30 30 30 30 3.88-216 150 3 216-960 2000 3 3 216-960 3 Above 1GHz 500 3 3 Test Procedure: a. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter semi-anechoic camber. The table was rotated 360 degrees todetermine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then to tablefable was tuned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set	(Field strength of the	13.553MHz-13.5	67MHz		15848			124.0
13.110MHz-13.410MHz & 106 80.5 Remark: Per FCC part 15.31, when performing measurements at a distance which is closer than specified, the field strength results shall be extrapolated to the specified distance by using the square of an inverse linear distance extrapolation factor (i.e., 40 dB/decade) in conjunction with the slant-range distance defined in §15.3(hh) of this part. Limit: Frequency (MHz) Limit (uV/m @3m) Distance (m) (Spurious Emissions) 0.009-0.490 2400/F(kHz) 300 0.490-1.705 24000/F(kHz) 300 1.705-30 30 30 3.88-216 150 3 216-960 200 3 Above 1GHz 500 3 Bas-216 150 3 Bas-217 500 3 Contrast as meter semi-anechoic camber. The table was trotated 360 degrees todetermine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertic	fundamental signal)				334			90.5
13.710MHz-14.010MHz 106 80.5 Remark: Per FCC part 15.31, when performing measurements at a distance which is closer than specified, the field strength results shall be extrapolated to the specified distance by using the square of an inverse linear distance extrapolation factor (i.e., 40 dB/decade) in conjunction with the slant-range distance defined in \$15.3(ht) of this part. Limit: Frequency (MHz) Limit (UV/m @3m) Distance (m) (Spurious Emissions) 0.0090-490 2400/F(kHz) 300 0.490-1.705 24000/F(kHz) 30 30 1.705-30 30 30 30 30-88 100 3 3 216-960 200 3 3 Above 1GHz 500 3 3 Above 1GHz 500 3 3 A. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter semi-anechoic camber. The table was rotated 360 degrees todetermine the position of the highest tradiation. b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. C. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the meas			1					
Per FCC part 15.31, when performing measurements at a distance which is closer than specified, the field strength results shall be extrapolated to the specified distance by using the square of an inverse linear distance extrapolation factor (i.e., 40 dB/decade) in conjunction with the slant-range distance defined in \$15.3(h) of this part. Limit: Frequency (MHz) Limit (uV/m @3m) Distance (m) (Spurious Emissions) 0.009-0.490 2400/F(kHz) 300 0.480-1.705 24000/F(kHz) 30 1.705-300 30 30 30-88 100 3 216-960 200 3 216-960 200 3 216-960 200 3 216-960 200 3 216-960 200 3 216-960 200 3 216-960 200 3 216-960 200 3 216-960 200 3 30 30-88 100 3 30 200/grees todetermine the position of the highest radiation. b. b The EUT was placed on the top of a variable-height antenna tower. c. c The antenna height is varied from one meter to four m					106			80.5
(Spurious Emissions) 0.009-0.490 2400/F(kHz) 300 0.490-1.705 24000/F(kHz) 30 1.705-30 30 30 30-88 100 3 88-216 150 3 216-960 200 3 Above 1GHz 500 3 Above 1GHz 500 3 Above 1GHz 500 3 Constant 3 meter semi-anechoic camber. The table was rotated 360 degrees todetermine the position of the highest radiation. b. The EUT was placed on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the grounds a 3 meter saway from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mod		than specified, the distance by using 40 dB/decade) in this part.	e field strei the square conjunctio	ngth r e of ai n with	esults shall be e n inverse linear o n the slant-range	xtrapo distan distai	blated to ce extra	o the specified apolation factor (i.e., ned in §15.3(hh) of
(openiods Emissions) 0.490-1.705 24000/F(kHz) 30 1.705-30 30 30 30 30-88 100 3 30 20-88 100 3 30 216-960 200 3 30 Above 1GHz 500 3 30 360 degrees todetermine the position of the highest radiation. 50 3 500 degrees todetermine the position of the highest radiation. 50 50 6. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 6. 7. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatabletable was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasipeak or average metho				L				· · ·
1.705-30 30 30 30-88 100 3 88-216 150 3 216-960 200 3 Above 1GHz 500 3 a. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter semi-anechoic camber. The table was rotated 360 degrees todetermine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatabletable was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasipeak or average method as specified andthen reported in a data sheet.	(Spurious Emissions)				· · · · · · · · · · · · · · · · · · ·			
30-88 100 3 88-216 150 3 216-960 200 3 Above 1GHz 500 3 Test Procedure: a. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter semi-anechoic camber. The table was rotated 360 degrees todetermine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasi- peak or average method as specified andthen reported in a data sheet.			· · · · · · · · · · · · · · · · · · ·					
88-216 150 3 216-960 200 3 Above 1GHz 500 3 Test Procedure: a. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasipeak or average method as specified andthen reported in a data sheet.								
216-960 200 3 Above 1GHz 500 3 Test Procedure: a. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasipeak or average method as specified andthen reported in a data sheet.								
Above 1GHz 500 3 Test Procedure: a. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter semi-anechoic camber. The table was rotated 360 degrees todetermine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatabletable was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasipeak or average method as specified andthen reported in a data sheet.								
Test Procedure: a. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter semi-anechoic camber. The table was rotated 360 degrees todetermine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatabletable was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasi-peak or average method as specified andthen reported in a data sheet.			lz					
sheet.	Test Procedure:	Above 1GHz5003a.The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter semi-anechoic camber. The table was rotated 360 degrees todetermine the position of the highest radiation.b.The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.d.For each suspected emission, the EUT was arranged to its worst case and the notatabletable was turned from 0 degrees to 360 degrees to find the maximum reading.e.The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode.f.If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasi-						
	Test setup:							

Project No.: JYTSZE2108102

Measurement Data:

Field Strength of fundamental signal:

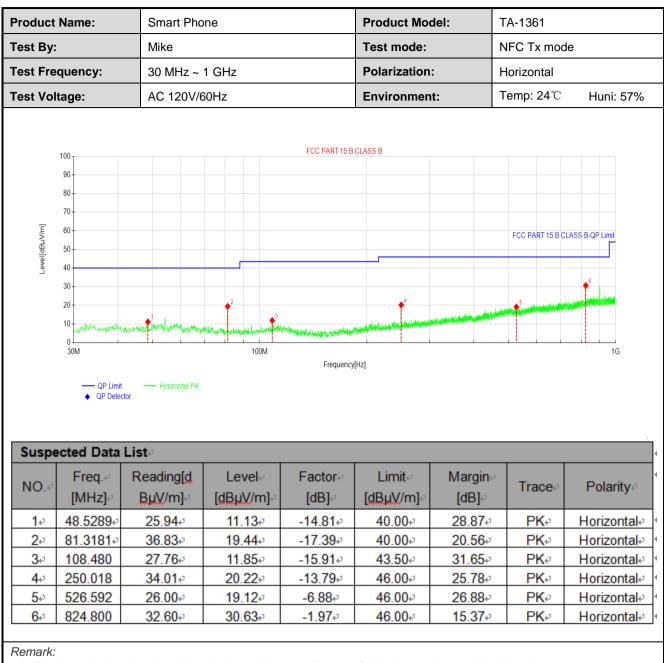
e:	: Smart Phone			Produ	Product Model:			TA-1361		
	/like			Test r	Test mode: NFC Tx mode					
:	AC 120V/60	Hz		Enviro	onment:		Temp: 2	24℃	Huni: 57%	
dBu\//m)										
abu viliy										
							15.2	25 POW		
	_		_							
				3						
			3	-	4					
	1	M	and the second		July 1	M	5			
and the second		and the first				when	mar	· Landar	-www.	
		_			_	_				
13.2			13.5	;					14.01	
			Free	quency (Mł	Hz)					
			Cable	Preamp		Limit	Over			
								Kemarl	K	
MHz	dBuV	dB/m	dB	dB	dBu∛/m	dBuV/m	dB			
		19.63								
13.603	31 60									
13.833		19.52	0.43				-43.30			
	13.2 13.2 Freq MHz 13.335 13.486 13.563	Mike AC 120V/60 dBuV/m) 13.2 Freq Read/ Level MHz dBuV	Mike AC 120V/60Hz dBuV/m) dBuV/m) 13.2 13.2 ReadAntenna Freq Level Factor MHz dBuV dB/m 13.335 17.25 19.63 13.486 29.64 19.61 13.563 35.90 19.59	Mike AC 120V/60Hz dBuV/m) dBuV/m) 13.2 13.2 ReadAntenna Cable Freq Level Factor Loss MHz 13.335 17.25 19.63 0.40 13.486 29.64 19.61 0.41 13.563	Mike Test r AC 120V/60Hz Environ dBuV/m)	Mike Test mode: AC 120V/60Hz Environment: dBuV/m)	Mike Test mode: AC 120V/60Hz Environment: dBuV/m)	Mike Test mode: NFC Tx AC 120V/60Hz Environment: Temp: 2 dBuV/m) 15.2 15.2 13.2 13.5 Frequency (MHz) Freq Level Factor Loss Factor Level 13.335 17.25 19.63 0.40 0.00 37.28 80.50 -43.22 13.486 29.64 19.61 0.41 0.00 37.28 80.50 -43.22	Mike Test mode: NFC Tx mode AC 120V/60Hz Environment: Temp: 24°C dBuV/m) 15.225 POWI 15.225 POWI 13.2 13.5 Frequency (MHz) 5 Frequency (MHz) 5 Freq Level Factor Limit Over Limit Remark MHz dBuV/m dB dBuV/m MHz dBuV dB/m MHz dBuV dB/m MHz 0.00 37.28 13.335 17.25 19.63 13.486 29.64 19.61 0.41 0.00 37.28 13.486 29.64 19.61 0.41 0.00 55.90	


Spurious Emissions: Test frequency range: 9 kHz- 30 MHz

roduct Name:	5	Smart Phone			Product Model:			TA-1361			
Fest By:	r	Vike				Test mo	de:	NC	NCF Tx mode		
Test Frequency:	1	150 kHz ~	30 MHz			Polariza	tion:	Ve	ertical		
Test Voltage:	ļ	AC 120V/	60Hz			Environ	ment:	Те	mp: 24 ℃	Huni: 57%	
								•			
150 Level	(dBuV/m)										
125.0											
100.0											
75.0									FCC-9K-3	OF	
									Teeronee		
50 0											
50.0 12	Marrie B	Mun 4		-							
25.0		the state of the second	warmen and advances of	meringener	hannam	water labor there	and a second property and a	B and the state of the state	a section of the mart	- Cubara	
25.0						1000321					
.15 .3	2	.5		1	2 requency (I		5	10	20	30	
					equency (i	anz)					
			ente por la constanti		-						
	Freq	Level	Antenna Factor	Loss	Factor	Level	Limit		Remark		
	MHz	dBu∛	dB/m	dB	dB	dBuV/m	dBuV/m	dB			
	0.153	31.63	20.21	0.03			103.92				
	0.162	33.42		0.03		53.69					
			20.56	0.06		40.94 35.02					
	0.308	20.32		0.07		36 112	(1.59	-38.57	Peak		
2 3 4	0.308	14.15	20.80	0.07				24 04	Deale		
2 3 4	0.308			0.07 0.17 0.35	0.00	31.22	66.06	-34.84	Peak		

1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss – Preamplifier Factor).

2. The emission levels of 9 kHz~150 kHz are background noise and very lower than the limit, not show in test report.


2. The emission levels of 9 kHz~150 kHz are background noise and very lower than the limit, not show in test report.

Test frequency range: 30MHz-1000MHz

Product	Name:	Smart Pho	ne		Product Mod	iei: T	A-1361			
Test By:		Mike			Test mode:		NFC Tx mode			
Test Fre	quency:	30 MHz ~	1 GHz		Polarization:	· · · · ·	/ertical			
Fest Vol	tage:	AC 120V/6	60Hz		Environment	t: T	⁻emp: 24 ℃	Huni: 57%		
Level[dBµV/m]	100 90 80 70 60 50 50 40 30 20 10 10 10 40 0 30 M → QP Limit ◆ QP Detect			FCC PART 15 B			FCC PART 15 B CL	ASS B-QP Limit		
Suspe	cted Data	List∉					_			
NO.₽	Freq.↩ [MHz]↩	Reading[d BµV/m]∉	Level⊬ [dBµV/m]∛	Factor⊌ [dB]∉	Limit⊬ [dBµV/m]∛	Margin⊷ [dB]↩	Tracee	Polarity∂		
1 ₽	48.5289 ₽	30.44	15.63₽	-14.81₽	40.00₽	24.37₽	PK₽	Vertical∉		
2 ₽	81.3181@	46.56₽	29.17 ₽	-17.39 ₽	40.00₽	10.83 ₽	PK₽	Vertical₽		
	107.995	33.11₽	17.17₽	-15.94 ₽	43.50₽	26.33 ₽	PK₽	Vertical₽		
3₽		27.25₽	13.46₽	-13.79₽	46.00₽	32.54₽	PK₽	Vertical₽		
4 ₽	250.018				40.00 -	07.02 -				
4₽ 5₽	554.240	25.71₽	18.97 ₽	-6.74 ₽	46.00↩	27.03₽	PK₽	Vertical↩		
4₽			18.97₽ 25.28₽	-6.74₽ -3.69₽	46.00₽ 46.00₽	27.03₽ 20.72₽	PK₽ PK₽	Vertical↩ Vertical↩		

1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss – Preamplifier Factor).

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.3 20dB Bandwidth

Test Requirement:	FCC Part15 C Section 15.215 (c)			
Receiver setup:	RBW=200Hz, VBW=300Hz, detector: Peak			
Limit:	The fundamental emission be kept within at least the central 80% of the permitted band			
Test Procedure:	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set the EUT to proper test channel. Max hold the radiated emissions, mark the peak power frequency point and the -20dB upper and lower frequency points. Read 20dB bandwidth. 			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data

20dB bandwidth (kHz)	Limit (kHz)	Results				
0.52	11.2	Passed				
Note: For 13.56MHz, permitted Band is 14 kHz, so the Limit is 11.2 kHz.						

Test plot as follows:

6.4 Frequency Tolerance

Test Requirement:	FCC Part15 C Section 15.225 (e)
Receiver setup:	RBW=200Hz, VBW=300Hz, span=14kHz, detector: Peak
Limit:	±0.01% of the operating frequency
Test mode:	Transmitting mode
Test Procedure:	Frequency stability V.S. Temperature measurement
	 The equipment under test was powered by a fresh battery. RF output was connected to spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached Frequency stability V.S. Voltage measurement Set chamber temperature to 25°C. Use a variable DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

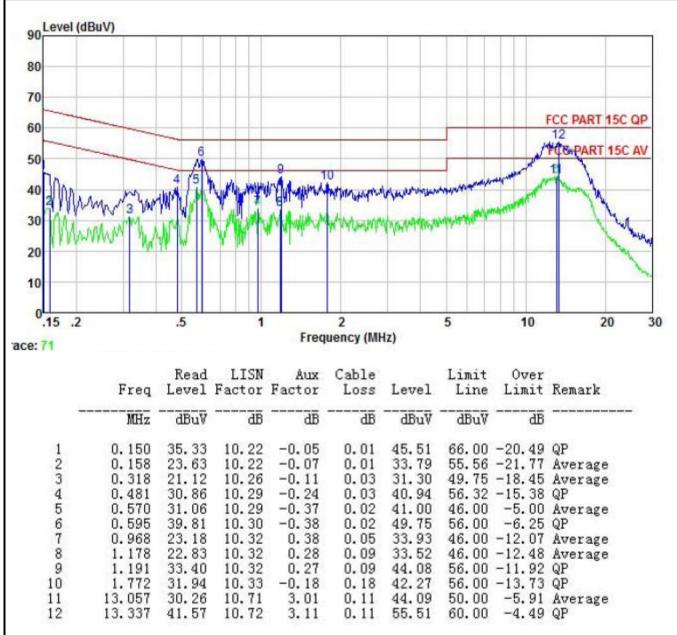
Measurement Data:

a) Frequency stability V.S. Temperature measurement

Voltage (Vdc)	Temperature (℃)	Frequency Tolerance (MHz)	Frequency Error (%)	Limit (%)	Results
	-20	0.00012	0.00088	±0.01	Pass
	-10	0.00010	0.00074	±0.01	Pass
	0	0.00011	0.00081	±0.01	Pass
3.87	+10	0.00009	0.00066	±0.01	Pass
3.07	+20	0.00007	0.00052	±0.01	Pass
	+30	0.00011	0.00081	±0.01	Pass
	+40	0.00009	0.00066	±0.01	Pass
	+50	0.00010	0.00074	±0.01	Pass

b) Frequency stability V.S. Voltage measurement

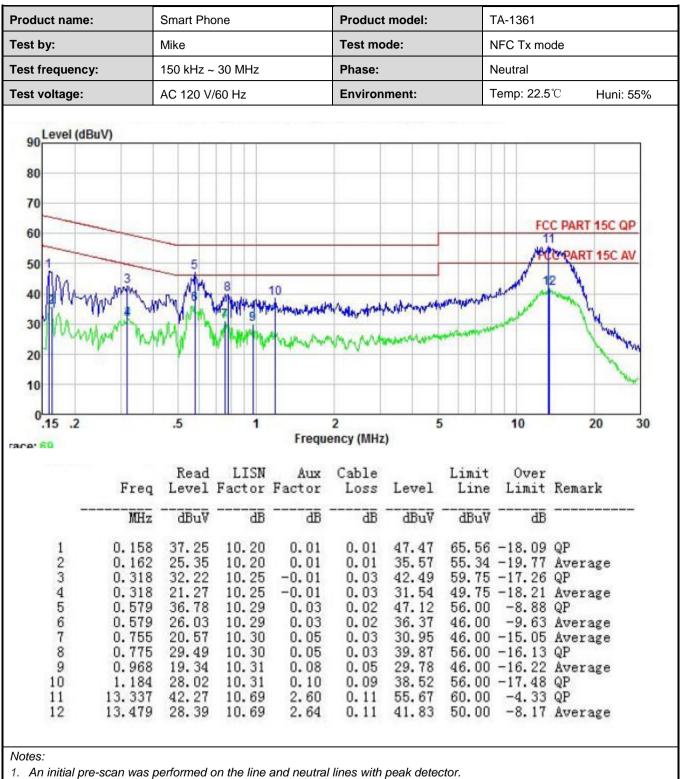
Temperature (℃)	Voltage (Vdc)	Frequency Tolerance (MHz)	Frequency Error (%)	Limit (%)	Results
	3.50	0.00011	0.00081	±0.01	Pass
25.0	3.87	0.00007	0.00052	±0.01	Pass
	4.45	0.00010	0.00074	±0.01	Pass


6.5 Conducted Emission

Test Requirement:	FCC Part15 B Section 15	.207			
TestFrequencyRange:	150kHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz	2			
Limit:	Frequency range (MHz)	Limit	(dBµV)		
	· · · · · · · · · · · · · · · · · · ·	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	0.5-30	60	50		
Test setup:	* Decreases with the loga				
	AUX E.U.T Equipment E.U.T Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Netw Test table height=0.8m	80cm Filter AC Filter AC EMI Receiver	power		
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.).It provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 				
Test Instruments:	Refer to section 5.9 for de	etails			
Test mode:	Refer to section 5.3 for de	etails			
Test results:	Pass				

Measurement Data:

Product name:	Smart Phone	Product model:	TA-1361
Test by:	Mike	Test mode:	NFC Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Project No.: JYTSZE2108102

7 Test Setup Photo

Reference to the test setup photos: NFC-Test Setup Photo

8 EUT Constructional Details

Reference to the External Photo and Internal Photo

-----End of report-----