

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage S Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2011

American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward
 power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the
 dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms.
 Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one
 line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any nonparallelity to the measurement plane as well as the sensor displacement. The E-field value stated as
 calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD835V3-1023_Aug20

Page 2 of 5

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	835 MHz ± 1 MHz	2025
Input power drift	< 0.05 dB	

Maximum Field values at 835 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum	
Maximum measured above high end	100 mW input power	107.7 V/m = 40.64 dBV/m	
Maximum measured above low end	100 mW input power	107.3 V/m = 40.61 dBV/m	
Averaged maximum above arm	100 mW input power	107.5 V/m ± 12.8 % (k=2)	

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance	
800 MHz	17.1 dB	41.3 Ω - 9.5 jΩ	
835 MHz	24.9 dB	52.8 Ω + 5.2 jΩ	
880 MHz	16.5 dB	62.0 Ω - 11.9 jΩ	
900 MHz	16.5 dB	53.1 Ω - 15.3 jΩ	
945 MHz	25.4 dB	46.2 Ω + 3.5 jΩ	

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: CD835V3-1023_Aug20

Page 3 of 5

Impedance Measurement Plot

ile <u>V</u> iew	Channel	Sw <u>e</u> ep	Calibration	Trace	<u>S</u> cale	M <u>a</u> rker	System	Window	Help		Sec. 2
10.00 5.00	dB S11		1						1:	800.000000 MHz 835.000000 MHz	-17.083 dB
0.00									3:	835.000000 MHz 880.000000 MHz	21.880 d8 -16.480 d8
									-4:	900.00000 MH2	-16.507 88
-5.00		1			-			1	5	345 000000 MHz	-25 407 dB
-10.00		-				1					
-15.00 🖕						1					
-20.00						À	122	1			
						12	1	1/			
-25.00							-	<u> </u>			
-30.00				-				5			
-35.00				_							
40.00	Ch1Avg=	20									
Ch1: St	art 335.000 h	MHz —								Stop	And and a second s
Contractory of the local division of the loc										Stop	1.33500 GHa
									1.		
								<u>}</u>	1:	800.000000 MHz 21.000 pF	41.325 0
					13	6		A	1: ≥2:	800.000000 MHz 21.000 pF 835.000000 MHz	41.325 (-3.4734 (52.791 (
					ß	Ć	R	A	>2:	800.000000 MHz 21.000 pF 835.000000 MHz 982.35 pH	41.325 0 -8.4734 0 52.791 0 5.1539 0
					Å	R	K			800.000000 MHz 21.000 pF 835.000000 MHz 982.35 pH 880.000000 MHz	41.325 0 -8.4734 0 52.791 0 5.1539 0 61.976 0
					Å	X			>2: 3:	800.000000 MHz 21.000 pF 835.000000 MHz 982.35 pH 850.00000 MHz 15.191 pF	41.325 0 -9.4734 0 52.791 0 5.1539 0 61.976 0 -11.905 0
					Â	X			>2:	800.000000 MHz 21.000 pF 835.000000 MHz 982.35 pH 880.000000 MHz 15.191 pF 900.000000 MHz	41.325 0 -3.4734 0 52.791 0 5.1539 0 61.976 0 -11.905 0 53.135 0
					4				>2: 3:	800.000000 MHz 21.000 pF 835.000000 MHz 982.35 pH 850.00000 MHz 15.191 pF	41.325 (-9.4734 (52.791 (5.1539 (61.976 (-11.905 (53.135 (-15.269 (
					4	X			>2: 3: 4:	300.000000 MHz 21.000 pF 835.000000 MHz 982.35 pH 880.000000 MHz 15.191 pF 900.000000 MHz 11.581 pF	41.325 0 -9.4734 0 52.791 0 5.1539 0 61.976 0 -11.905 0
				<u> </u>		X			>2: 3: 4:	300.000000 MHz 21.000 pF 835.000000 MHz 982.35 pH 880.000000 MHz 15.191 pF 900.000000 MHz 11.581 pF 945.000000 MHz	41.325 (-9.4734 (52.791 (5.1539 (61.976 (-11.905 (53.135 (-15.269 (46.243 (
									>2: 3: 4:	300.000000 MHz 21.000 pF 835.000000 MHz 982.35 pH 880.000000 MHz 15.191 pF 900.000000 MHz 11.581 pF 945.000000 MHz	41.325 (-9.4734 (52.791 (5.1539 (61.976 (-11.905 (53.135 (-15.269 (46.243 (
									>2: 3: 4:	300.000000 MHz 21.000 pF 835.000000 MHz 982.35 pH 880.000000 MHz 15.191 pF 900.000000 MHz 11.581 pF 945.000000 MHz	41.325 (-9.4734 (52.791 (5.1539 (61.976 (-11.905 (53.135 (-15.269 (46.243 (
									>2: 3: 4:	300.000000 MHz 21.000 pF 835.000000 MHz 982.35 pH 880.000000 MHz 15.191 pF 900.000000 MHz 11.581 pF 945.000000 MHz	41.325 (-9.4734 (52.791 (5.1539 (61.976 (-11.905 (53.135 (-15.269 (46.243 (
Ch1- Sr	Ch 1 Avg =								>2: 3: 4:	800.000000 MHz 21.000 MHz 835.00000 MHz 982.35 pH 880.00000 MHz 15.191 pF 900.000000 MHz 11.581 pF 945.000000 MHz 597.63 pH	41.325 0 -3.4734 0 52.791 0 5.1539 0 61.376 0 -11.905 0 53.135 0 -15.269 0 46.243 0 3.5485 0
Ch1: St	Ch 1 Avg = art 335.000 h		_						>2: 3: 4:	800.000000 MHz 21.000 MHz 835.00000 MHz 982.35 pH 880.00000 MHz 15.191 pF 900.000000 MHz 11.581 pF 945.000000 MHz 597.63 pH	41.325 G -9.4734 G 52.791 G 5.1539 G 61.976 G -11.905 G 53.135 G -15.269 G 46.243 G

Certificate No: CD835V3-1023_Aug20

Page 4 of 5

DASY5 E-field Result

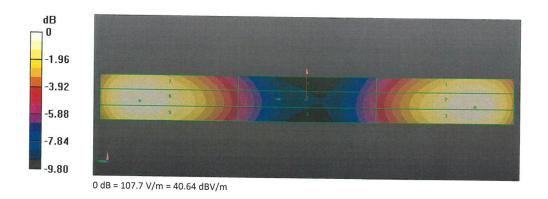
Date: 18.08.2020

Test Laboratory: SPEAG Lab2

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1023

Communication System: UID 0 - CW ; Frequency: 835 MHz Medium parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 835 MHz; Calibrated: 31.12.2019
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 27.12.2019
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole E-Field measurement @ 835MHz/E-Scan - 835MHz d=15mm/Hearing Aid Compatibility Test (41x361x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm

Reference Value = 128.0 V/m; Power Drift = -0.02 dB Applied MIF = 0.00 dB RF audio interference level = 40.64 dBV/m Emission category: M3

MIF scaled E-field

Grid 1 M3	Grid 2 M3	Grid 3 M3
40.19 dBV/m	40.64 dBV/m	40.62 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
35.3 dBV/m	35.62 dBV/m	35.6 dBV/m
Grid 7 M3	Grid 8 M3	Grid 9 M3
40.33 dBV/m	40.61 dBV/m	40.55 dBV/m

Certificate No: CD835V3-1023 Aug20

Page 5 of 5