



Table 14.2-15: SAR Values (LTE Band2 - Body)

|       |      | А       | mbient Te | emperatur | e: 22.9°C | Liqu    | id Temper | ature: 22.5 | 5°C     |          |         |
|-------|------|---------|-----------|-----------|-----------|---------|-----------|-------------|---------|----------|---------|
| Frequ | ency |         | Test      | į         | Conduc    | Max.    | Measure   | Reporte     | Measure | Reporte  | Powe    |
|       |      | Mode    | Positio   | Figure    | ted       | tune-up | d         | d           | đ       | đ        | r Drift |
| Ch.   | MHz  |         | n         | No.       | Power     | Power   | SAR(10g   | SAR(10      | SAR(1g) | SAR(1g   | (dB)    |
|       |      |         | "         |           | (dBm)     | (dBm)   | ) (W/kg)  | g)(W/kg)    | (W/kg)  | ) (W/kg) | (GD)    |
| 18900 | 1880 | 1RB-Mid | Bottom    | Fig.15    | 17.19     | 17.5    | 0.583     | 0.63        | 1.07    | 1.15     | 0.07    |

Note1: The distance between the EUT and the phantom bottom is 10mm

Note2: The LTE mode is QPSK\_20MHz.

# Table 14.2-16: SAR Values (LTE Band2 - Body)

|       |         | Α       | mbient Te | emperatur     | e: 22.9°C    | Liqu             | id Temper | ature: 22.5 | 5°C     |             |         |
|-------|---------|---------|-----------|---------------|--------------|------------------|-----------|-------------|---------|-------------|---------|
| Frequ | ency    |         | Test      | Fi a          | Conduc       | Max.             | Measure   | Reporte     | Measure | Reporte     | Powe    |
| Ch.   | MHz     | Mode    | Positio   | Figure<br>No. | ted<br>Power | tune-up<br>Power | SAR(10g   | d<br>SAR(10 | SAR(1g) | d<br>SAR(1g | r Drift |
| CII.  | IVII IZ |         | n         |               | (dBm)        | (dBm)            | ) (W/kg)  | g)(W/kg)    | (W/kg)  | ) (W/kg)    | (dB)    |
| 19100 | 1900    | 1RB-Mid | Rear      | Fig.16        | 20.65        | 21.5             | 0.467     | 0.57        | 0.837   | 1.02        | 0.03    |

Note1: The distance between the EUT and the phantom bottom is 15mm

Note2: The LTE mode is QPSK\_20MHz.

### Table 14.2-17: SAR Values (LTE Band4 - Head)

|             |              | ,       | Ambient | Temperatu            | re: 22.9°C    | Lic                                 | quid Tem                                  | perature: 2                            | 22.5°C                                 |                                       |                                       |                            |
|-------------|--------------|---------|---------|----------------------|---------------|-------------------------------------|-------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|----------------------------|
| Freq<br>Ch. | uency<br>MHz | Mode    | Side    | Test<br>Positio<br>n | Figure<br>No. | Cond<br>ucted<br>Powe<br>r<br>(dBm) | Max.<br>tune-<br>up<br>Powe<br>r<br>(dBm) | Measur<br>ed<br>SAR(1<br>0g)<br>(W/kg) | Report<br>ed<br>SAR(10<br>g)(W/kg<br>) | Measur<br>ed<br>SAR(1g<br>)<br>(W/kg) | Report<br>ed<br>SAR(1<br>g)<br>(W/kg) | Pow<br>er<br>Drift<br>(dB) |
| 20175       | 1732.5       | 1RB-Mid | Right   | Cheek                | Fig.17        | 22.91                               | 23                                        | 0.682                                  | 0.70                                   | 1.08                                  | 1.10                                  | -0.03                      |

Note1: The LTE mode is QPSK\_20MHz.

#### Table 14.2-18: SAR Values (LTE Band4 - Body)

|       |       | Am        | nbient Tem   | perature:     | 22.9 °C                | Liqui                     | d Temperatu            | ıre: 22.5°C             |                        |                         |                 |
|-------|-------|-----------|--------------|---------------|------------------------|---------------------------|------------------------|-------------------------|------------------------|-------------------------|-----------------|
| Frequ | uency |           | Test         |               | Condu                  | Max.                      | Measure<br>d           | Reporte                 | Measure                | Reporte                 | Powe            |
| Ch.   | MHz   | Mode      | Positio<br>n | Figure<br>No. | cted<br>Power<br>(dBm) | tune-up<br>Power<br>(dBm) | SAR(10<br>g)<br>(W/kg) | d<br>SAR(10<br>g)(W/kg) | d<br>SAR(1g)<br>(W/kg) | d<br>SAR(1g<br>) (W/kg) | r Drift<br>(dB) |
| 20300 | 1745  | 50RB-High | Rear         | Fig.18        | 20.32                  | 21                        | 0.548                  | 0.64                    | 1.04                   | 1.22                    | -0.11           |

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK\_20MHz.



# Table 14.2-19: SAR Values (LTE Band4 - Body)

|       |        | Am         | bient Tem    | perature:     | 22.9°C                 | Liqui                     | d Temperatu            | ıre: 22.5°C             |                        |                         |                 |
|-------|--------|------------|--------------|---------------|------------------------|---------------------------|------------------------|-------------------------|------------------------|-------------------------|-----------------|
| Frequ | uency  |            | Test         |               | Condu                  | Max.                      | Measure<br>d           | Reporte                 | Measure                | Reporte                 | Powe            |
| Ch.   | MHz    | Mode       | Positio<br>n | Figure<br>No. | cted<br>Power<br>(dBm) | tune-up<br>Power<br>(dBm) | SAR(10<br>g)<br>(W/kg) | d<br>SAR(10<br>g)(W/kg) | d<br>SAR(1g)<br>(W/kg) | d<br>SAR(1g<br>) (W/kg) | r Drift<br>(dB) |
| 20175 | 1732.5 | 1RB-Middle | Rear         | Fig.19        | 22.91                  | 23                        | 0.452                  | 0.46                    | 0.792                  | 0.81                    | -0.19           |

# Table 14.2-20: SAR Values (LTE Band5 - Head)

|       |           |         | Ambi | ent Tempei           | rature: 22.9  | 9°C I                 | Liquid Tem                | perature: 22.       | .5°C              |                          |                   |                 |
|-------|-----------|---------|------|----------------------|---------------|-----------------------|---------------------------|---------------------|-------------------|--------------------------|-------------------|-----------------|
| Frequ | Frequency |         |      | Test                 | Figure        | Conduc                | Max.                      | Measure             | Report<br>ed      | Measur                   | Reporte           | Powe            |
| Ch.   | MHz       | Mode    | Side | Test<br>Positio<br>n | Figure<br>No. | ted<br>Power<br>(dBm) | tune-up<br>Power<br>(dBm) | SAR(10g<br>) (W/kg) | SAR(10<br>g)(W/kg | ed<br>SAR(1g<br>) (W/kg) | SAR(1g)<br>(W/kg) | r Drift<br>(dB) |
| 20600 | 844       | 1RB-Mid | Left | Cheek                | Fig.20        | 22.00                 | 23                        | 0.482               | 0.61              | 0.651                    | 0.82              | 0.18            |

Note1: The LTE mode is QPSK\_10MHz.

### Table 14.2-21: SAR Values (LTE Band5 - Body)

|        |      |                 | Ambient To | emperature | : 22.9°C      | Liquid          | Temperature        | e: 22.5°C          |                   |                   |               |
|--------|------|-----------------|------------|------------|---------------|-----------------|--------------------|--------------------|-------------------|-------------------|---------------|
| Freque | ency |                 | Test       | Figure     | Condu<br>cted | Max.<br>tune-up | Measured           | Reported           | Measured          | Reported          | Power         |
| Ch.    | MHz  | Mode<br>1RB-Mid | Position   | No.        | Power (dBm)   | Power (dBm)     | SAR(10g)<br>(W/kg) | SAR(10g)<br>(W/kg) | SAR(1g)<br>(W/kg) | SAR(1g)<br>(W/kg) | Drift<br>(dB) |
| 20600  | 844  | 1RB-Mid         | Rear       | Fig.21     | 22.00         | 23              | 0.578              | 0.73               | 0.783             | 0.99              | 0.04          |

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK\_10MHz.

#### Table 14.2-22: SAR Values (LTE Band7 - Head)

|       |       |         |        |              |               | •                      |                |                        | ,                  |                       |                        |                 |
|-------|-------|---------|--------|--------------|---------------|------------------------|----------------|------------------------|--------------------|-----------------------|------------------------|-----------------|
|       |       |         | Ambier | nt Tempera   | ture: 22.9°   | C Li                   | quid Temp      | erature: 22            | 2.5°C              |                       |                        |                 |
| Frequ | uency |         |        | Test         |               | Condu                  | tune-up        | Measur<br>ed           | Reported           | Measur<br>ed          | Reporte                | Powe            |
| Ch.   | MHz   | Mode    | Side   | Positio<br>n | Figure<br>No. | cted<br>Power<br>(dBm) | Power<br>(dBm) | SAR(1<br>0g)<br>(W/kg) | SAR(10g<br>)(W/kg) | SAR(1<br>g)<br>(W/kg) | d<br>SAR(1g)<br>(W/kg) | r Drift<br>(dB) |
| 20850 | 2510  | 1RB-Mid | Right  | Cheek        | Fig.22        | 21.37                  | 21.7           | 0.59                   | 0.64               | 1.11                  | 1.20                   | 0.09            |

Note1: The LTE mode is QPSK\_20MHz.



# Table 14.2-23: SAR Values (LTE Band7 - Body)

|       |                        |        | Ambient  | Temperatu | ıre: 22.9 °C | Liquid  | Temperature | e: 22.5°C |          |          |       |
|-------|------------------------|--------|----------|-----------|--------------|---------|-------------|-----------|----------|----------|-------|
| Fred  | uency                  |        | Toot     | Figure    | Conduct      | tune-up | Measured    | Reported  | Measured | Reported | Power |
|       | T                      | Mode   | Test     | Figure    | ed Power     | Power   | SAR(10g)    | SAR(10g)  | SAR(1g)  | SAR(1g)  | Drift |
| Ch.   | MHz                    | iviode | Position | No.       | (dBm)        | (dBm)   | (W/kg)      | (W/kg)    | (W/kg)   | (W/kg)   | (dB)  |
| 21100 | 100 2335 1RB-Mid Front |        | Fig.23   | 17.69     | 18.5         | 0.303   | 0.37        | 0.608     | 0.73     | 0.07     |       |

Note1: The distance between the EUT and the phantom bottom is 10mm

Note2: The LTE mode is QPSK\_20MHz.

# Table 14.2-24: SAR Values (LTE Band7 - Body)

|       |      |         | Ambient | Temperatu | ıre: 22.9 °C | Liquid  | Temperature | : 22.5°C |          |          |       |
|-------|------|---------|---------|-----------|--------------|---------|-------------|----------|----------|----------|-------|
| Frequ | ency |         | Test    | Figure    | Conduct      | tune-up | Measured    | Reported | Measured | Reported | Power |
|       |      | Mode    | Positi  | •         | ed Power     | Power   | SAR(10g)    | SAR(10g) | SAR(1g)  | SAR(1g)  | Drift |
| Ch.   | MHz  | Mode    | on      | No.       | (dBm)        | (dBm)   | (W/kg)      | (W/kg)   | (W/kg)   | (W/kg)   | (dB)  |
| 21350 | 2560 | 1RB-Mid | Front   | Fig.24    | 21.46        | 21.7    | 0.299       | 0.32     | 0.575    | 0.61     | 0.05  |

Note1: The distance between the EUT and the phantom bottom is 15mm

Note2: The LTE mode is QPSK\_20MHz.

### Table 14.2-25: SAR Values (LTE Band28 - Head)

|       |              |            | Ambier | nt Tempera           | ture: 22.9°   | C Li                            | quid Temp                 | erature: 22                            | 5°C                            |                                       |                                   |                         |
|-------|--------------|------------|--------|----------------------|---------------|---------------------------------|---------------------------|----------------------------------------|--------------------------------|---------------------------------------|-----------------------------------|-------------------------|
| Frequ | uency<br>MHz | Mode       | Side   | Test<br>Positio<br>n | Figure<br>No. | Condu<br>cted<br>Power<br>(dBm) | tune-up<br>Power<br>(dBm) | Measur<br>ed<br>SAR(1<br>0g)<br>(W/kg) | Reported<br>SAR(10g<br>)(W/kg) | Measur<br>ed<br>SAR(1<br>g)<br>(W/kg) | Reporte<br>d<br>SAR(1g)<br>(W/kg) | Powe<br>r Drift<br>(dB) |
| 27560 | 738          | 1RB-Middle | Right  | Cheek                | Fig.25        | 22.00                           | 23                        | 0.27                                   | 0.34                           | 0.364                                 | 0.45                              | -0.16                   |

### Table 14.2-26: SAR Values (LTE Band28 - Body)

|        |      |            |            |            |                |                 |                    | 37                 |                   |                   |               |
|--------|------|------------|------------|------------|----------------|-----------------|--------------------|--------------------|-------------------|-------------------|---------------|
| ·      | ·    |            | Ambient Te | emperature | : 22.9°C       | Liquid          | Temperature        | : 22.5°C           |                   |                   |               |
| Freque | ency |            | Test       | Figure     | Condu<br>cted  | Max.<br>tune-up | Measured           | Reported           | Measured          | Reported          | Power         |
| Ch.    | MHz  | Mode       | Position   | No.        | Power<br>(dBm) | Power<br>(dBm)  | SAR(10g)<br>(W/kg) | SAR(10g)<br>(W/kg) | SAR(1g)<br>(W/kg) | SAR(1g)<br>(W/kg) | Drift<br>(dB) |
| 27560  | 738  | 1RB-Middle | Front      | Fig.26     | 22.00          | 23              | 0.233              | 0.29               | 0.316             | 0.40              | 0.09          |

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK\_20MHz.





#### 14.3 WLAN Evaluation for 2.4G

According to the KDB248227 D01, SAR is measured for 2.4GHz 802.11b DSSS using the <u>initial</u> test position procedure.

#### **Head Evaluation**

Table 14.3-1: SAR Values (WLAN - Head) – 802.11b (Fast SAR)

|           |         |          | Amb      | ient Tem | perature: 2 | 2.9℃ L     | iquid Temp | erature: 22. | 5°C      |          |       |
|-----------|---------|----------|----------|----------|-------------|------------|------------|--------------|----------|----------|-------|
| Frequency |         |          | Test     | Figure   | Conducte    | Max. tune- | Measured   | Reported     | Measured | Reported | Power |
|           | Side    | Position |          | d Power  | up Power    | SAR(10g)   | SAR(10g)   | SAR(1g)      | SAR(1g)( | Drift    |       |
| MHz       | MHz Ch. |          | Position | No.      | (dBm)       | (dBm)      | (W/kg)     | (W/kg)       | (W/kg)   | W/kg)    | (dB)  |
| 2412      | 1       | Left     | Touch    | /        | 15.46       | 15.5       | 0.042      | 0.04         | 0.0785   | 0.09     | -0.06 |
| 2412      | 1       | Left     | Tilt     | /        | 15.46       | 15.5       | 0.04       | 0.04         | 0.079    | 0.08     | 0.01  |
| 2412      | 1       | Right    | Touch    | /        | 15.46       | 15.5       | 0.097      | 0.10         | 0.204    | 0.17     | -0.06 |
| 2412      | 1       | Right    | Tilt     | 1        | 15.46       | 15.5       | 0.039      | 0.04         | 0.086    | 0.09     | 0.05  |

As shown above table, the <u>initial test position</u> for head is "Right **Touch**". So the head SAR of WLAN is presented as below:

Table 14.3-2: SAR Values (WLAN - Head) – 802.11b (Full SAR)

| <u> </u>    |                                                          |       |          |        |          |            |          |          |          |          |       |  |
|-------------|----------------------------------------------------------|-------|----------|--------|----------|------------|----------|----------|----------|----------|-------|--|
|             | Ambient Temperature: 22.9 °C Liquid Temperature: 22.5 °C |       |          |        |          |            |          |          |          |          |       |  |
| Frequ       | ency                                                     |       | Test     | Eiguro | Conducte | Max. tune- | Measured | Reported | Measured | Reported | Power |  |
| -           | Side                                                     | Side  | Side     | Figure | d Power  | up Power   | SAR(10g) | SAR(10g) | SAR(1g)  | SAR(1g)( | Drift |  |
| MHz         | Hz Ch.                                                   |       | Position | No.    | (dBm)    | (dBm)      | (W/kg)   | (W/kg)   | (W/kg)   | W/kg)    | (dB)  |  |
| 2412 1 Righ |                                                          | Right | Touch    | Fig.27 | 15.46    | 15.5       | 0.078    | 0.08     | 0.17     | 0.17     | -0.06 |  |

Note1: When the <u>reported</u> SAR of the <u>initial test position</u> is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the <u>initial test position</u> using subsequent highest estimated 1-g SAR conditions determined by area scans, on the highest maximum output power channel, until the <u>reported</u> SAR is  $\leq$  0.8 W/kg. Note2: For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the <u>reported</u> SAR is  $\leq$  1.2 W/kg or all required channels are tested.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

Table 14.3-3: SAR Values (WLAN - Head) – 802.11b (Scaled Reported SAR)

|        |      | Ambien | t Temperatı | ıre: 22.9°C | Liquid Te   | emperature: 22.5 | °C              |
|--------|------|--------|-------------|-------------|-------------|------------------|-----------------|
| Freque | ency | Side   | Test        | Actual duty | maximum     | Reported SAR     | Scaled reported |
| MHz    | Ch.  | 0.40   | Position    | factor      | duty factor | (1g)(W/kg)       | SAR (1g)(W/kg)  |
| 2412   | 1    | Right  | Touch       | 100%        | 100%        | 0.17             | 0.17            |

SAR is not required for OFDM because the 802.11b adjusted SAR  $\leq$  1.2 W/kg.





#### **Body Evaluation**

Table 14.3-4: SAR Values (WLAN - Body)- 802.11b (Fast SAR)

|        |                      | Α     | mbient T | emperature         | : 22.9 °C    | Liquid Temperature: 22.5°C |                      |                     |                      |                |
|--------|----------------------|-------|----------|--------------------|--------------|----------------------------|----------------------|---------------------|----------------------|----------------|
| Freque | ency                 | Test  | Figure   | Conducted<br>Power | Max. tune-up | Measured<br>SAR(10g)       | Reported<br>SAR(10g) | Measured<br>SAR(1g) | Reported<br>SAR(1g)( | Power<br>Drift |
| MHz    | MHz Ch.              |       | No.      | (dBm) Power (dBm)  | (W/kg)       | (W/kg)                     | (W/kg)               | W/kg)               | (dB)                 |                |
| 2412   | 1                    | Front | 1        | 15.46              | 15.5         | <0.01                      | <0.01                | <0.01               | <0.01                | 0.01           |
| 2412   | 1                    | Rear  | 1        | 15.46              | 15.5         | 0.042                      | 0.04                 | 0.071               | 0.07                 | 0.03           |
| 2412   | 1                    | Left  | 1        | 15.46              | 15.5         | 0.027                      | 0.03                 | 0.053               | 0.05                 | -0.02          |
| 2412   | 2412 1 Right / 15.46 |       | 15.46    | 15.5               | <0.01        | <0.01                      | <0.01                | <0.01               | -0.06                |                |
| 2412   | 1                    | Тор   | /        | 15.46              | 15.5         | <0.01                      | <0.01                | <0.01               | <0.01                | 0.03           |

As shown above table, the <u>initial test position</u> for body is "Rear". So the body SAR of WLAN is presented as below:

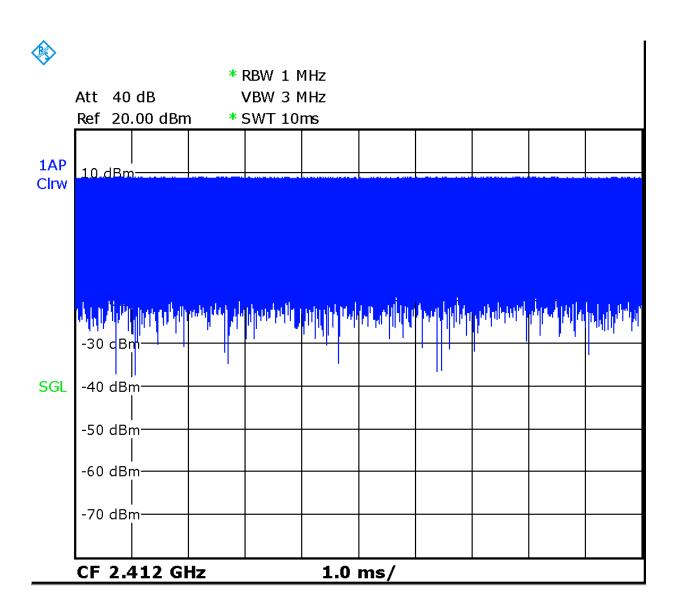
Table 14.3-5: SAR Values (WLAN - Body) - 802.11b (Full SAR)

|        |                          | A       | mbient T | emperature | : 22.9°C     | Liquid Temperature: 22.5°C |          |          |          |       |
|--------|--------------------------|---------|----------|------------|--------------|----------------------------|----------|----------|----------|-------|
| Freque | encv                     | Test    | Figure   | Conducted  | May tune un  | Measured                   | Reported | Measured | Reported | Power |
|        | ı                        | Positio | Figure   | Power      | Max. tune-up | SAR(10g)                   | SAR(10g) | SAR(1g)  | SAR(1g)( | Drift |
| MHz    | MHz Ch.                  |         | No.      | (dBm)      | Power (dBm)  | (W/kg)                     | (W/kg)   | (W/kg)   | W/kg)    | (dB)  |
| 2412   | 2412 1 Rear Fig.28 15.46 |         |          | 15.46      | 15.5         | 0.043                      | 0.04     | 0.074    | 0.07     | 0.03  |

Note1: When the <u>reported</u> SAR of the <u>initial test position</u> is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the <u>initial test position</u> using subsequent highest estimated 1-g SAR conditions determined by area scans, on the highest maximum output power channel, until the <u>reported</u> SAR is  $\leq 0.8 \text{ W/kg}$ .

Note2: For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the <u>reported</u> SAR is  $\leq$  1.2 W/kg or all required channels are tested.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.


Table 14.3-6: SAR Values (WLAN - Body) – 802.11b (Scaled Reported SAR)

|                                                                     | Ambient Temperature: 22.9 °C Liquid Temperature: 22.5 °C |          |        |             |            |            |  |  |  |  |  |  |
|---------------------------------------------------------------------|----------------------------------------------------------|----------|--------|-------------|------------|------------|--|--|--|--|--|--|
| Frequency Test Actual duty maximum Reported SAR Scaled reported SAR |                                                          |          |        |             |            |            |  |  |  |  |  |  |
| MHz                                                                 | Ch.                                                      | Position | factor | duty factor | (1g)(W/kg) | (1g)(W/kg) |  |  |  |  |  |  |
| 2412                                                                | 1                                                        | Rear     | 100%   | 100%        | 0.07       | 0.07       |  |  |  |  |  |  |

SAR is not required for OFDM because the 802.11b adjusted SAR  $\leq$  1.2 W/kg.







Picture 14.1-b Duty factor plot



### 14.4 BT Evaluation

Table 14.4-1: SAR Values (BT - Head)

|           |       | Ambi    | ent Tem        | perature: 2 | 2.9 °C     | Liquid Temp | erature: 22 | 2.5°C    |              |       |
|-----------|-------|---------|----------------|-------------|------------|-------------|-------------|----------|--------------|-------|
| Frequency |       | Test    | F:             | Conducte    | Max. tune- | Measured    | Reported    | Measured | Reporte      | Power |
|           | Side  | Positio | Figur<br>e No. | d Power     | up Power   | SAR(10g)    | SAR(10g     | SAR(1g)  | d<br>SAR(1g) | Drift |
| Ch.       |       | n       | e No.          | (dBm)       | (dBm)      | (W/kg)      | )(W/kg)     | (W/kg)   | (W/kg)       | (dB)  |
| 39        | Left  | Touch   | 1              | 8.36        | 9.9        | <0.01       | <0.01       | <0.01    | <0.01        | 1     |
| 39        | Left  | Tilt    | 1              | 8.36        | 9.9        | <0.01       | <0.01       | <0.01    | <0.01        | /     |
| 39        | Right | Touch   | 1              | 8.36        | 9.9        | <0.01       | <0.01       | <0.01    | <0.01        | 1     |
| 39        | Right | Tilt    | 1              | 8.36        | 9.9        | <0.01       | <0.01       | <0.01    | <0.01        | /     |

Table 14.4-2: SAR Values (BT - Body)

|           | P           | Ambient <sup>-</sup> | Temperature        | e: 22.9°C    | Liquid Ter           | mperature:           | 22.5°C              |                      |                |  |
|-----------|-------------|----------------------|--------------------|--------------|----------------------|----------------------|---------------------|----------------------|----------------|--|
| Frequency | Test Figure |                      | Conducted<br>Power | Max. tune-up | Measured<br>SAR(10g) | Reported<br>SAR(10g) | Measured<br>SAR(1g) | Reported<br>SAR(1g)( | Power<br>Drift |  |
| Ch.       | Position    | No.                  | (dBm)              | Power (dBm)  | (W/kg)               | (W/kg)               | (W/kg)              | W/kg)                | (dB)           |  |
| 39        | Front       | /                    | 8.36               | 9.9          | <0.01                | <0.01                | <0.01               | <0.01                | 1              |  |
| 39        | Rear        | /                    | 8.36               | 9.9          | <0.01                | <0.01                | <0.01               | <0.01                | 1              |  |
| 39        | Left        | /                    | 8.36               | 9.9          | <0.01                | <0.01                | <0.01               | <0.01                | 1              |  |
| 39        | Right       | /                    | 8.36               | 9.9          | <0.01                | <0.01                | <0.01               | <0.01                | 1              |  |
| 39        | Тор         | /                    | 8.36               | 9.9          | <0.01                | <0.01                | <0.01               | <0.01                | 1              |  |

# 15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is  $\ge 1.45$ W/kg ( $\sim 10\%$  from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.





Table 15.1: SAR Measurement Variability for GSM1900 Band - Body(1g)

|   | Frequ | uency  |         |                  |                 | Original                  | First                     |              | Second                    |
|---|-------|--------|---------|------------------|-----------------|---------------------------|---------------------------|--------------|---------------------------|
| • | Ch.   | MHz    | Mode    | Test<br>Position | Spacing<br>(mm) | Original<br>SAR<br>(W/kg) | Repeated<br>SAR<br>(W/kg) | The<br>Ratio | Repeated<br>SAR<br>(W/kg) |
|   | 810   | 1909.8 | GPRS(3) | Bottom           | 10              | 1.05                      | 0.997                     | 1.05         | 1                         |

# Table 15.2: SAR Measurement Variability for WCDMA1700 Band -Head(1g)

| Freq | luency |       | Toot             | Original SAR           | First                  | The   | Second                 |
|------|--------|-------|------------------|------------------------|------------------------|-------|------------------------|
| Ch.  | MHz    | Side  | Test<br>Position | Original SAR<br>(W/kg) | Repeated<br>SAR (W/kg) | Ratio | Repeated<br>SAR (W/kg) |
| 1412 | 1732.4 | Right | Cheek            | 1.09                   | 1.03                   | 1.06  | 1                      |

# Table 15.3: SAR Measurement Variability for Body -WCDMA1700 (1g)

| Frequ | uency  |      |                  |                 | Original      | First                     |              | Second                    |
|-------|--------|------|------------------|-----------------|---------------|---------------------------|--------------|---------------------------|
| Ch.   | MHz    | Mode | Test<br>Position | Spacing<br>(mm) | SAR<br>(W/kg) | Repeated<br>SAR<br>(W/kg) | The<br>Ratio | Repeated<br>SAR<br>(W/kg) |
| 1513  | 1752.6 | 1    | Rear             | 10              | 0.984         | 0.981                     | 1.00         | 1                         |

### Table 15.4: SAR Measurement Variability for Head- WCDMA850 Band (1g)

|       |       |      |          | <u> </u>     |                        |       | <u> </u>               |
|-------|-------|------|----------|--------------|------------------------|-------|------------------------|
| Frequ | uency |      | Test     | Original SAR | First                  | The   | Second                 |
| Ch.   | MHz   | Side | Position | (W/kg)       | Repeated<br>SAR (W/kg) | Ratio | Repeated<br>SAR (W/kg) |
| 4183  | 836.6 | Left | Cheek    | 0.831        | 0.825                  | 1.01  | 1                      |

### Table 15.5: SAR Measurement Variability for Body WCDMA850 Band (1g)

| Frequ | uency |      |                  |                 | Original      | First                     |              | Second                    |
|-------|-------|------|------------------|-----------------|---------------|---------------------------|--------------|---------------------------|
| Ch.   | MHz   | Mode | Test<br>Position | Spacing<br>(mm) | SAR<br>(W/kg) | Repeated<br>SAR<br>(W/kg) | The<br>Ratio | Repeated<br>SAR<br>(W/kg) |
| 4233  | 846.6 | 1    | Rear             | 10              | 1.15          | 1.11                      | 1.04         | 1                         |

# Table 15.6: SAR Measurement Variability for Body LTEB2 (1g)

| Frequ | uency |         |                  |                 | Original      | First                     |              | Second                    |
|-------|-------|---------|------------------|-----------------|---------------|---------------------------|--------------|---------------------------|
| Ch.   | MHz   | Mode    | Test<br>Position | Spacing<br>(mm) | SAR<br>(W/kg) | Repeated<br>SAR<br>(W/kg) | The<br>Ratio | Repeated<br>SAR<br>(W/kg) |
| 18900 | 1880  | 1RB_Mid | Bottom           | 10              | 1.07          | 1.03                      | 1.04         | 1                         |

# Table 15.7: SAR Measurement Variability for Head- LTEB4 (1g)

| Frequency |         | Side | Test     | Original SAR | First    | The   | Second   |
|-----------|---------|------|----------|--------------|----------|-------|----------|
| Ch.       | Ch. MHz |      | Position | (W/kg)       | Repeated | Ratio | Repeated |





|       |        |       |       |      | SAR (W/kg) |      | SAR (W/kg) |
|-------|--------|-------|-------|------|------------|------|------------|
| 20175 | 1732.5 | Right | Cheek | 1.08 | 1.06       | 1.02 | 1          |

# Table 15.8: SAR Measurement Variability for Body LTEB4 (1g)

| Frequ | uency |           |                  |                 | Original                  | First                     |              | Second                    |
|-------|-------|-----------|------------------|-----------------|---------------------------|---------------------------|--------------|---------------------------|
| Ch.   | MHz   | Mode      | Test<br>Position | Spacing<br>(mm) | Original<br>SAR<br>(W/kg) | Repeated<br>SAR<br>(W/kg) | The<br>Ratio | Repeated<br>SAR<br>(W/kg) |
| 20300 | 1745  | 50RB_High | Rear             | 10              | 1.04                      | 1.03                      | 1.01         | 1                         |

# Table 15.9: SAR Measurement Variability for Head- LTEB7 (1g)

| Frequ | ency |       | Test     | Original SAR | First                  | The   | Second                 |
|-------|------|-------|----------|--------------|------------------------|-------|------------------------|
| Ch.   | MHz  | Side  | Position | (W/kg)       | Repeated<br>SAR (W/kg) | Ratio | Repeated<br>SAR (W/kg) |
| 20850 | 2510 | Right | Cheek    | 1.11         | 1.06                   | 1.05  | 1                      |

# Table 15.10: SAR Measurement Variability for Body WCDMA1900 (1g)

| Freq | uency  |      |                  |                 | Original                  | First                     |              | Second                    |
|------|--------|------|------------------|-----------------|---------------------------|---------------------------|--------------|---------------------------|
| Ch.  | MHz    | Mode | Test<br>Position | Spacing<br>(mm) | Original<br>SAR<br>(W/kg) | Repeated<br>SAR<br>(W/kg) | The<br>Ratio | Repeated<br>SAR<br>(W/kg) |
| 9262 | 1852.4 | 1    | Rear             | 15              | 0.865                     | 0.861                     | 1.00         | 1                         |

# Table 15.11: SAR Measurement Variability for Body LTEB2 (1g)

| Frequ | uency |      |                  |                 | Original      | First                     |              | Second                    |
|-------|-------|------|------------------|-----------------|---------------|---------------------------|--------------|---------------------------|
| Ch.   | MHz   | Mode | Test<br>Position | Spacing<br>(mm) | SAR<br>(W/kg) | Repeated<br>SAR<br>(W/kg) | The<br>Ratio | Repeated<br>SAR<br>(W/kg) |
| 19100 | 1900  | 1    | Rear             | 15              | 0.837         | 0.821                     | 1.02         | 1                         |





# **16 Measurement Uncertainty**

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

| 16.1 | Measurement Un                                  | certai | nty for Nor | mal SAR To     | ests (     | (300M | IHz~3 | GHz) |       |         |
|------|-------------------------------------------------|--------|-------------|----------------|------------|-------|-------|------|-------|---------|
| No.  | Error Description                               | Type   | Uncertainty | Probably       | Div.       | (Ci)  | (Ci)  | Std. | Std.  | Degree  |
|      |                                                 |        | value       | Distribution   |            | 1g    | 10g   | Unc. | Unc.  | of      |
|      |                                                 |        |             |                |            |       |       | (1g) | (10g) | freedom |
| Mea  | surement system                                 |        |             |                |            |       |       |      |       |         |
| 1    | Probe calibration                               | В      | 6.0         | N              | 1          | 1     | 1     | 6.0  | 6.0   | ∞       |
| 2    | Isotropy                                        | В      | 4.7         | R              | $\sqrt{3}$ | 0.7   | 0.7   | 1.9  | 1.9   | ∞       |
| 3    | Boundary effect                                 | В      | 1.0         | R              | $\sqrt{3}$ | 1     | 1     | 0.6  | 0.6   | ∞       |
| 4    | Linearity                                       | В      | 4.7         | R              | $\sqrt{3}$ | 1     | 1     | 2.7  | 2.7   | ∞       |
| 5    | Detection limit                                 | В      | 1.0         | N              | 1          | 1     | 1     | 0.6  | 0.6   | ∞       |
| 6    | Readout electronics                             | В      | 0.3         | R              | $\sqrt{3}$ | 1     | 1     | 0.3  | 0.3   | ∞       |
| 7    | Response time                                   | В      | 0.8         | R              | $\sqrt{3}$ | 1     | 1     | 0.5  | 0.5   | ∞       |
| 8    | Integration time                                | В      | 2.6         | R              | $\sqrt{3}$ | 1     | 1     | 1.5  | 1.5   | ∞       |
| 9    | RF ambient conditions-noise                     | В      | 0           | R              | $\sqrt{3}$ | 1     | 1     | 0    | 0     | ∞       |
| 10   | RFambient conditions-reflection                 | В      | 0           | R              | $\sqrt{3}$ | 1     | 1     | 0    | 0     | ∞       |
| 11   | Probe positioned mech. restrictions             | В      | 0.4         | R              | $\sqrt{3}$ | 1     | 1     | 0.2  | 0.2   | ∞       |
| 12   | Probe positioning with respect to phantom shell | В      | 2.9         | R              | $\sqrt{3}$ | 1     | 1     | 1.7  | 1.7   | ∞       |
| 13   | Post-processing                                 | В      | 1.0         | R              | $\sqrt{3}$ | 1     | 1     | 0.6  | 0.6   | ∞       |
|      |                                                 |        | Test        | sample related | d          |       |       |      |       |         |
| 14   | Test sample positioning                         | A      | 3.3         | N              | 1          | 1     | 1     | 3.3  | 3.3   | 71      |
| 15   | Device holder uncertainty                       | A      | 3.4         | N              | 1          | 1     | 1     | 3.4  | 3.4   | 5       |
| 16   | Drift of output power                           | В      | 5.0         | R              | $\sqrt{3}$ | 1     | 1     | 2.9  | 2.9   | ∞       |
|      |                                                 |        | Phan        | tom and set-u  | p          |       |       |      |       |         |
| 17   | Phantom uncertainty                             | В      | 4.0         | R              | $\sqrt{3}$ | 1     | 1     | 2.3  | 2.3   | ∞       |
| 18   | Liquid conductivity (target)                    | В      | 5.0         | R              | $\sqrt{3}$ | 0.64  | 0.43  | 1.8  | 1.2   | ∞       |
| 19   | Liquid conductivity (meas.)                     | A      | 2.06        | N              | 1          | 0.64  | 0.43  | 1.32 | 0.89  | 43      |
| 20   | Liquid permittivity (target)                    | В      | 5.0         | R              | $\sqrt{3}$ | 0.6   | 0.49  | 1.7  | 1.4   | ∞       |
| 21   | Liquid permittivity (meas.)                     | A      | 1.6         | N              | 1          | 0.6   | 0.49  | 1.0  | 0.8   | 521     |





| Combined standard uncertainty                      | $u_c' = \sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$ |  |  | 9.55 | 9.43 | 257 |
|----------------------------------------------------|---------------------------------------------|--|--|------|------|-----|
| Expanded uncertainty (confidence interval of 95 %) | $u_e = 2u_c$                                |  |  | 19.1 | 18.9 |     |

| No.  | Error Description                               | Туре | Uncertainty | Probably       | Div.         | (Ci) | (Ci) | Std. | Std.  | Degree   |
|------|-------------------------------------------------|------|-------------|----------------|--------------|------|------|------|-------|----------|
| 110. | Error Desemption                                | 1710 | value       | Distribution   | <b>D</b> 11. | 1g   | 10g  | Unc. | Unc.  | of       |
|      |                                                 |      | ,           | Distriction.   |              | 1-8  | 108  | (1g) | (10g) | freedom  |
| Meas | surement system                                 |      |             |                |              |      |      | (-8) | ( 8)  |          |
| 1    | Probe calibration                               | В    | 6.55        | N              | 1            | 1    | 1    | 6.55 | 6.55  | $\infty$ |
| 2    | Isotropy                                        | В    | 4.7         | R              | $\sqrt{3}$   | 0.7  | 0.7  | 1.9  | 1.9   | ∞        |
| 3    | Boundary effect                                 | В    | 2.0         | R              | $\sqrt{3}$   | 1    | 1    | 1.2  | 1.2   | 8        |
| 4    | Linearity                                       | В    | 4.7         | R              | $\sqrt{3}$   | 1    | 1    | 2.7  | 2.7   | 8        |
| 5    | Detection limit                                 | В    | 1.0         | R              | $\sqrt{3}$   | 1    | 1    | 0.6  | 0.6   | 8        |
| 6    | Readout electronics                             | В    | 0.3         | R              | $\sqrt{3}$   | 1    | 1    | 0.3  | 0.3   | 8        |
| 7    | Response time                                   | В    | 0.8         | R              | $\sqrt{3}$   | 1    | 1    | 0.5  | 0.5   | 8        |
| 8    | Integration time                                | В    | 2.6         | R              | $\sqrt{3}$   | 1    | 1    | 1.5  | 1.5   | ∞        |
| 9    | RF ambient conditions-noise                     | В    | 0           | R              | $\sqrt{3}$   | 1    | 1    | 0    | 0     | 8        |
| 10   | RFambient conditions-reflection                 | В    | 0           | R              | $\sqrt{3}$   | 1    | 1    | 0    | 0     | 8        |
| 11   | Probe positioned mech. restrictions             | В    | 0.8         | R              | $\sqrt{3}$   | 1    | 1    | 0.5  | 0.5   | 8        |
| 12   | Probe positioning with respect to phantom shell | В    | 6.7         | R              | $\sqrt{3}$   | 1    | 1    | 3.9  | 3.9   | 8        |
| 13   | Post-processing                                 | В    | 4.0         | R              | $\sqrt{3}$   | 1    | 1    | 2.3  | 2.3   | 8        |
|      |                                                 |      | Test        | sample related | l            |      |      |      |       |          |
| 14   | Test sample positioning                         | A    | 3.3         | N              | 1            | 1    | 1    | 3.3  | 3.3   | 71       |
| 15   | Device holder uncertainty                       | A    | 3.4         | N              | 1            | 1    | 1    | 3.4  | 3.4   | 5        |
| 16   | Drift of output power                           | В    | 5.0         | R              | $\sqrt{3}$   | 1    | 1    | 2.9  | 2.9   | ∞        |
|      |                                                 |      | Phan        | tom and set-u  | р            |      |      |      |       |          |
| 17   | Phantom uncertainty                             | В    | 4.0         | R              | $\sqrt{3}$   | 1    | 1    | 2.3  | 2.3   | 8        |
| 18   | Liquid conductivity (target)                    | В    | 5.0         | R              | $\sqrt{3}$   | 0.64 | 0.43 | 1.8  | 1.2   | 8        |
| 19   | Liquid conductivity (meas.)                     | A    | 2.06        | N              | 1            | 0.64 | 0.43 | 1.32 | 0.89  | 43       |
| 20   | Liquid permittivity (target)                    | В    | 5.0         | R              | $\sqrt{3}$   | 0.6  | 0.49 | 1.7  | 1.4   | 8        |





| 21 | Liquid permittivity (meas.)           | A           | 1.6                                  | N | 1 | 0.6 | 0.49 | 1.0  | 0.8  | 521 |
|----|---------------------------------------|-------------|--------------------------------------|---|---|-----|------|------|------|-----|
| (  | Combined standard uncertainty         | $u_c^{'} =$ | $\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$ |   |   |     |      | 10.7 | 10.6 | 257 |
| _  | anded uncertainty fidence interval of | ı           | $u_e = 2u_c$                         |   |   |     |      | 21.4 | 21.1 |     |

# 16.3 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz)

|                    | Measurement on                                  |      |             |                | - (        |      |      |      |       |          |  |
|--------------------|-------------------------------------------------|------|-------------|----------------|------------|------|------|------|-------|----------|--|
| No.                | Error Description                               | Type | Uncertainty | Probably       | Div.       | (Ci) | (Ci) | Std. | Std.  | Degree   |  |
|                    |                                                 |      | value       | Distribution   |            | 1g   | 10g  | Unc. | Unc.  | of       |  |
|                    |                                                 |      |             |                |            |      |      | (1g) | (10g) | freedom  |  |
| Meas               | Measurement system                              |      |             |                |            |      |      |      |       |          |  |
| 1                  | Probe calibration                               | В    | 6.0         | N              | 1          | 1    | 1    | 6.0  | 6.0   | $\infty$ |  |
| 2                  | Isotropy                                        | В    | 4.7         | R              | $\sqrt{3}$ | 0.7  | 0.7  | 1.9  | 1.9   | ∞        |  |
| 3                  | Boundary effect                                 | В    | 1.0         | R              | $\sqrt{3}$ | 1    | 1    | 0.6  | 0.6   | ∞        |  |
| 4                  | Linearity                                       | В    | 4.7         | R              | $\sqrt{3}$ | 1    | 1    | 2.7  | 2.7   | ∞        |  |
| 5                  | Detection limit                                 | В    | 1.0         | R              | $\sqrt{3}$ | 1    | 1    | 0.6  | 0.6   | ∞        |  |
| 6                  | Readout electronics                             | В    | 0.3         | R              | $\sqrt{3}$ | 1    | 1    | 0.3  | 0.3   | $\infty$ |  |
| 7                  | Response time                                   | В    | 0.8         | R              | $\sqrt{3}$ | 1    | 1    | 0.5  | 0.5   | $\infty$ |  |
| 8                  | Integration time                                | В    | 2.6         | R              | $\sqrt{3}$ | 1    | 1    | 1.5  | 1.5   | ∞        |  |
| 9                  | RF ambient conditions-noise                     | В    | 0           | R              | $\sqrt{3}$ | 1    | 1    | 0    | 0     | ∞        |  |
| 10                 | RFambient conditions-reflection                 | В    | 0           | R              | $\sqrt{3}$ | 1    | 1    | 0    | 0     | <b>∞</b> |  |
| 11                 | Probe positioned mech. Restrictions             | В    | 0.4         | R              | $\sqrt{3}$ | 1    | 1    | 0.2  | 0.2   | <b>∞</b> |  |
| 12                 | Probe positioning with respect to phantom shell | В    | 2.9         | R              | $\sqrt{3}$ | 1    | 1    | 1.7  | 1.7   | 8        |  |
| 13                 | Post-processing                                 | В    | 1.0         | R              | $\sqrt{3}$ | 1    | 1    | 0.6  | 0.6   | ∞        |  |
| 14                 | Fast SAR z-<br>Approximation                    | В    | 7.0         | R              | $\sqrt{3}$ | 1    | 1    | 4.0  | 4.0   | &        |  |
|                    |                                                 |      | Test        | sample related | i          |      |      |      |       |          |  |
| 15                 | Test sample positioning                         | A    | 3.3         | N              | 1          | 1    | 1    | 3.3  | 3.3   | 71       |  |
| 16                 | Device holder uncertainty                       | A    | 3.4         | N              | 1          | 1    | 1    | 3.4  | 3.4   | 5        |  |
| 17                 | Drift of output power                           | В    | 5.0         | R              | $\sqrt{3}$ | 1    | 1    | 2.9  | 2.9   | $\infty$ |  |
| Phantom and set-up |                                                 |      |             |                |            |      |      |      |       |          |  |
| 18                 | Phantom uncertainty                             | В    | 4.0         | R              | $\sqrt{3}$ | 1    | 1    | 2.3  | 2.3   | $\infty$ |  |
| 19                 | Liquid conductivity (target)                    | В    | 5.0         | R              | $\sqrt{3}$ | 0.64 | 0.43 | 1.8  | 1.2   | ∞        |  |





| 20 | Liquid conductivity (meas.)           | A | 2.06                                 | N | 1          | 0.64 | 0.43 | 1.32 | 0.89 | 43  |
|----|---------------------------------------|---|--------------------------------------|---|------------|------|------|------|------|-----|
| 21 | Liquid permittivity (target)          | В | 5.0                                  | R | $\sqrt{3}$ | 0.6  | 0.49 | 1.7  | 1.4  | 8   |
| 22 | Liquid permittivity (meas.)           | A | 1.6                                  | N | 1          | 0.6  | 0.49 | 1.0  | 0.8  | 521 |
| (  | Combined standard uncertainty         |   | $\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ |   |            |      |      | 10.4 | 10.3 | 257 |
| _  | anded uncertainty fidence interval of | į | $u_e = 2u_c$                         |   |            |      |      | 20.8 | 20.6 |     |

# 16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

| No. | Error Description                               | Type | Uncertainty | Probably     | Div.       | (Ci) | (Ci) | Std. | Std.  | Degree   |  |
|-----|-------------------------------------------------|------|-------------|--------------|------------|------|------|------|-------|----------|--|
|     |                                                 |      | value       | Distribution |            | 1g   | 10g  | Unc. | Unc.  | of       |  |
|     |                                                 |      |             |              |            |      |      | (1g) | (10g) | freedom  |  |
| Mea | Measurement system                              |      |             |              |            |      |      |      |       |          |  |
| 1   | Probe calibration                               | В    | 6.55        | N            | 1          | 1    | 1    | 6.55 | 6.55  | 8        |  |
| 2   | Isotropy                                        | В    | 4.7         | R            | $\sqrt{3}$ | 0.7  | 0.7  | 1.9  | 1.9   | 8        |  |
| 3   | Boundary effect                                 | В    | 2.0         | R            | $\sqrt{3}$ | 1    | 1    | 1.2  | 1.2   | 8        |  |
| 4   | Linearity                                       | В    | 4.7         | R            | $\sqrt{3}$ | 1    | 1    | 2.7  | 2.7   | ∞        |  |
| 5   | Detection limit                                 | В    | 1.0         | R            | $\sqrt{3}$ | 1    | 1    | 0.6  | 0.6   | 8        |  |
| 6   | Readout electronics                             | В    | 0.3         | R            | $\sqrt{3}$ | 1    | 1    | 0.3  | 0.3   | ∞        |  |
| 7   | Response time                                   | В    | 0.8         | R            | $\sqrt{3}$ | 1    | 1    | 0.5  | 0.5   | ∞        |  |
| 8   | Integration time                                | В    | 2.6         | R            | $\sqrt{3}$ | 1    | 1    | 1.5  | 1.5   | ∞        |  |
| 9   | RF ambient conditions-noise                     | В    | 0           | R            | $\sqrt{3}$ | 1    | 1    | 0    | 0     | ∞        |  |
| 10  | RFambient conditions-reflection                 | В    | 0           | R            | $\sqrt{3}$ | 1    | 1    | 0    | 0     | <b>∞</b> |  |
| 11  | Probe positioned mech. Restrictions             | В    | 0.8         | R            | $\sqrt{3}$ | 1    | 1    | 0.5  | 0.5   | 8        |  |
| 12  | Probe positioning with respect to phantom shell | В    | 6.7         | R            | $\sqrt{3}$ | 1    | 1    | 3.9  | 3.9   | 8        |  |
| 13  | Post-processing                                 | В    | 1.0         | R            | $\sqrt{3}$ | 1    | 1    | 0.6  | 0.6   | 8        |  |
| 14  | Fast SAR z-<br>Approximation                    | В    | 14.0        | R            | $\sqrt{3}$ | 1    | 1    | 8.1  | 8.1   | 8        |  |
|     | Test sample related                             |      |             |              |            |      |      |      |       |          |  |
| 15  | Test sample positioning                         | A    | 3.3         | N            | 1          | 1    | 1    | 3.3  | 3.3   | 71       |  |
| 16  | Device holder uncertainty                       | A    | 3.4         | N            | 1          | 1    | 1    | 3.4  | 3.4   | 5        |  |
| 17  | Drift of output power                           | В    | 5.0         | R            | $\sqrt{3}$ | 1    | 1    | 2.9  | 2.9   | ∞        |  |





|                                                    | Phantom and set-up            |   |                                      |   |            |      |      |      |      |     |  |
|----------------------------------------------------|-------------------------------|---|--------------------------------------|---|------------|------|------|------|------|-----|--|
| 18                                                 | Phantom uncertainty           | В | 4.0                                  | R | $\sqrt{3}$ | 1    | 1    | 2.3  | 2.3  | 8   |  |
| 19                                                 | Liquid conductivity (target)  | В | 5.0                                  | R | $\sqrt{3}$ | 0.64 | 0.43 | 1.8  | 1.2  | ∞   |  |
| 20                                                 | Liquid conductivity (meas.)   | A | 2.06                                 | N | 1          | 0.64 | 0.43 | 1.32 | 0.89 | 43  |  |
| 21                                                 | Liquid permittivity (target)  | В | 5.0                                  | R | $\sqrt{3}$ | 0.6  | 0.49 | 1.7  | 1.4  | 8   |  |
| 22                                                 | Liquid permittivity (meas.)   | A | 1.6                                  | N | 1          | 0.6  | 0.49 | 1.0  | 0.8  | 521 |  |
| (                                                  | Combined standard uncertainty |   | $\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ |   |            |      |      | 13.5 | 13.4 | 257 |  |
| Expanded uncertainty (confidence interval of 95 %) |                               | ı | $u_e = 2u_c$                         |   |            |      |      | 27.0 | 26.8 |     |  |

# **17 MAIN TEST INSTRUMENTS**

**Table 17.1: List of Main Instruments** 

| No. | Name                  |               |            | Calibration Date  | Valid Period |  |
|-----|-----------------------|---------------|------------|-------------------|--------------|--|
|     |                       |               | Number     |                   |              |  |
| 01  | Network analyzer      | N5239A        | MY46110673 | January 24, 2020  | One year     |  |
| 02  | Power meter           | NRP2          | 101919     | May 12, 2020      | One year     |  |
| 03  | Power sensor          | NRP-Z91       | 101547     | May 12, 2020      | One year     |  |
| 04  | Signal Generator      | E4438C        | MY49070393 | January 4, 2020   | One Year     |  |
| 05  | Amplifier             | 60S1G4        | 0331848    | No Calibration    | Requested    |  |
| 06  | BTS                   | CMW500        | 129942     | February 10, 2020 | One year     |  |
| 07  | E-field Probe         | SPEAG EX3DV4  | 3617       | Jan 30, 2020      | One year     |  |
| 80  | DAE                   | SPEAG DAE4    | 777        | January 8, 2020   | One year     |  |
| 09  | Dipole Validation Kit | SPEAG D750V3  | 1017       | July 24,2020      | One year     |  |
| 10  | Dipole Validation Kit | SPEAG D835V2  | 4d069      | July 24,,2020     | One year     |  |
| 11  | Dipole Validation Kit | SPEAG D1750V2 | 1003       | July 24, 2020     | One year     |  |
| 12  | Dipole Validation Kit | SPEAG D1900V2 | 5d101      | July 28,2020      | One year     |  |
| 13  | Dipole Validation Kit | SPEAG D2450V2 | 853        | July 21,2020      | One year     |  |
| 14  | Dipole Validation Kit | SPEAG D2600V2 | 1012       | July 21,2020      | One year     |  |

\*\*\*END OF REPORT BODY\*\*\*





# **ANNEX A** Graph Results

### GSM850\_CH190 Left Cheek

Date: 9/23/2020

Electronics: DAE4 Sn777 Medium: head 835 MHz

Medium parameters used: f = 836.6 MHz;  $\sigma = 0.886 mho/m$ ;  $\epsilon r = 41.45$ ;  $\rho = 1000 kg/m^3$ 

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: GSM850 836.6 Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3617 ConvF(9.66,9.66,9.66)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.459 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.561 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.515 W/kg

SAR(1 g) = 0.391 W/kg; SAR(10 g) = 0.291 W/kg Maximum value of SAR (measured) = 0.473 W/kg

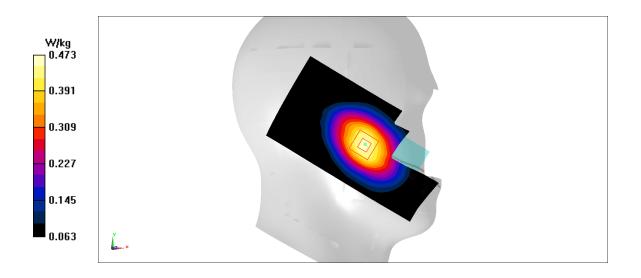



Fig A.1





### GSM850\_CH190 Rear GPRS 10mm

Date: 9/23/2020

Electronics: DAE4 Sn777 Medium: body 835 MHz

Medium parameters used: f = 836.6 MHz;  $\sigma = 0.886 mho/m$ ;  $\epsilon r = 41.45$ ;  $\rho = 1000 kg/m^3$ 

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: GSM850 836.6 Duty Cycle: 1:2.76

Probe: EX3DV4 - SN3617 ConvF(9.66,9.66,9.66)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.678 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.06 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.746 W/kg

SAR(1 g) = 0.552 W/kg; SAR(10 g) = 0.408 W/kg Maximum value of SAR (measured) = 0.680 W/kg

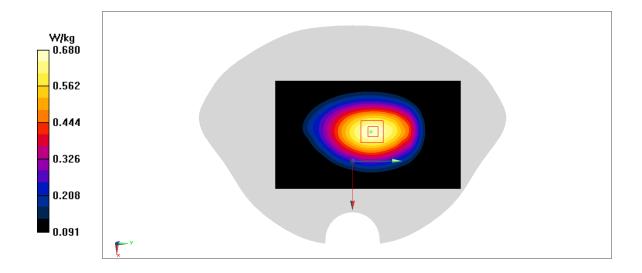



Fig A.2





# PCS1900\_CH810 Right Cheek

Date: 9/25/2020

Electronics: DAE4 Sn777 Medium: head 1900 MHz

Medium parameters used: f = 1909.8 MHz;  $\sigma = 1.392 mho/m$ ;  $\epsilon r = 39.32$ ;  $\rho = 1000 kg/m^3$ 

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: PCS1900 1909.8 Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.98 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.336 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.699 W/kg; SAR(10 g) = 0.435 W/kg Maximum value of SAR (measured) =0.943 W/kg

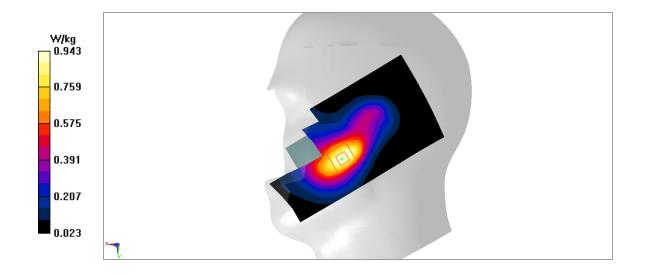



Fig A.3





# PCS1900\_CH810 Bottom Edge GPRS 10mm

Date: 9/25/2020

Electronics: DAE4 Sn777 Medium: body 1900 MHz

Medium parameters used: f = 1909.8 MHz;  $\sigma = 1.392 mho/m$ ;  $\epsilon r = 39.32$ ;  $\rho = 1000 kg/m^3$ 

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: PCS1900 1909.8 Duty Cycle: 1:2.76

Probe: EX3DV4 - SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 2 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 35.08 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.85 W/kg

SAR(1 g) = 1.05 W/kg; SAR(10 g) = 0.565 W/kg Maximum value of SAR (measured) = 1.57 W/kg

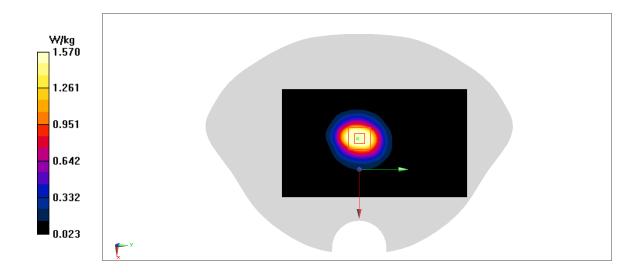



Fig A.4





# PCS1900\_CH661 Rear GPRS 15mm

Date: 9/25/2020

Electronics: DAE4 Sn777 Medium: body 1900 MHz

Medium parameters used: f = 1880 MHz;  $\sigma = 1.359 \text{ mho/m}$ ;  $\epsilon r = 39.68$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: PCS1900 1880 Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.1 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.716 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.65 W/kg; SAR(10 g) = 0.36 W/kg Maximum value of SAR (measured) = 0.959 W/kg

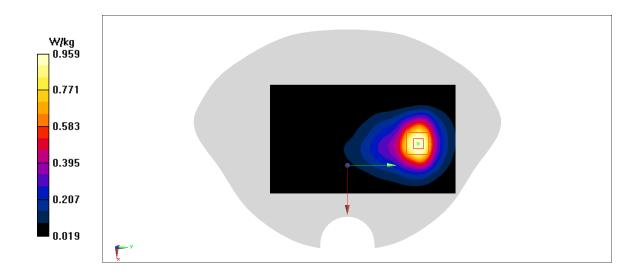



Fig A.5





# WCDMA1900-BII\_CH9262 Right Cheek

Date: 9/25/2020

Electronics: DAE4 Sn777 Medium: head 1900 MHz

Medium parameters used: f = 1852.4MHz;  $\sigma$  = 1.336 mho/m;  $\epsilon$ r = 39.39;  $\rho$  = 1000 kg/m<sup>3</sup>

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WCDMA1900-BII 1852.4 Duty Cycle: 1:1

Probe: EX3DV4 – SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.08 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.307 V/m; Power Drift = 0.474 dB

Peak SAR (extrapolated) = 1.18 W/kg

SAR(1 g) = 0.765 W/kg; SAR(10 g) = 0.474 W/kg Maximum value of SAR (measured) = 1.04 W/kg

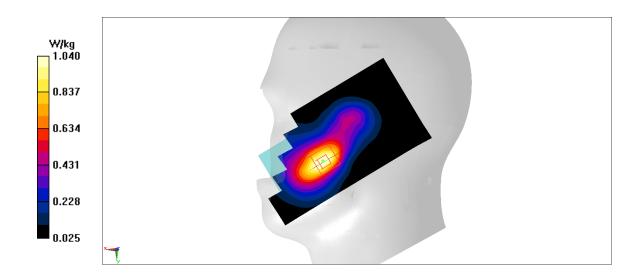



Fig A.6





# WCDMA1900-BII\_CH9262 Bottom Edge 10mm

Date: 9/25/2020

Electronics: DAE4 Sn777 Medium: body 1900 MHz

Medium parameters used: f = 1852.4 MHz;  $\sigma = 1.332 \text{ mho/m}$ ;  $\epsilon r = 39.72$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WCDMA1900-BII 1880 Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.28 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.51 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.42 W/kg

SAR(1 g) = 0.797 W/kg; SAR(10 g) = 0.43 W/kg Maximum value of SAR (measured) = 1.19 W/kg

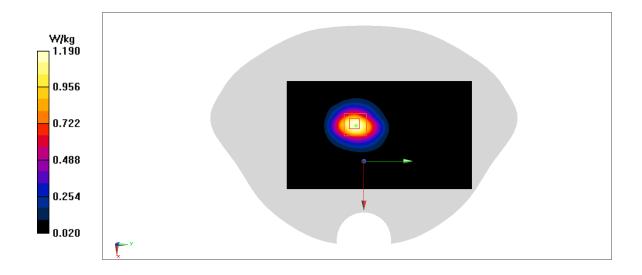



Fig A.7





#### WCDMA1900-BII\_CH9262 Rear 15mm

Date: 9/25/2020

Electronics: DAE4 Sn777 Medium: body 1900 MHz

Medium parameters used: f = 1852.4 MHz;  $\sigma = 1.332 \text{ mho/m}$ ;  $\epsilon r = 39.72$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WCDMA1900-BII 1852.4 Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.31 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.392 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 1.53 W/kg

SAR(1 g) = 0.865 W/kg; SAR(10 g) = 0.484 W/kg Maximum value of SAR (measured) = 1.29 W/kg

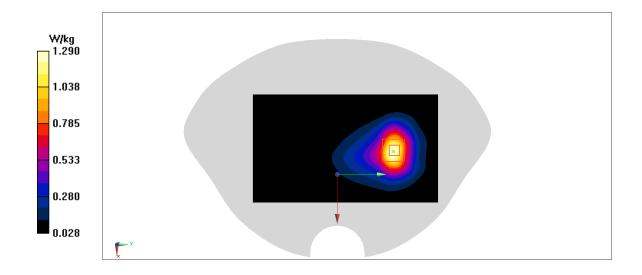



Fig A.8





### WCDMA1700-BIV\_CH1412 Right Cheek

Date: 9/24/2020

Electronics: DAE4 Sn777 Medium: head 1750 MHz

Medium parameters used: f = 1732.4 MHz;  $\sigma = 1.357 \text{ mho/m}$ ;  $\epsilon r = 39.46$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1700-BIV 1732.4 Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(8.41,8.41,8.41)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.56 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.68 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.63 W/kg

**SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.7 W/kg**Maximum value of SAR (measured) = 1.44 W/kg

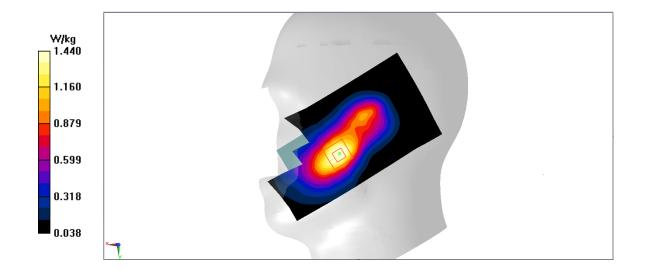



Fig A.9





### WCDMA1700-BIV\_CH1513 Rear 10mm

Date: 9/24/2020

Electronics: DAE4 Sn777 Medium: body 1750 MHz

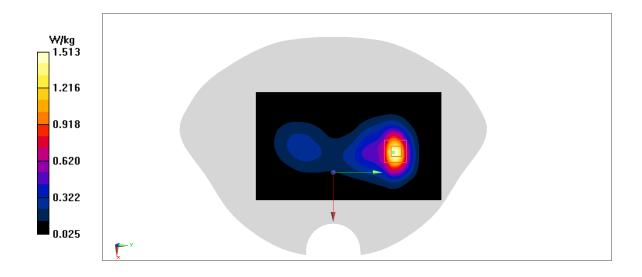
Medium parameters used: f = 1752.6 MHz;  $\sigma = 1.377 mho/m$ ;  $\epsilon r = 39.44$ ;  $\rho = 1000 kg/m^3$ 

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1700-BIV 1752.6 Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(8.41,8.41,8.41)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Maximum value of SAR (interpolated) = 1.52 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.44 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 1.85 W/kg

SAR(1 g) = 0.984 W/kg; SAR(10 g) = 0.507 W/kg Maximum value of SAR (measured) = 1.51 W/kg



**Fig A.10** 





### WCDMA1700-BIV\_CH1312 Rear 15mm

Date: 9/24/2020

Electronics: DAE4 Sn777 Medium: body 1750 MHz

Medium parameters used: f = 1712.4 MHz;  $\sigma = 1.327 \text{ mho/m}$ ;  $\epsilon r = 39.88$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1700-BIV 1712.4 Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(8.41,8.41,8.41)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.02 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.11 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.689 W/kg; SAR(10 g) = 0.386 W/kg Maximum value of SAR (measured) = 1.03 W/kg

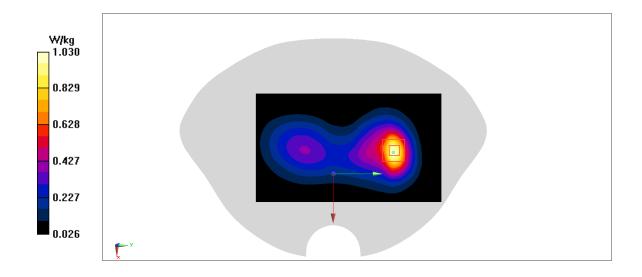



Fig A.11





#### WCDMA850-BV\_CH4183 Left Cheek

Date: 9/23/2020

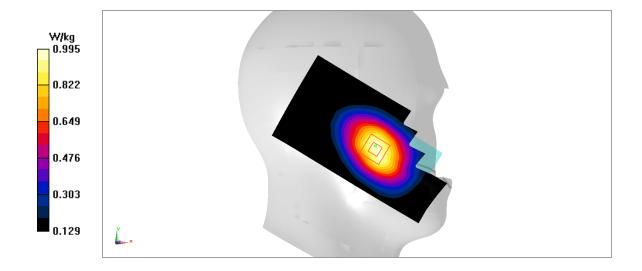
Electronics: DAE4 Sn777 Medium: head 835 MHz

Medium parameters used: f = 836.6 MHz;  $\sigma = 0.886 mho/m$ ;  $\epsilon r = 41.45$ ;  $\rho = 1000 kg/m^3$ 

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WCDMA850-BV 836.6 Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(9.66,9.66,9.66)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Maximum value of SAR (interpolated) = 0.967 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.81 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.1 W/kg

SAR(1 g) = 0.831 W/kg; SAR(10 g) = 0.617 W/kg Maximum value of SAR (measured) = 0.995 W/kg



**Fig A.12** 





### WCDMA850-BV\_CH4233 Rear 10mm

Date: 9/23/2020

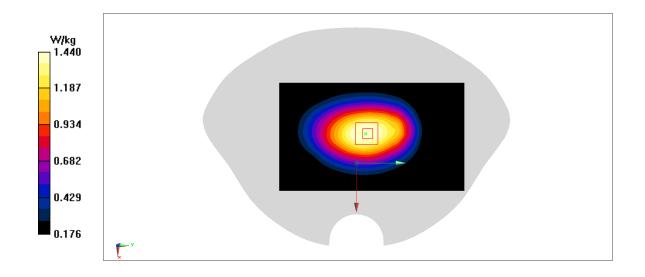
Electronics: DAE4 Sn777 Medium: body 835 MHz

Medium parameters used: f = 846.6 MHz;  $\sigma = 0.895 mho/m$ ;  $\epsilon r = 41.44$ ;  $\rho = 1000 kg/m^3$ 

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WCDMA850-BV 846.6 Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(9.66,9.66,9.66)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Maximum value of SAR (interpolated) = 1.49 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 41.59 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 1.6 W/kg

SAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.837 W/kg Maximum value of SAR (measured) = 1.44 W/kg



**Fig A.13** 





# LTE1900-FDD2\_CH19100 Right Cheek 1RB-Middle

Date: 9/25/2020

Electronics: DAE4 Sn777 Medium: head 1900 MHz

Medium parameters used: f = 1900 MHz;  $\sigma = 1.382 \text{ mho/m}$ ;  $\epsilon r = 39.33$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1900-FDD2 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.1 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.484 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.2 W/kg

SAR(1 g) = 0.777 W/kg; SAR(10 g) = 0.479 W/kg Maximum value of SAR (measured) = 1.06 W/kg

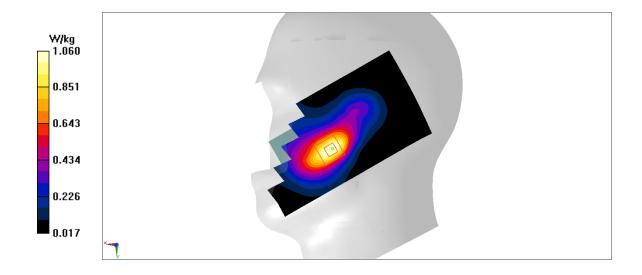



Fig A.14





# LTE1900-FDD2\_CH18900 1RB-Middle Bottom Edge 10mm

Date: 9/25/2020

Electronics: DAE4 Sn777 Medium: body 1900 MHz

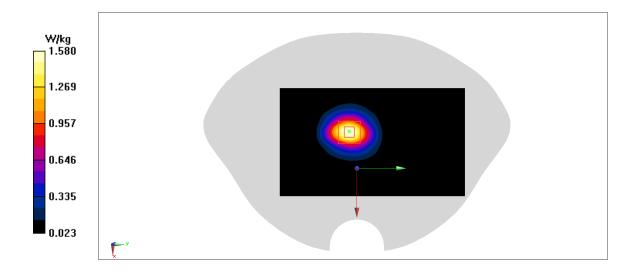
Medium parameters used: f = 1880 MHz;  $\sigma = 1.363 \text{ mho/m}$ ;  $\epsilon r = 39.35$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1900-FDD2 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Maximum value of SAR (interpolated) = 1.72 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.91 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.88 W/kg

SAR(1 g) = 1.07 W/kg; SAR(10 g) = 0.583 W/kg Maximum value of SAR (measured) = 1.58 W/kg



**Fig A.15** 





# LTE1900-FDD2\_CH19100 1RB-Middle Rear 15mm

Date: 9/25/2020

Electronics: DAE4 Sn777 Medium: body 1900 MHz

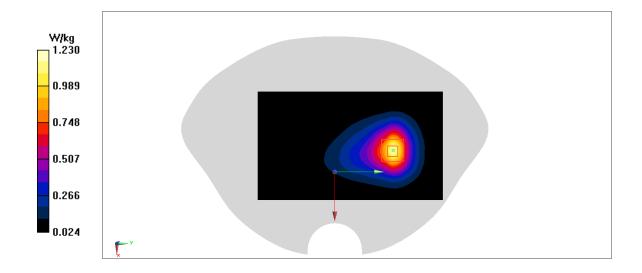
Medium parameters used: f = 1900 MHz;  $\sigma = 1.378 \text{ mho/m}$ ;  $\epsilon r = 39.66$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1900-FDD2 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Maximum value of SAR (interpolated) = 1.15 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.2 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.48 W/kg

SAR(1 g) = 0.837 W/kg; SAR(10 g) = 0.467 W/kg Maximum value of SAR (measured) =1.23 W/kg



**Fig A.16** 





# LTE1700-FDD4\_CH20175 Right Cheek 1RB-Middle

Date: 9/24/2020

Electronics: DAE4 Sn777 Medium: head 1750 MHz

Medium parameters used: f = 1732.5 MHz;  $\sigma = 1.357 \text{ mho/m}$ ;  $\epsilon r = 39.46$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1700-FDD4 1732.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(8.41,8.41,8.41)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.52 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.04 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.64 W/kg

SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.682 W/kg Maximum value of SAR (measured) = 1.44 W/kg

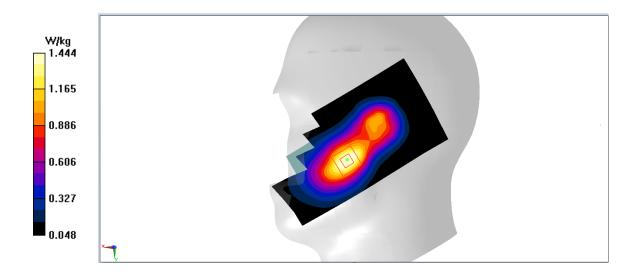



Fig A.17





### LTE1700-FDD4\_CH20300 50RB-High Rear 10mm

Date: 9/24/2020

Electronics: DAE4 Sn777 Medium: body 1750 MHz

Medium parameters used: f = 1745 MHz;  $\sigma = 1.369 \text{ mho/m}$ ;  $\epsilon r = 39.45$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1700-FDD4 1745 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(8.41,8.41,8.41)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.62 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.92 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 1.96 W/kg

SAR(1 g) = 1.04 W/kg; SAR(10 g) = 0.548 W/kg Maximum value of SAR (measured) = 1.59 W/kg

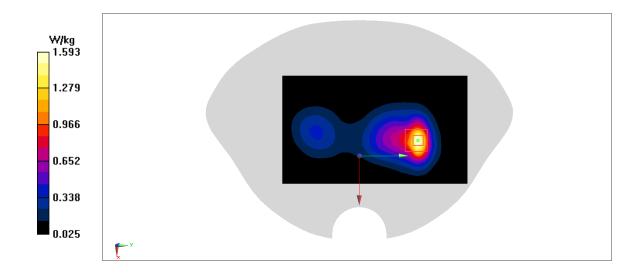



Fig A.18





# LTE1700-FDD4\_CH20175 1RB-Middle Rear 15mm

Date: 9/24/2020

Electronics: DAE4 Sn777 Medium: body 1750 MHz

Medium parameters used: f = 1732.5 MHz;  $\sigma = 1.346 \text{ mho/m}$ ;  $\epsilon r = 39.85$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1700-FDD4 1732.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(8.41,8.41,8.41)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.21 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.3 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 1.36 W/kg

SAR(1 g) = 0.792 W/kg; SAR(10 g) = 0.452 W/kg Maximum value of SAR (measured) = 1.51 W/kg

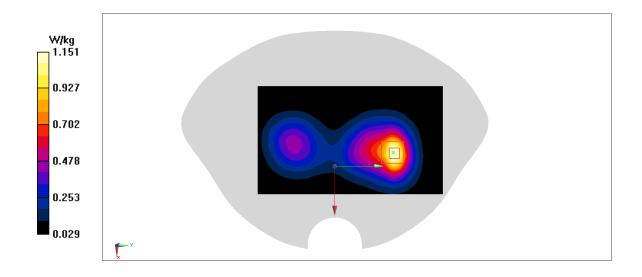



Fig A.19





#### LTE850-FDD5\_CH20600 Left Cheek 1RB-Middle

Date: 9/23/2020

Electronics: DAE4 Sn777 Medium: head 835 MHz

Medium parameters used: f = 844 MHz;  $\sigma = 0.893$  mho/m;  $\epsilon r = 41.44$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE850-FDD5 844 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(9.66,9.66,9.66)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.772 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.384 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.86 W/kg

SAR(1 g) = 0.651 W/kg; SAR(10 g) = 0.482 W/kg Maximum value of SAR (measured) = 0.793 W/kg

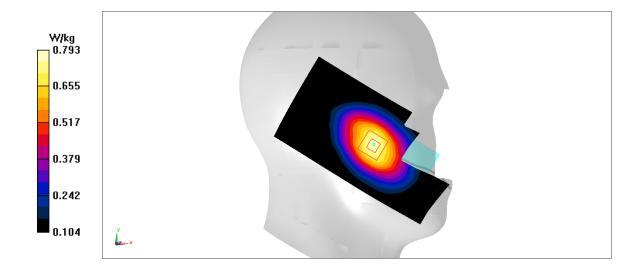



Fig A.20





### LTE850-FDD5\_CH20600 1RB-Middle Rear 10mm

Date: 9/23/2020

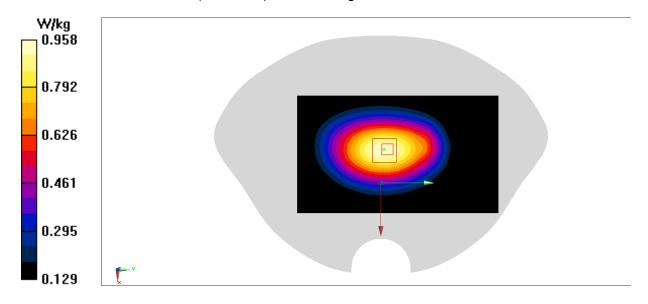
Electronics: DAE4 Sn777 Medium: body 835 MHz

Medium parameters used: f = 844 MHz;  $\sigma = 0.893$  mho/m;  $\epsilon r = 41.44$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE850-FDD5 844 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(9.66,9.66,9.66)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Maximum value of SAR (interpolated) = 0.772 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.384 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.86 W/kg

SAR(1 g) = 0.783 W/kg; SAR(10 g) = 0.578 W/kg Maximum value of SAR (measured) = 0.958 W/kg



**Fig A.21** 





# LTE2500-FDD7\_CH20850 Right Cheek 1RB-Middle

Date: 9/27/2020

Electronics: DAE4 Sn777 Medium: head 2600 MHz

Medium parameters used: f = 2510 MHz;  $\sigma = 1.87 \text{ mho/m}$ ;  $\epsilon r = 38.57$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE2500-FDD7 2510 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.52,7.52,7.52)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.952 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 33.23 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 1.11 W/kg; SAR(10 g) = 0.59 W/kg Maximum value of SAR (measured) = 1.61 W/kg

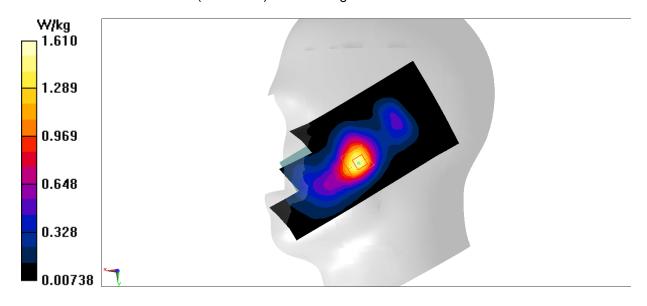



Fig A.22





## LTE2500-FDD7\_CH21100 1RB-Middle Front 10mm

Date: 9/27/2020

Electronics: DAE4 Sn777 Medium: body 2600 MHz

Medium parameters used: f = 2535 MHz;  $\sigma = 1.894 \text{ mho/m}$ ;  $\epsilon r = 38.54$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE2500-FDD7 2535 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.65,7.65,7.65)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.53 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.32 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.9 W/kg

SAR(1 g) = 0.608 W/kg; SAR(10 g) = 0.303 W/kg Maximum value of SAR (measured) = 0.980 W/kg

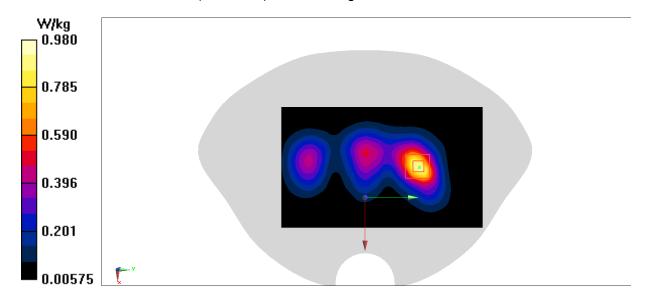



Fig A.23





## LTE2500-FDD7\_CH21350 1RB-Middle Front 15mm

Date: 9/27/2020

Electronics: DAE4 Sn777 Medium: body 2600 MHz

Medium parameters used: f = 2560 MHz;  $\sigma = 1.938 \text{ mho/m}$ ;  $\epsilon r = 38.91$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE2500-FDD7 2560 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.65,7.65,7.65)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.88 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.06 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.1 W/kg

SAR(1 g) = 0.575 W/kg; SAR(10 g) = 0.299 W/kg Maximum value of SAR (measured) = 0.866 W/kg

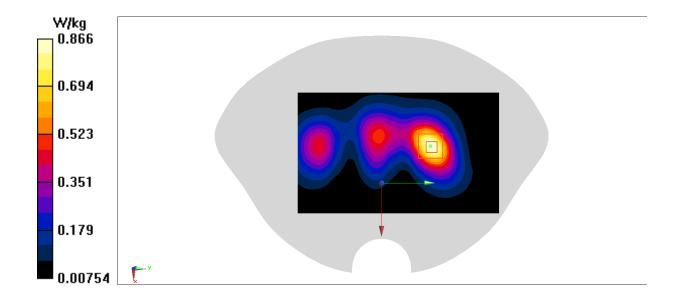



Fig A.24





## LTE700-FDD28\_CH27560 Right Cheek 1RB-Middle

Date: 9/27/2020

Electronics: DAE4 Sn777 Medium: head 2600 MHz

Medium parameters used: f = 738 MHz;  $\sigma$  =0.889 mho/m;  $\epsilon$ r =42.61;  $\rho$  = 1000 kg/m<sup>3</sup>

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE700-FDD28 738 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3617 ConvF(10.07,10.07,10.07)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.443 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.478 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.49 W/kg

SAR(1 g) = 0.364 W/kg; SAR(10 g) = 0.271 W/kg Maximum value of SAR (measured) = 0.447 W/kg

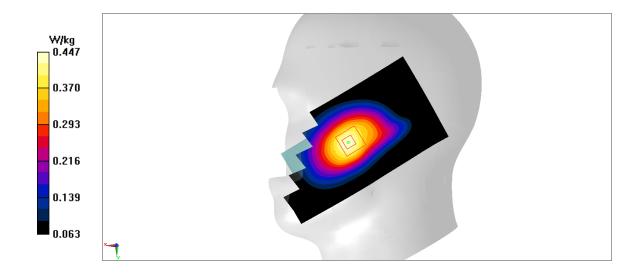



Fig A.25





### LTE700-FDD28\_CH27560 1RB-Middle Front 10mm

Date: 9/27/2020

Electronics: DAE4 Sn777 Medium: body 2600 MHz

Medium parameters used: f = 738 MHz;  $\sigma$  =0.889 mho/m;  $\epsilon$ r =42.61;  $\rho$  = 1000 kg/m<sup>3</sup>

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE700-FDD28 738 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3617 ConvF(10.07,10.07,10.07)

**Area Scan (71x121x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.367 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.75 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.432 W/kg

SAR(1 g) = 0.316 W/kg; SAR(10 g) = 0.233 W/kg Maximum value of SAR (measured) = 0.385 W/kg

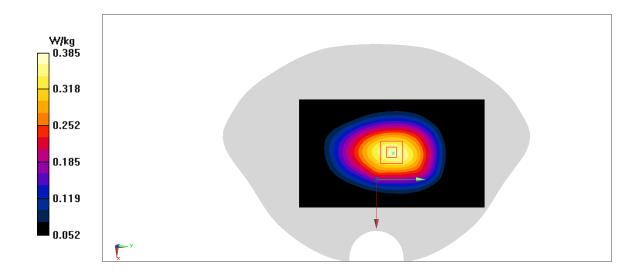



Fig A.26





### WLAN2450\_CH1 Right Cheek

Date: 9/26/2020

Electronics: DAE4 Sn777 Medium: head 2450 MHz

Medium parameters used: f = 2412MHz;  $\sigma = 1.764$  mho/m;  $\epsilon r = 38.63$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WLAN2450 2412 Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.65,7.65,7.65)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.33 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.44 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.401 W/kg

SAR(1 g) = 0.17 W/kg; SAR(10 g) = 0.078 W/kg Maximum value of SAR (measured) = 0.302 W/kg

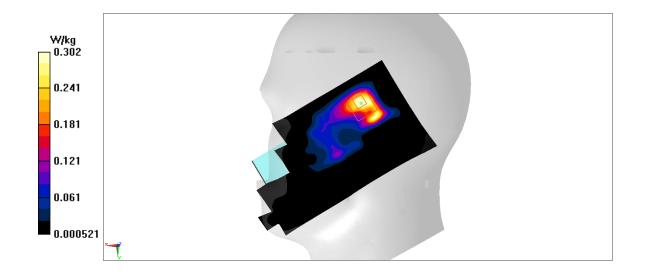



Fig A.27





### WLAN2450\_CH1 Rear 10mm

Date: 9/26/2020

Electronics: DAE4 Sn777 Medium: body 2450 MHz

Medium parameters used: f = 2412MHz;  $\sigma = 1.764$  mho/m;  $\epsilon r = 38.63$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WLAN2450 2412 Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.65,7.65,7.65)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.104 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.915 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.127 W/kg

SAR(1 g) = 0.074 W/kg; SAR(10 g) = 0.043 W/kg Maximum value of SAR (measured) = 0.107 W/kg

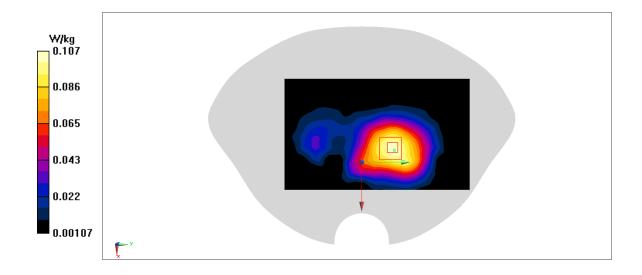



Fig A.28



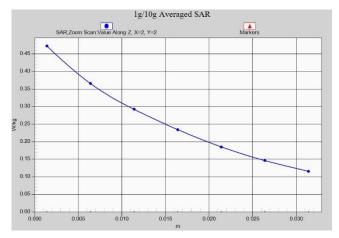



Fig. 1-1 Z-Scan at power reference point (850 MHz)

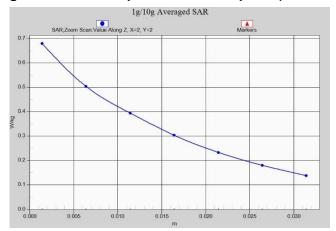



Fig. 1-2 Z-Scan at power reference point (850 MHz)

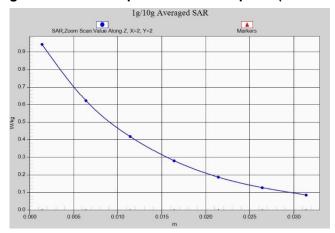



Fig. 1-3 Z-Scan at power reference point (1900 MHz)



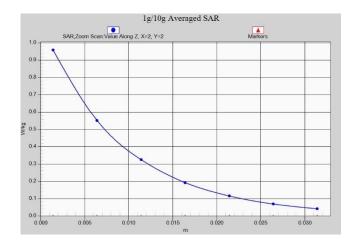



Fig. 1-4 Z-Scan at power reference point (1900 MHz)

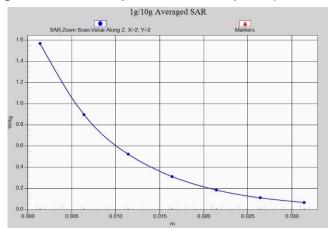



Fig. 1-5 Z-Scan at power reference point (1900 MHz)

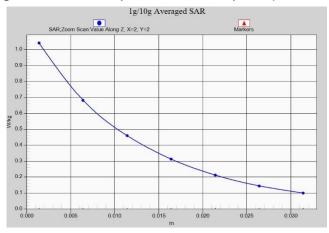



Fig. 1-6 Z-Scan at power reference point (WCDMA1900)



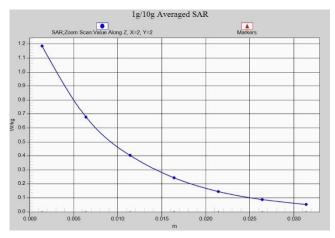



Fig. 1-7 Z-Scan at power reference point (WCDMA1900)



Fig. 1-8 Z-Scan at power reference point (WCDMA1900)

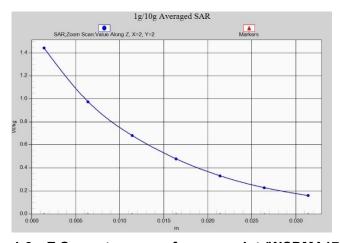



Fig. 1-9 Z-Scan at power reference point (WCDMA1700)



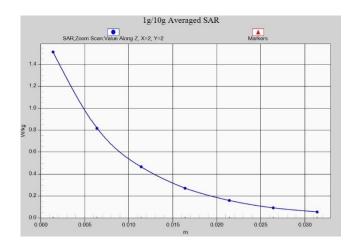



Fig. 1-10 Z-Scan at power reference point (WCDMA1700)

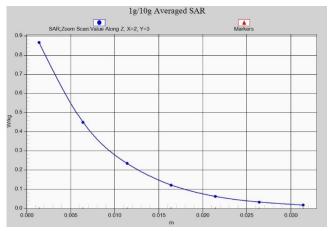



Fig. 1-11 Z-Scan at power reference point (WCDMA1700)

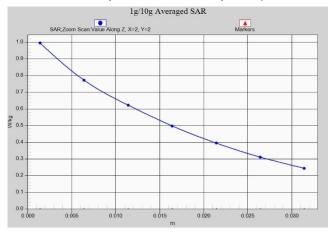



Fig. 1-12 Z-Scan at power reference point (WCDMA850)



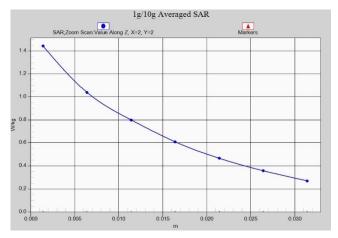



Fig. 1-13Z-Scan at power reference point (WCDMA850)

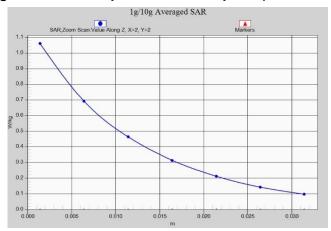



Fig. 1-14 Z-Scan at power reference point (LTEB2)

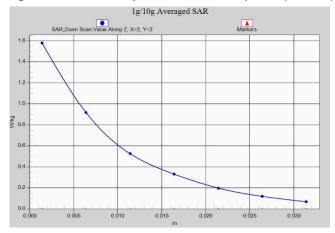



Fig. 1-15 Z-Scan at power reference point (LTEB2)



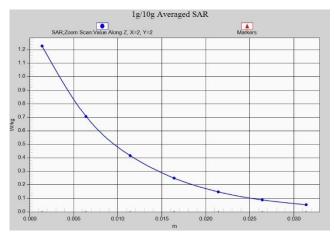



Fig. 1-16Z-Scan at power reference point (LTEB2)

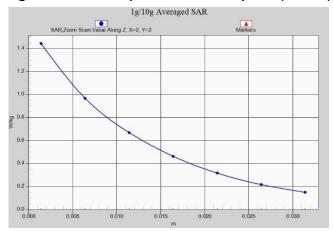



Fig. 1-17 Z-Scan at power reference point (LTEB4)

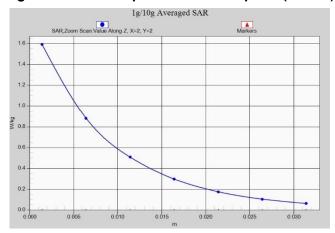



Fig. 1-18 Z-Scan at power reference point (LTEB4)



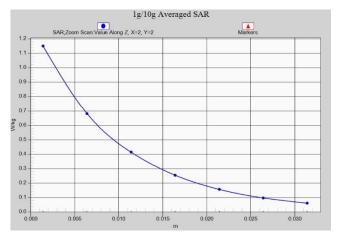



Fig. 1-19 Z-Scan at power reference point (LTEB4)

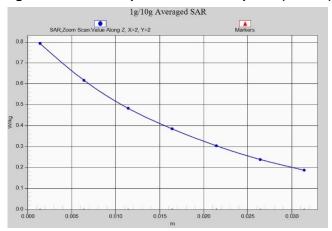



Fig. 1-20 Z-Scan at power reference point (LTEB5)

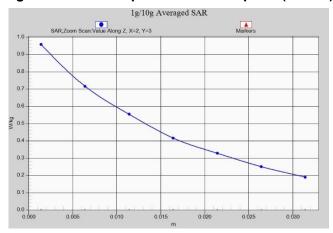



Fig. 1-21 Z-Scan at power reference point (LTEB5)



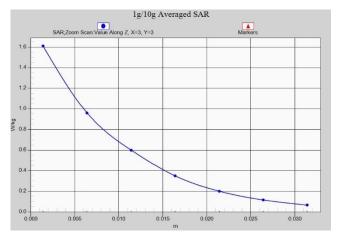



Fig. 1-22 Z-Scan at power reference point (LTEB7)

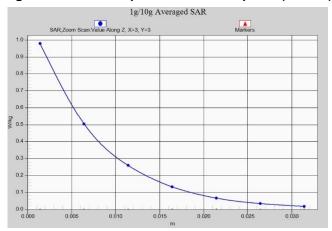



Fig. 1-23 Z-Scan at power reference point (LTEB7)

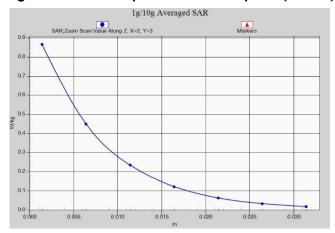



Fig. 1-24 Z-Scan at power reference point (LTEB7)



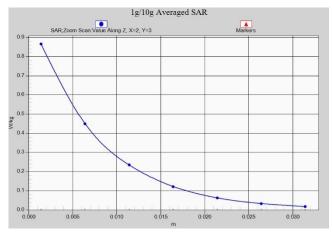



Fig. 1-25 Z-Scan at power reference point (LTEB28)

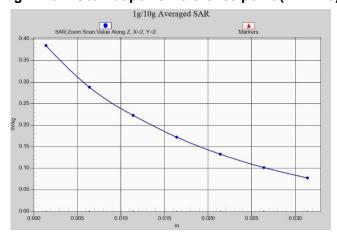



Fig. 1-26Z-Scan at power reference point (LTEB28)

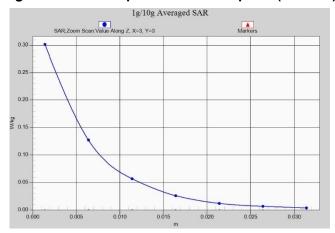



Fig. 1-27Z-Scan at power reference point (WLAN2.4G)





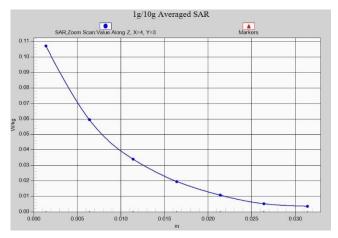



Fig. 1-28 Z-Scan at power reference point (WLAN2.4G)





# **ANNEX B** System Verification Results

#### 750 MHz

Date: 9/22/2020

Electronics: DAE4 Sn777 Medium: Head 750 MHz

Medium parameters used: f = 750 MHz;  $\sigma$  =0.89 mho/m;  $\epsilon_r$  = 42.5;  $\rho$  = 1000 kg/m<sup>3</sup>

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1

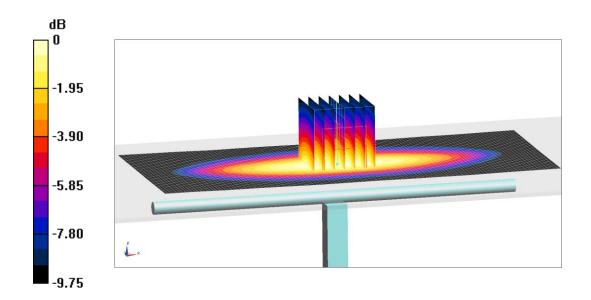
Probe: EX3DV4 - SN3617 ConvF(10.07,10.07,10.07)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 58.74 V/m; Power Drift = -0.02

Fast SAR: SAR(1 g) = 2.19 W/kg; SAR(10 g) = 1.38 W/kg

Maximum value of SAR (interpolated) = 2.85 W/kg


**System Validation /Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =58.74 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.28 W/kg

SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.36 W/kg

Maximum value of SAR (measured) = 2.85 W/kg



0 dB = 2.85 W/kg = 4.55 dB W/kg

Fig.B.1 validation 750 MHz 250mW





Date: 9/23/2020

Electronics: DAE4 Sn777 Medium: Head 835 MHz

Medium parameters used: f = 835 MHz;  $\sigma$  =0.888 mho/m;  $\varepsilon_r$  = 40.69;  $\rho$  = 1000 kg/m<sup>3</sup>

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(9.66,9.66,9.66)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 62.83 V/m; Power Drift = 0.1

Fast SAR: SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.53 W/kg

Maximum value of SAR (interpolated) = 3.19 W/kg

**System Validation /Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =62.83 V/m; Power Drift = 0.1 dB

Peak SAR (extrapolated) = 3.66 W/kg

SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (measured) = 3.27 W/kg



0 dB = 3.27 W/kg = 5.15 dB W/kg

Fig.B.2 validation 835 MHz 250mW





Date: 9/24/2020

Electronics: DAE4 Sn777 Medium: Head 1750 MHz

Medium parameters used: f = 1750 MHz;  $\sigma$  =1.354 mho/m;  $\varepsilon_r$  = 40.2;  $\rho$  = 1000 kg/m<sup>3</sup>

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1

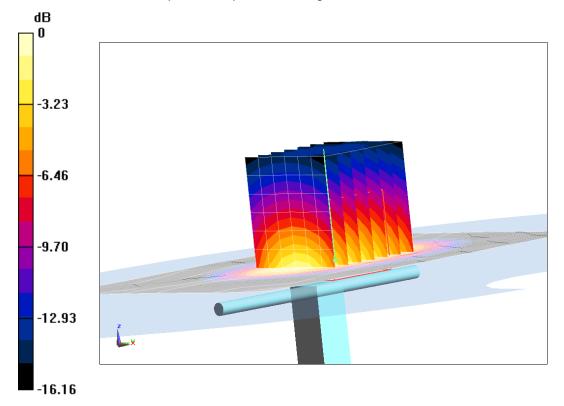
Probe: EX3DV4 - SN3617 ConvF(8.41,8.41,8.41)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 106.22 V/m; Power Drift = 0.01

Fast SAR: SAR(1 g) = 9.29 W/kg; SAR(10 g) = 4.87 W/kg

Maximum value of SAR (interpolated) = 13.78 W/kg


**System Validation /Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =106.22 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 16.83 W/kg

SAR(1 g) = 9.09 W/kg; SAR(10 g) = 4.87 W/kg

Maximum value of SAR (measured) = 13.92 W/kg



0 dB = 13.92 W/kg = 11.44 dB W/kg

Fig.B.3 validation 1750 MHz 250mW





Date: 9/25/2020

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used: f = 1900 MHz;  $\sigma = 1.411 \text{ mho/m}$ ;  $\epsilon_r = 39.38$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

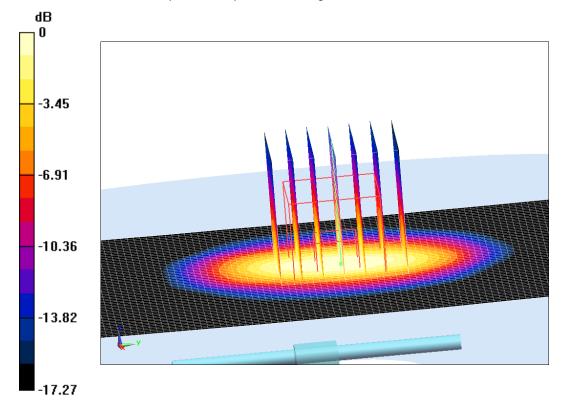
Probe: EX3DV4 - SN3617 ConvF(8.14,8.14,8.14)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 108.46 V/m; Power Drift = -0.04

Fast SAR: SAR(1 g) = 9.85 W/kg; SAR(10 g) = 5.22 W/kg

Maximum value of SAR (interpolated) = 14.99 W/kg


**System Validation /Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =108.46 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 18.42 W/kg

SAR(1 g) = 9.99 W/kg; SAR(10 g) = 5.13 W/kg

Maximum value of SAR (measured) = 15.29 W/kg



0 dB = 15.29 W/kg = 11.84 dB W/kg

Fig.B.4 validation 1900 MHz 250mW





Date: 9/26/2020

Electronics: DAE4 Sn777 Medium: Head 2450 MHz

Medium parameters used: f = 2450 MHz;  $\sigma = 1.818 \text{ mho/m}$ ;  $\epsilon_r = 39.83$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.65,7.65,7.65)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 118.99 V/m; Power Drift = -0.04

Fast SAR: SAR(1 g) = 13.28 W/kg; SAR(10 g) = 6.14 W/kg

Maximum value of SAR (interpolated) = 21.64 W/kg

**System Validation /Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =118.99 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 25.69 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.2 W/kg

Maximum value of SAR (measured) = 21.45 W/kg



0 dB = 21.45 W/kg = 13.31 dB W/kg

Fig.B.5validation 2450 MHz 250mW





Date: 9/27/2020

Electronics: DAE4 Sn777 Medium: Head 2600 MHz

Medium parameters used: f = 2600 MHz;  $\sigma = 1.956 \text{ mho/m}$ ;  $\epsilon_r = 39.01$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 2600 MHz Duty Cycle: 1:1

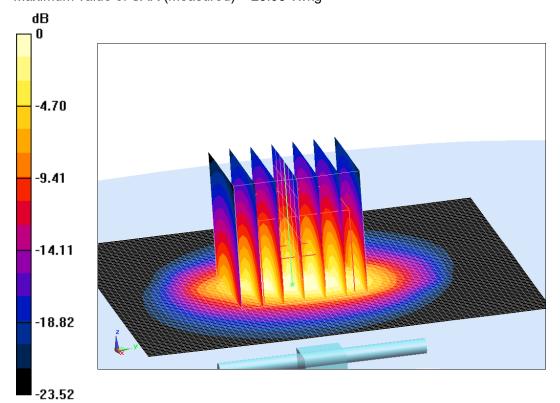
Probe: EX3DV4 – SN3617 ConvF(7.52,7.52,7.52)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 123.36 V/m; Power Drift = 0.02

Fast SAR: SAR(1 g) = 14.07 W/kg; SAR(10 g) = 6.2 W/kg

Maximum value of SAR (interpolated) = 23.88 W/kg


**System Validation /Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =123.36 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 29.43 W/kg

SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.34 W/kg

Maximum value of SAR (measured) = 23.95 W/kg



0 dB = 23.95 W/kg = 13.79 dB W/kg

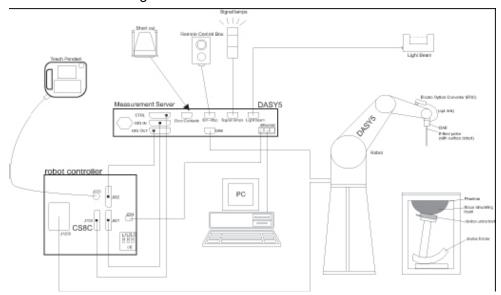
Fig.B.6 validation 2600 MHz 250mW

The SAR system verification must be required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR.





| Date      | Band | Position | Area scan<br>(1g) | Zoom scan<br>(1g) | Drift (%) |
|-----------|------|----------|-------------------|-------------------|-----------|
| 2020/5/12 | 750  | Head     | 2.1               | 2.13              | -1.41     |
| 2020/5/13 | 835  | Head     | 2.43              | 2.44              | -0.41     |
| 2020/5/14 | 1750 | Head     | 9.13              | 9.03              | 1.11      |
| 2020/5/15 | 1900 | Head     | 9.98              | 9.95              | 0.30      |
| 2020/5/16 | 2450 | Head     | 12.67             | 12.72             | -0.39     |
| 2020/5/17 | 2600 | Head     | 13.71             | 13.67             | 0.29      |






# ANNEX C SAR Measurement Setup

#### C.1 Measurement Set-up

The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:



Picture C.1SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (StäubliTX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal
  multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision
  detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal
  is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals
  for the digital communication to the DAE. To use optical surface detection, a special version of
  the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY4 or DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.





## C.2 Dasy4 or DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection durning a software approach and looks for the maximum using 2<sup>nd</sup> ord curve fitting. The approach is stopped at reaching the maximum.

## **Probe Specifications:**

Model: ES3DV3, EX3DV4

Frequency 10MHz — 6.0GHz(EX3DV4) Range: 10MHz — 4GHz(ES3DV3)

Calibration: In head and body simulating tissue at

Frequencies from 835 up to 5800MHz

Linearity:  $\pm$  0.2 dB(30 MHz to 6 GHz) for EX3DV4

± 0.2 dB(30 MHz to 4 GHz) for ES3DV3 DynamicRange: 10 mW/kg — 100W/kg

Probe Length: 330 mm

**Probe Tip** 

Length: 20 mm Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9 mm for ES3DV3)
Tip-Center: 1 mm (2.0mm for ES3DV3)

**Application:SAR Dosimetry Testing** 

Compliance tests ofmobile phones

Dosimetry in strong gradient fields

**Picture C.3E-field Probe** 

## C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or



Picture C.2Near-field Probe







other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm<sup>2</sup>.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 $\Delta t$  = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

 $\Delta T$  = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 $\sigma$  = Simulated tissue conductivity,

 $\rho$  = Tissue density (kg/m<sup>3</sup>).

## **C.4 Other Test Equipment**

## C.4.1 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.



PictureC.4: DAE





## C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY4: RX90XL; DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)





Picture C.5DASY 4

Picture C.6DASY 5

#### C.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (dasy4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128MB), RAM (DASY4: 64 MB, DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.







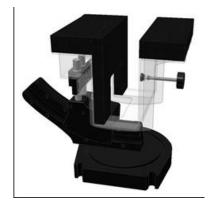


Picture C.7 Server for DASY 4

Picture C.8 Server for DASY 5

#### C.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of  $\pm 0.5$ mm would produce a SAR uncertainty of  $\pm 20\%$ . Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.


The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity  $\mathcal{E}=3$  and loss tangent  $\mathcal{S}=0.02$ . The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

#### <Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.



Picture C.9-1: Device Holder



Picture C.9-2: Laptop Extension Kit

## C.4.5 Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation





of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness: 2±0.2 mm

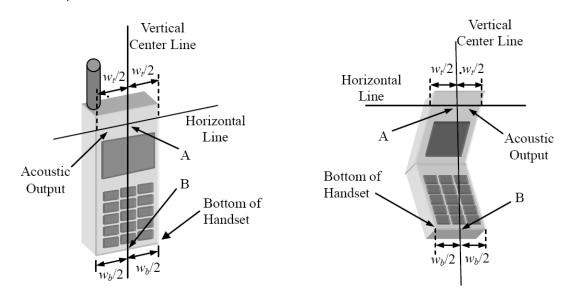
Filling Volume: Approx. 25 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W)

Available: Special



**Picture C.10: SAM Twin Phantom** 



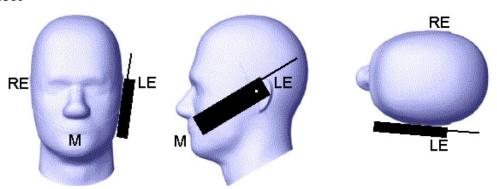



# ANNEX D Position of the wireless device in relation to the phantom

## **D.1 General considerations**

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.

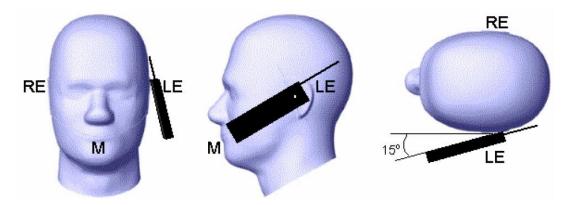



 $W_t$  Width of the handset at the level of the acoustic

 $W_b$  Width of the bottom of the handset

A Midpoint of the width  $W_t$  of the handset at the level of the acoustic output

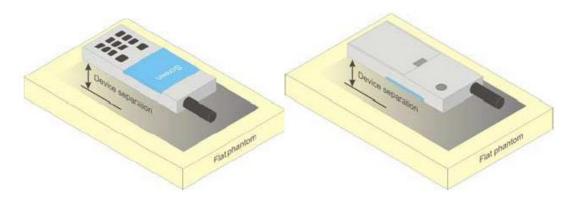
B Midpoint of the width  $W_b$  of the bottom of the handset


Picture D.1-a Typical "fixed" case handset 
Picture D.1-b Typical "clam-shell" case handset



Picture D.2 Cheek position of the wireless device on the left side of SAM







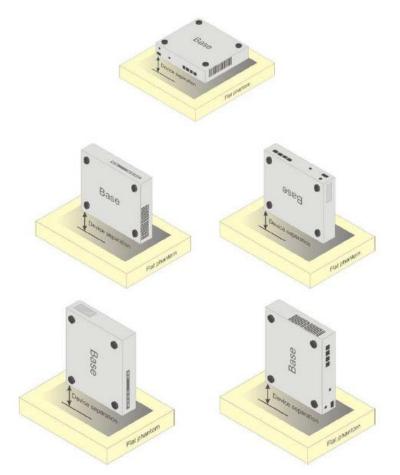

Picture D.3 Tilt position of the wireless device on the left side of SAM

## D.2 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.



Picture D.4Test positions for body-worn devices


## D.3 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.







Picture D.5 Test positions for desktop devices

# **D.4 DUT Setup Photos**



Picture D.6





# **ANNEX E** Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

**TableE.1: Composition of the Tissue Equivalent Matter** 

| Frequency         | 835Head   | 835Body | 1900   | 1900   | 2450   | 2450   | 5800   | 5800   |
|-------------------|-----------|---------|--------|--------|--------|--------|--------|--------|
| (MHz)             | osoneau   | ossbouy | Head   | Body   | Head   | Body   | Head   | Body   |
| Ingredients (% by | / weight) |         |        |        |        |        |        |        |
| Water             | 41.45     | 52.5    | 55.242 | 69.91  | 58.79  | 72.60  | 65.53  | 65.53  |
| Sugar             | 56.0      | 45.0    | \      | \      | \      | \      | \      | \      |
| Salt              | 1.45      | 1.4     | 0.306  | 0.13   | 0.06   | 0.18   | \      | \      |
| Preventol         | 0.1       | 0.1     | \      | \      | \      | \      | \      | \      |
| Cellulose         | 1.0       | 1.0     | \      | \      | \      | \      | \      | \      |
| Glycol            | ,         | \       | 44.452 | 29.96  | 41.15  | 27.22  | \      | ,      |
| Monobutyl         | \         | \       | 44.452 | 29.96  | 41.13  | 21.22  | \      | \      |
| Diethylenglycol   | ,         | \       | ١      | \      | \      | \      | 17.04  | 17.04  |
| monohexylether    | \         | \       | ١      | \      | \      | \      | 17.24  | 17.24  |
| Triton X-100      | \         | \       | \      | \      | \      | \      | 17.24  | 17.24  |
| Dielectric        | c=41.5    | ε=55.2  | ε=40.0 | c=52.2 | c=20.2 | c=52.7 | c=25.2 | ε=48.2 |
| Parameters        | ε=41.5    |         |        | ε=53.3 | ε=39.2 | ε=52.7 | ε=35.3 |        |
| Target Value      | σ=0.90    | σ=0.97  | σ=1.40 | σ=1.52 | σ=1.80 | σ=1.95 | σ=5.27 | σ=6.00 |

Note: There are a little adjustment respectively for 750, 1750, 2600, 5200, 5300 and 5600 based on the recipe of closest frequency in table E.1.





# **ANNEX F** System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

**Table F.1: System Validation for 3617** 

| Probe SN. | Liquid name  | Validation date | Frequency point | Status (OK or Not) |
|-----------|--------------|-----------------|-----------------|--------------------|
| 3617      | Head 750MHz  | January 30,2020 | 750 MHz         | OK                 |
| 3617      | Head 850MHz  | January 30,2020 | 835 MHz         | OK                 |
| 3617      | Head 900MHz  | January 30,2020 | 900 MHz         | OK                 |
| 3617      | Head 1750MHz | January 30,2020 | 1750 MHz        | OK                 |
| 3617      | Head 1810MHz | January 30,2020 | 1810 MHz        | OK                 |
| 3617      | Head 1900MHz | January 30,2020 | 1900 MHz        | OK                 |
| 3617      | Head 2000MHz | January 30,2020 | 2000 MHz        | OK                 |
| 3617      | Head 2100MHz | January 30,2020 | 2100 MHz        | OK                 |
| 3617      | Head 2300MHz | January 30,2020 | 2300 MHz        | OK                 |
| 3617      | Head 2450MHz | January 30,2020 | 2450 MHz        | OK                 |
| 3617      | Head 2600MHz | January 30,2020 | 2600 MHz        | OK                 |
| 3617      | Head 3500MHz | January 30,2020 | 3500 MHz        | OK                 |
| 3617      | Head 3700MHz | January 30,2020 | 3700 MHz        | OK                 |
| 3617      | Head 5200MHz | January 30,2020 | 5250 MHz        | OK                 |
| 3617      | Head 5500MHz | January 30,2020 | 5600 MHz        | OK                 |
| 3617      | Head 5800MHz | January 30,2020 | 5800 MHz        | OK                 |
| 3617      | Body 750MHz  | January 30,2020 | 750 MHz         | OK                 |
| 3617      | Body 850MHz  | January 30,2020 | 835 MHz         | OK                 |
| 3617      | Body 900MHz  | January 30,2020 | 900 MHz         | OK                 |
| 3617      | Body 1750MHz | January 30,2020 | 1750 MHz        | OK                 |
| 3617      | Body 1810MHz | January 30,2020 | 1810 MHz        | OK                 |
| 3617      | Body 1900MHz | January 30,2020 | 1900 MHz        | OK                 |
| 3617      | Body 2000MHz | January 30,2020 | 2000 MHz        | OK                 |
| 3617      | Body 2100MHz | January 30,2020 | 2100 MHz        | OK                 |
| 3617      | Body 2300MHz | January 30,2020 | 2300 MHz        | OK                 |
| 3617      | Body 2450MHz | January 30,2020 | 2450 MHz        | OK                 |
| 3617      | Body 2600MHz | January 30,2020 | 2600 MHz        | OK                 |
| 3617      | Body 3500MHz | January 30,2020 | 3500 MHz        | OK                 |
| 3617      | Body 3700MHz | January 30,2020 | 3700 MHz        | OK                 |
| 3617      | Body 5200MHz | January 30,2020 | 5250 MHz        | OK                 |
| 3617      | Body 5500MHz | January 30,2020 | 5600 MHz        | OK                 |
| 3617      | Body 5800MHz | January 30,2020 | 5800 MHz        | OK                 |





# **ANNEX G** Probe Calibration Certificate

#### **Probe 3617 Calibration Certificate**

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

CTTL (Auden)

Certificate No: EX3-3617\_Jan20/2

## CALIBRATION CERTIFICATE (Replacement of No: EX3-3617\_Jan20)

Object

EX3DV4 - SN:3617

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5,

QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

Calibration date:

January 30, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|------------------|-----------------------------------|------------------------|
| Power meter NRP            | SN: 104778       | 03-Apr-19 (No. 217-02892/02893)   | Apr-20                 |
| Power sensor NRP-Z91       | SN: 103244       | 03-Apr-19 (No. 217-02892)         | Apr-20                 |
| Power sensor NRP-Z91       | SN: 103245       | 03-Apr-19 (No. 217-02893)         | Apr-20                 |
| Reference 20 dB Attenuator | SN: S5277 (20x)  | 04-Apr-19 (No. 217-02894)         | Apr-20                 |
| DAE4                       | SN: 660          | 27-Dec-19 (No. DAE4-960_Dec19)    | Dec-20                 |
| Reference Probe ES3DV2     | SN: 3013         | 31-Dec-19 (No. ES3-3013_Dec19)    | Dec-20                 |
| Secondary Standards        | ID               | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B         | SN: G841293874   | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| Power sensor E4412A        | SN: MY41498087   | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| Power sensor E4412A        | SN: 000110210    | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| RF generator HP 8648C      | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 |
| Network Analyzer E8358A    | SN: US41080477   | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 |

|                | Name            | Function              | Signature             |
|----------------|-----------------|-----------------------|-----------------------|
| Calibrated by: | Claudio Leubler | Laboratory Technician | YD                    |
| Approved by:   | Katja Pokovic   | Technical Manager     | Muy                   |
|                |                 |                       | Issued: April 7, 2020 |

Certificate No: EX3-3617\_Jan20/2

Page 1 of 23