

FCC RF Test Report

APPLICANT	: HMD Global Oy
EQUIPMENT	: Mobile Phone
BRAND NAME	: NOKIA
MODEL NAME	: TA-1285
FCC ID	: 2AJOTTA-1285
STANDARD	: FCC Part 15 Subpart C §15.247
CLASSIFICATION	: (DSS) Spread Spectrum Transmitter

The product was received on Jul. 03, 2020 and testing was completed on Aug. 23, 2020. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

JasonJia

Reviewed by: Jason Jia / Supervisor

Journes Huang

ACCREDITED Cert #5145.02

Approved by: James Huang / Manager

Sporton International (Kunshan) Inc. No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

		N HISTORY	-
SUI	MMAR	Y OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	6
	1.5	Modification of EUT	6
	1.6	Testing Location	7
	1.7	Test Software	
	1.8	Applicable Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Carrier Frequency Channel	8
	2.2	Test Mode	
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	11
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	11
3	TEST	RESULT	12
	3.1	Number of Channel Measurement	12
	3.2	Hopping Channel Separation Measurement	14
	3.3	Dwell Time Measurement	20
	3.4	20dB and 99% Bandwidth Measurement	22
	3.5	Output Power Measurement	33
	3.6	Conducted Band Edges Measurement	34
	3.7	Conducted Spurious Emission Measurement	41
	3.8	Radiated Band Edges and Spurious Emission Measurement	51
	3.9	AC Conducted Emission Measurement	55
	3.10	Antenna Requirements	57
4	LIST	OF MEASURING EQUIPMENT	58
5	UNCE	ERTAINTY OF EVALUATION	59
API	PENDI	X A. CONDUCTED TEST RESULTS	
API	PENDI	X B. AC CONDUCTED EMISSION TEST RESULT	
API	PENDI	X C. RADIATED SPURIOUS EMISSION	
API	PENDI	X D. DUTY CYCLE PLOTS	
AP	PENDI	X E. SETUP PHOTOGRAPHS	

REVISION HISTORY

VERSION	DESCRIPTION	ISSUED DATE
Rev. 01	Initial issue of report	Sep. 07, 2020

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	NA	Pass	-
3.4	-	99% Bandwidth	-	Pass	-
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
		Radiated Band Edges			Under limit
3.8	15.247(d)	and Radiated Spurious	15.209(a) & 15.247(d)	Pass	9.13 dB at
		Emission			2483.560 MHz
		AC Conducted			Under limit
3.9	15.207	Emission	15.207(a)	Pass	12.00 dB at
		Emission			0.161 MHz
3.10	15.203 &	Antenna Requirement	N/A	Pass	
5.10	15.247(b)		IN/A	1 055	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Applicant

HMD Global Oy

Bertel Jungin aukio 9, 02600 Espoo, Finland

1.2 Manufacturer

HMD Global Oy

Bertel Jungin aukio 9, 02600 Espoo, Finland

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment Mobile Phone				
Brand Name	NOKIA			
Model Name	TA-1285			
FCC ID	2AJOTTA-1285			
	GSM/WCDMA/LTE			
FUT our north Radian application	WLAN 2.4GHz 802.11b/g/n HT20/HT40			
EUT supports Radios application	Bluetooth BR/EDR/LE			
	FM Receiver and GNSS			
	Conducted: 353183110006720			
IMEI Code	Conduction: 353183110017511			
	Radiation: 353183110018139			
HW Version MB_V3				
SW Version	0-00WW-A01			
EUT Stage	Identical Prototype			

Remark:

- 1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- 2. There are two types of EUT sample 1 and sample 2, for change note, please refer the product equality declaration exhibit submitted. According to the difference, we only choose sample 1 to perform full tests.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz		
Number of Channels	79		
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78		
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 7.51 dBm (0.0056 W) Bluetooth EDR (2Mbps) : 7.97 dBm (0.0063 W) Bluetooth EDR (3Mbps) : 8.38 dBm (0.0069 W)		
99% Occupied Bandwidth	Bluetooth BR(1Mbps) : 0.865MHz Bluetooth EDR (2Mbps) : 1.166MHz Bluetooth EDR (3Mbps) : 1.149MHz		
Antenna Type / Gain	PIFA Antenna with gain -0.85 dBi		
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) :π/4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK		

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International (Kunshan) Inc.				
	No. 1098, Pengxi North Road, Kunshan Economic Development Zone				
Test Site Location	Jiangsu Province 215300 People's Republic of China				
Test Sile Location	TEL : +86-512-57900158				
	FAX : +86-512-57900958				
	Sporton Site No.	FCC Designation No.	FCC Test Firm		
Test Site No.	Sporton Sile No.	FCC Designation No.	Registration No.		
Test one NU.	CO01-KS 03CH05-KS TH01-KS	CN1257	314309		

1.7 Test Software

ltem	Site	Manufacture	Name	Version
1.	03CH05-KS	AUDIX	E3	6.2009-8-24al
2.	CO01-KS	AUDIX	E3	6.2009-8-24

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

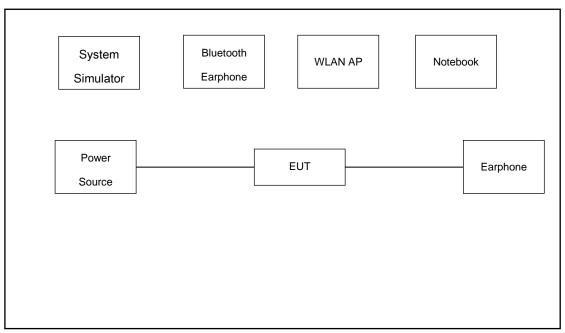
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 3Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

Summary table of Test Cases					
	Data Rate / Modulation				
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps		
	GFSK	π/4-DQPSK	8-DPSK		
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz		
	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz		
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz		
	Bluetooth EDR 3Mbps 8-DPSK				
Radiated	Mode 1: CH00_2402 MHz				
Test Cases	Mode 2: CH39_2441 MHz				
	Mode 3: CH78_2480 MHz				
AC		unte eth Linds - M/LANLLinds (O.			
Conducted					
Emission	Emission from Adapter) + Earphone				
Remark: For	Remark: For radiated test cases, the worst mode data rate 3Mbps was reported only, because this				
data	data rate has the highest RF output power at preliminary tests, and no other significantly				
freq	frequencies found in conducted spurious emission.				

The following summary table is showing all test modes to demonstrate in compliance with the standard.



2.3 Connection Diagram of Test System

For Radiated Emission:

BT Base
Station
EUT

For Conducted Emission:

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	R&S	CMU 200	N/A	N/A	Unshielded, 1.8 m
2.	Bluetooth Station	R&S	СВТ	N/A	N/A	Unshielded,1.8m
3.	WLAN AP	D-Link	DIR-655	KA21R655B1	N/A	Unshielded,1.8m
4.	Notebook	Lenovo	G480	QDS-BRCM1050I	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
5.	Bluetooth Earphone	Lenovo	LBH308	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss.

Following shows an offset computation example with cable loss 5.6 dB.

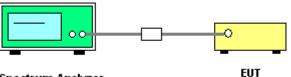
 $Offset(dB) = RF \ cable \ loss(dB)$. = 5.6 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.


3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

Spectrum Analyzer

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

19 µs 👄 VBW 30	0 kHz Mode	Auto FFT			
Ï					
				r	-
		-			
0 000000	3MAAAA	mara	n.n.n.n	nnnn	maan
10.000	V V V V	1 VVV	VVVV	O P & A	1.0.0.0
		1.0			
0					
-					1
-					
					-
		1			-
	691 pts	1		Stop	2.441 GHz
		691 pts	691 pts	691 pts	691 pts Stop

Number of Hopping Channel Plot on Channel 00 - 78

Date: 30.JUL 2020 12:10:31

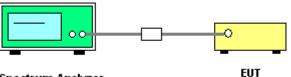
Att 1Pk Max	20 de	SWT	19 hz 🖷 🖊	/BW 300 kH	12 Mode	Auto FFT			
TER MIGS		r	1		1	r			
0 dBm			-						
2 Martin	nn	mm	mon	vvvv	mm	nyn	www	$\nabla \nabla \nabla \nabla \nabla$	S
			V			V			
LO dBm				· · · · · ·		()			
20 dBm									
O UBIN									
30 dBm									
									4
40 dBm									
50 dBm				-					
50 dBm				-		· · · · ·			
70 dBm									
30 dBm		-	-	7					1

Date: 30. JUL 2020 12:11:28

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

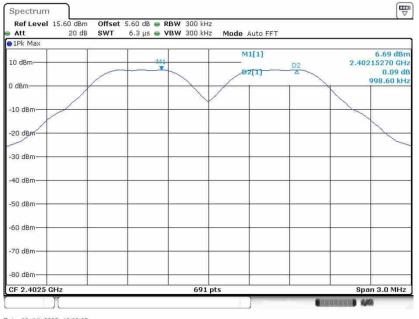
The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

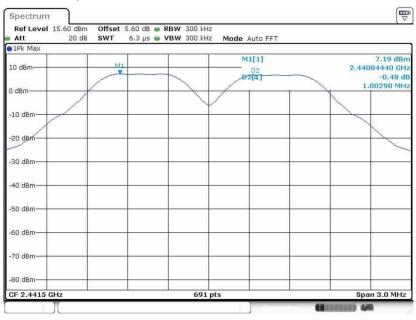
- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

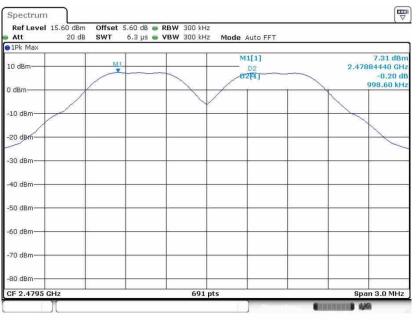
Spectrum Analyzer


3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

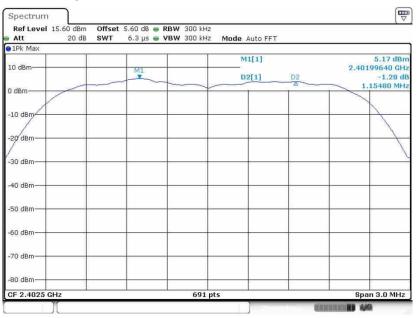

<1Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 30 JUL 2020 10:33:25

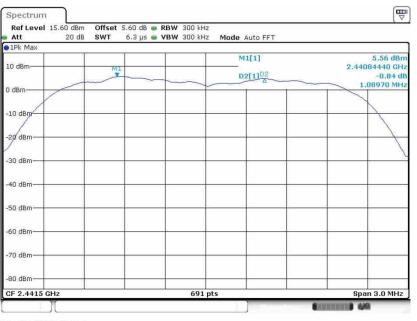
Channel Separation Plot on Channel 39 - 40

Date: 30.JUL 2020 10:45:34



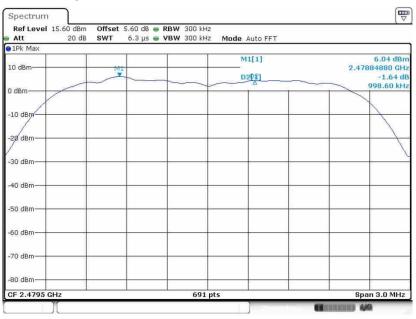
Channel Separation Plot on Channel 77 - 78

Date: 30.JUL.2020 10:51:57


<2Mbps>

Channel Separation Plot on Channel 00 - 01

Date: 30. JUL 2020 12:21:52



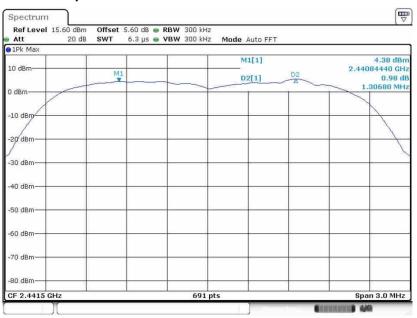
Channel Separation Plot on Channel 39 - 40

Date: 30 JUL 2020 12:25:26

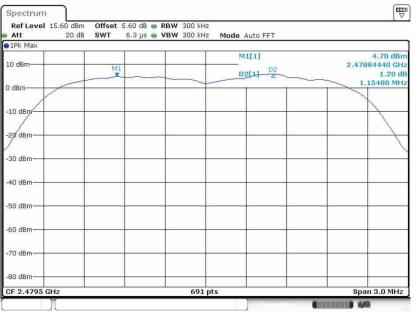
Channel Separation Plot on Channel 77 - 78



Date: 30.JUL.2020 11:27:16


<3Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 30.JUL.2020 11:36:38

Channel Separation Plot on Channel 39 - 40

Date: 30. JUL 2020 11:51:06

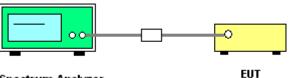
Channel Separation Plot on Channel 77 - 78

Date: 30. JUL 2020 12:01:37

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

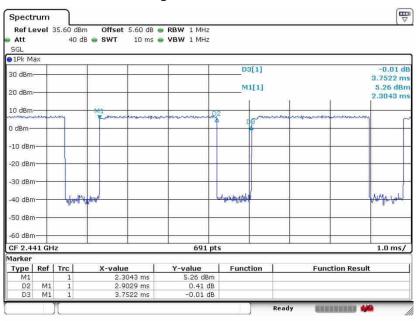

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup



Spectrum Analyzer

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Package Transfer Time Plot

Date: 29.JUL.2020 10:42:52

Remark:

 In normal mode, hopping rate is 1600 hops/s with 6 slots (5 Transmit and 1 Receive slot) in 79 hopping channels.

With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels.
 With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s),
 Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

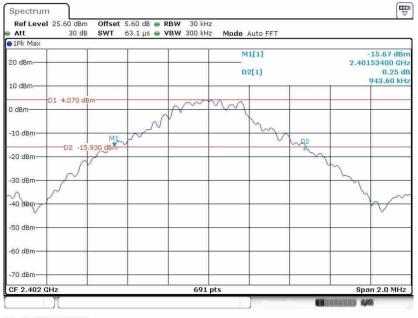
The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 99% bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = sample;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

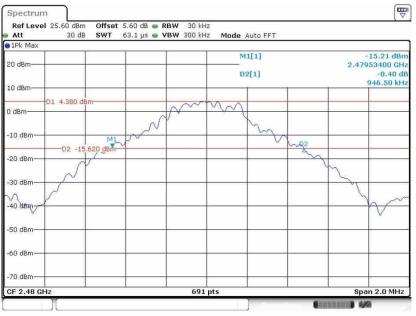
Spectrum Analyzer


3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

<1Mbps>

20 dB Bandwidth Plot on Channel 00


Date: 30.JUL 2020 10:36:02

20 dB Bandwidth Plot on Channel 39

Date: 30.JUL.2020 10:46:54



20 dB Bandwidth Plot on Channel 78

Date: 30 JUL 2020 10:53:19

<2Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 30.JUL 2020 11:08:07

20 dB Bandwidth Plot on Channel 39

Date: 30.JUL.2020 11:20:13

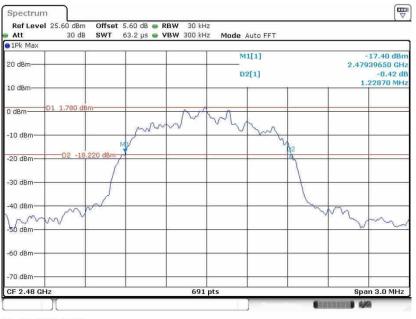
20 dB Bandwidth Plot on Channel 78

Date: 30 JUL 2020 12:28:25



<3Mbps>

20 dB Bandwidth Plot on Channel 00



20 dB Bandwidth Plot on Channel 39

Date: 30. JUL 2020 11:53:20

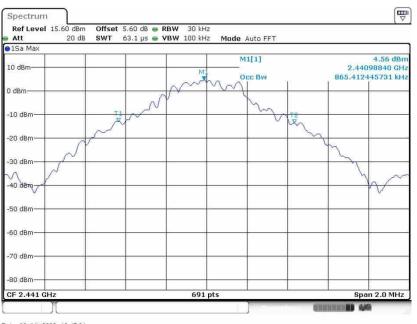
20 dB Bandwidth Plot on Channel 78

Date: 30. JUL 2020 12:06:04



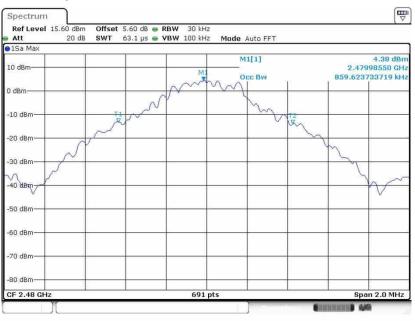
3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.


<1Mbps>

99% Occupied Bandwidth Plot on Channel 00

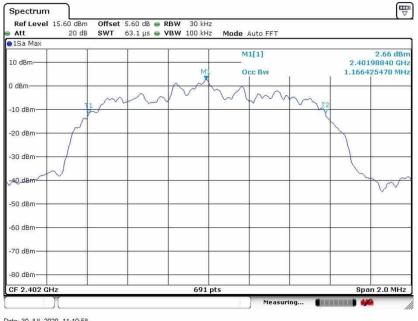
Date: 30.JUL.2020 10:39:13



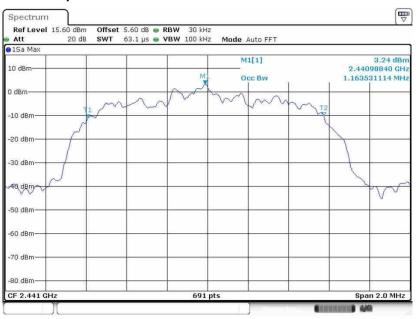
99% Occupied Bandwidth Plot on Channel 39

Date: 30.JUL.2020 10:47:31

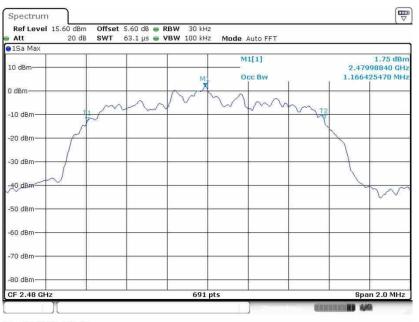
99% Occupied Bandwidth Plot on Channel 78



Date: 30.JUL 2020 10:54:47

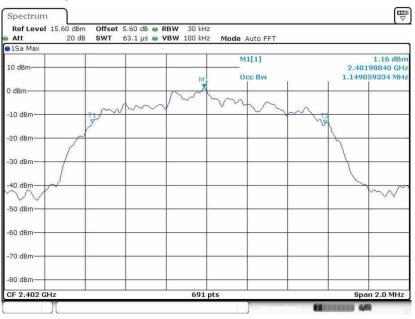

<2Mbps>

99% Occupied Bandwidth Plot on Channel 00


Date: 30 JUL 2020 11:10:58

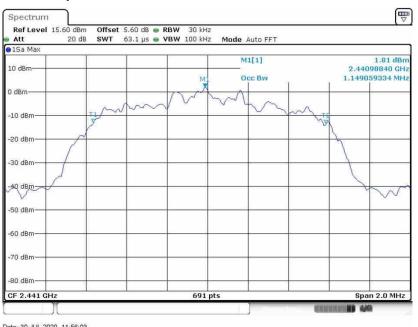
99% Occupied Bandwidth Plot on Channel 39

Date: 30. JUL 2020 11:22:37



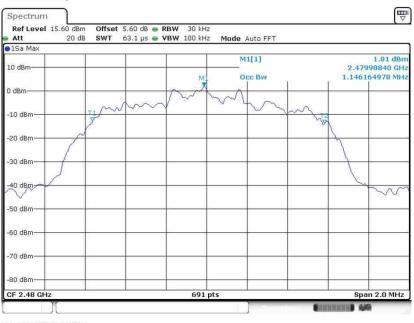
99% Occupied Bandwidth Plot on Channel 78

Date: 30.JUL.2020 11:31:08


<3Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 30. JUL 2020 11:44:25



99% Occupied Bandwidth Plot on Channel 39

Date: 30.JUL 2020 11:56:03

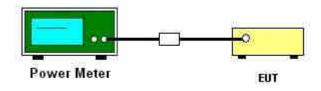
Date: 30 JUL 2020 12:07:22

Note : The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.


3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

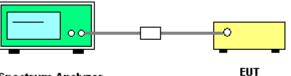
3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.6.2 Measuring Instruments

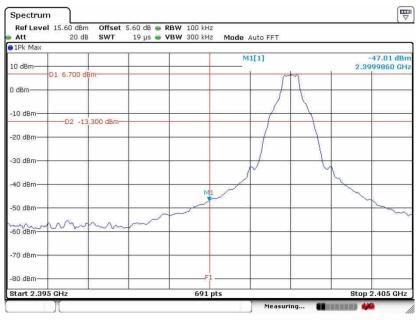
The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

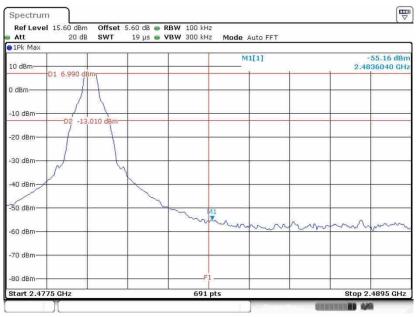
- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

Spectrum Analyzer



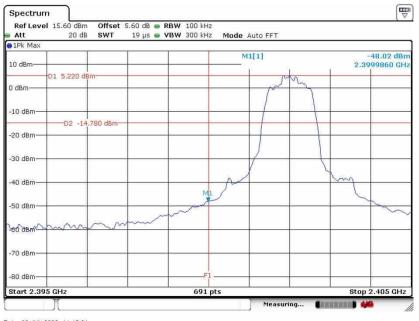
3.6.5 Test Result of Conducted Band Edges


<1Mbps>

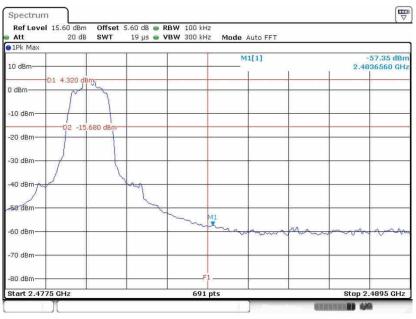
Low Band Edge Plot on Channel 00

Date: 30.JUL.2020 10:38:12

High Band Edge Plot on Channel 78



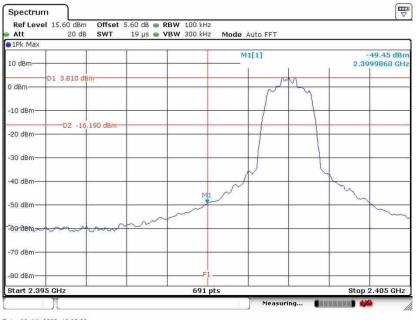
Date: 30.JUL 2020 10:53:44


<2Mbps>

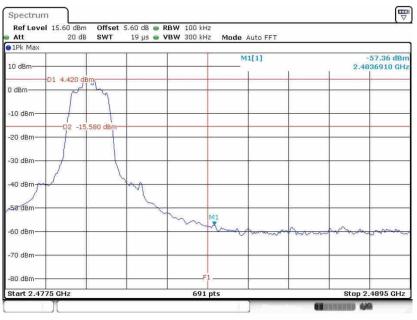
Low Band Edge Plot on Channel 00

Date: 30.JUL.2020 11:15:21

High Band Edge Plot on Channel 78



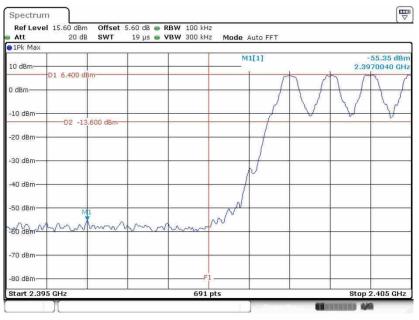
Date: 30.JUL 2020 11:29:58


<3Mbps>

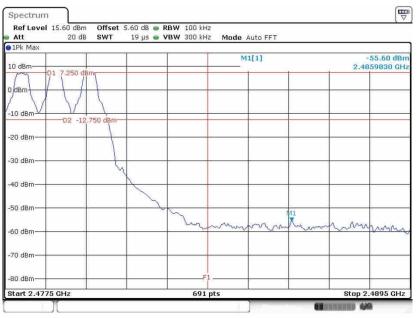
Low Band Edge Plot on Channel 00

Date: 30.JUL 2020 12:35:29

High Band Edge Plot on Channel 78


Date: 30. JUL 2020 12:06:26

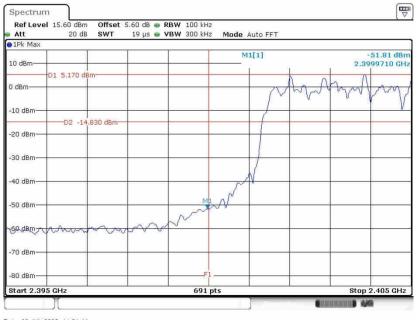
3.6.6 Test Result of Conducted Hopping Mode Band Edges


<1Mbps>

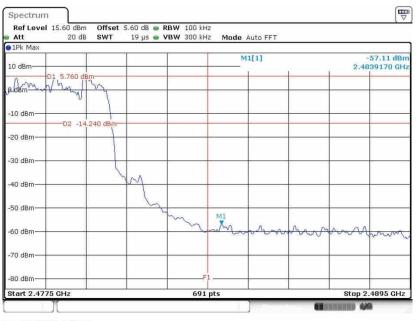
Hopping Mode Low Band Edge Plot

Date: 30.JUL.2020 10:42:06

Hopping Mode High Band Edge Plot



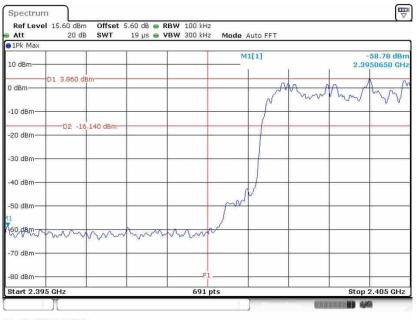
Date: 30.JUL.2020 11:00:26


<2Mbps>

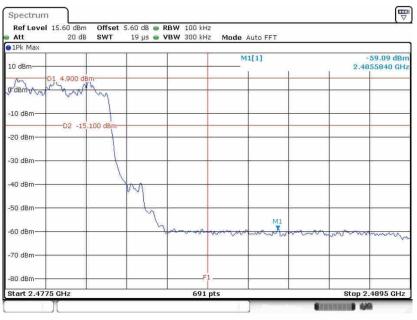
Hopping Mode Low Band Edge Plot

Date: 30.JUL.2020 11:01:44

Hopping Mode High Band Edge Plot



Date: 30. JUL 2020 11:02:10


<3Mbps>

Hopping Mode Low Band Edge Plot

Date: 30.JUL 2020 12:09:35

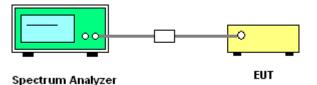
Hopping Mode High Band Edge Plot

Date: 30 JUL 2020 12:09:21

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

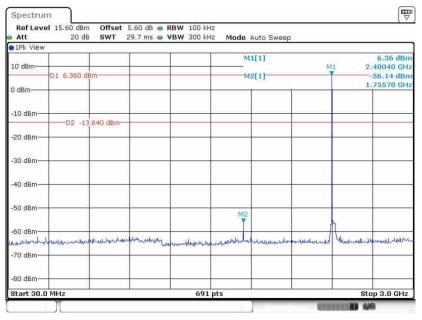

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

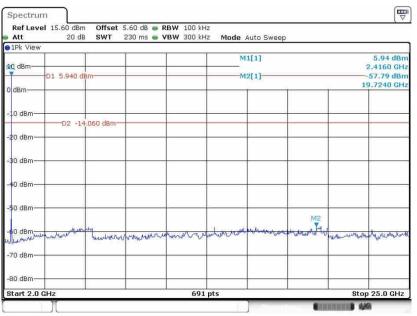
3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup


Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: 2AJOTTA-1285

3.7.5 Test Result of Conducted Spurious Emission


<1Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 30.JUL 2020 10:40:44

1Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 30.JUL.2020 10:41:11

1Pk View		SWT	es (1 mix 🦉	VBW 300 kH	z Mode	Auto Sweep	2		
TLY AIGM	r	r	Ť	r		1[1]			6.83 dBm
10 dBm			_		IMI I	(T[T]		M1 2	2.43910 GHz
	D1 6.830 d	3m		-	M	2[1]			-60.27 dBm
0 dBm				-		1			.74710 GHz
-10 dBm		.170 d8m-	-	-			-		
-20 dBm									
-30 dBm	-		-			-			
(1) and the state of the									
-40 dBm									
-50 dBm									
					M2			A	
-60 dBm			n anna d'annara	-	V.		au arenarier	1	The second second
	annum man	mannhaleha	whiteheady	philippin	information with	sub-lateraneline	Muladappen	i mandeste	allibranteate
-70 dBm	-	-				-			
-90 dBm									
-80 dBm									

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 30. JUL 2020 10:57:46

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att	20 de	SWT	230 ms 👜 ۷	VBW 300 kH	z Mode	Auto Sweep			
1Pk View	с 17								
10 dBm					N	11[1]			6.64 dB
Totobin	D1 6.640 d	Bm			N	12[1]			-57.32 dBi
dBm								1	9.8240 GH
10 dBm-	-			-		-			
-	D2 -13	3.360 dBm-	-			-			
20 dBm-			_						
30 dBm—		-		-	-	-			-
40 dBm—									
-50 dBm-							M2		
D dBm	here	144		-		where the work and	men a h		
60 dBm	ne the ment	linuma	www.www.	Manarurur	and the second second	and a real from	and the second second	Murrashanthan	and the test of the
70 dBm-									
80 dBm—		-							
Start 2.0	CH7			691	pts			Sto	p 25.0 GHz

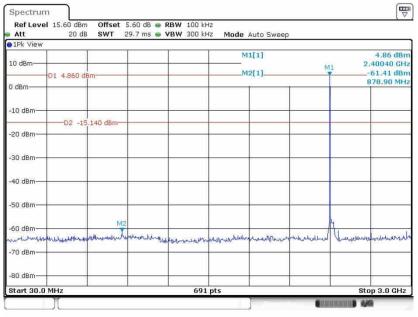
Date: 30 JUL 2020 10:58:13

att 🖌	20 dE	SWT	29.7 ms 🥌	VBW 300 kH	iz Mode	Auto Sweep)			
∎1Pk View	· · · · · ·	r				A Large to the fi				
10 dBm					M	1[1]		MI		6.90 dBm 8210 GHz
	D1 6.900 d	8m-	-	-	M	2[1]		T		2.11 dBm
0 dBm						1 20	1		1.0	7660 GHz
-10 dBm	-		_							
	D2 -13	3.100 dBm-		-						
-20 dBm	-		_							
-30 dBm—										
-40 dBm		-							-	
-50 dBm—		1		-	-					
1000 10			M2					Λ		
-60 dBm-	10 million	likes in the has		mountainthean	فنبأ بمعرادهم	a di man	and bed a los	V ate	The all when	un del history
	Landrenner	4	L	willing tain the prove	Man Andrew Walter	Lareborestan	- contraction		10.000	off dama of our of
-70 dBm										
-80 dBm										
-ou ubm	1									

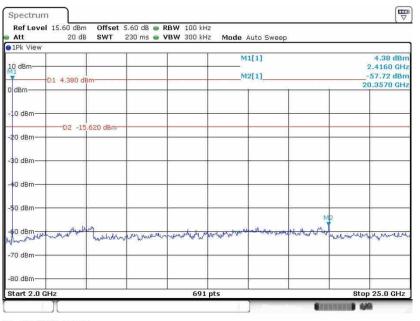
CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 30 JUL 2020 10:59:20

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


Att	20 de	SWT	230 ms 🥃 🛚	/BW 300 kH	z Mode	Auto Sweep			
1Pk View	s 								
tö dBm					M	11[1]			6.95 dBr
T	D1 6.950 d	Bm			M	12[1]			-57.74 dB
dBm						1		1	19.8570 GF
10 dBm—									
20 dBm—		3,050 d8m-							
30 dBm—				-		-			-
40 dBm—									
50 dBm—	-	-					M2		-
0 dBm	Mandalman	in would	endownerwhere	martito	with them	well also have designed a	X	-	moneur maren
70 dBm—									
30 dBm—							· · ·		
start 2.0	GHz			691	pts			Sto	p 25.0 GHz

Date: 30 JUL 2020 10:59:50


<2Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 30.JUL.2020 11:13:19

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 30. JUL 2020 11:13:57

1Pk View	20 dB	SWT	29.7 ms 🥃 🛚	DW SUUKF	16 MUUB	Auto Sweep);		
10 dBm-					M	1[1]		M1	5.64 dBm 2.43910 GHz
10 00	D1 5.640 dl	Bm			M	2[1]		WI1	-61.00 dBm
0 dBm		6800						1	2.83450 GHz
-10 dBm—				-					
-20 dBm	D2 -14	.360 dBm	-				-		
-30 dBm—									
-40 dBm		-							_
-50 dBm—	-		-						_
-60 dBm				-				M	M2
70 dBm-	munition	Champron Mader	the Market Market Mark	usally and an	non-montainely	bound	muthernution	a havenous	manhatitions
vo aom									

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 30. JUL 2020 11:25:11

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att	20 dB	SWT	230 ms 👜 🕯	VBW 300 kH	iz Mode	Auto Sweep				
1Pk View	r 			<u> </u>	1	Staters et				
10 dBm					N	11[1]			3.07 dBn 2.4490 GH	
V11					N	12[1]		-58.07 dBr		
dBm-	D1 3.070 de	3m	-			1		¥.	6.7100 GH	
10 dBm-	_									
20 dBm-	D2 -16	.930 dBm-						1	-	
A STREET										
30 dBm-										
40 dBm—	-	0							-	
SO dBm—		č		ŝ.		-	-	-	-	
	N	12								
O dBm-	the I have the new	Aug	proversition of	A. A ME Day	1 La Mary	block marked	Muture	In an athen	un hora where	
Multin	New W	(contraining)	Land and a start	10-9-17 - 10 AD	a h i			Mary and		
70 dBm—						-	-			
-80 dBm—		0		2			-	-	-	
Start 2.0	GHz			691	pts			Sto	p 25.0 GHz	

Date: 30.JUL.2020 11:25:41

Att 1Pk View	20 dB	SWT	29.7 ms 🔵	VBW 300 KF	12 Mode	Auto Sweep)		
10 dBm-					M	1[1]			4.24 dBm 2.48210 GHz
10 00.00	D1 4,240 dE				M	2[1]		M1	
0 dBm	DI HERO G					Í	1		947.60 MHz
-10 dBm						1			
-20 dBm	D2 -15	.760 dBm-							
-30 d8m							-		
-40 dBm									
-50 dBm							-		
-60 dBm	N 20		M2		X			A	and wy distantion which all and a
-70 dBm	andre of the sector	and the second	ntroducth	lopenthissertender	mar-water	+ Martin Marine	manumana	her day	

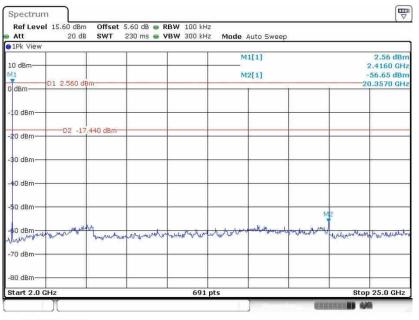
CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 30. JUL 2020 11:33:02

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Att	20 dE	SWT	230 ms 👄	VBW 300 kH	lz Mode	Auto Sweep)		
1Pk View				· ·	-				
0 dBm					N	41[1]			4.32 dBr 2.4830 GH
0 dBm	D1 4,320 d				N	42[1]			-56.53 dBr
) dBm	101 4.320 d	Bm				1	4	1	7.0090 GH
10 dBm						-			
		.680 dBm-	-			-			
20 dBm			_	-		-	-		
30 dBm		-				-			+
40 dBm									
40 asm									
50 dBm									
00 0011		M2							
60 dBm	pages	4	to It a lease	and white	anduro	under she are car	bastor th	1	ere to can I A usA
Ahmilton	-United	Rephied The	www.hann	and the second of the	4			www.	and Matter and
70 dBm		-							
80 dBm					-				-
Start 2.0 (Hz			691	pts			Sto	op 25.0 GHz

Date: 30.JUL 2020 11:33:32


<3Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 30.JUL 2020 12:18:20

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 30.JUL.2020 12:18:55

Att	20 dB	SWT	29.7 ms 🕳 🕻	/BW 300 kH	iz Mode	Auto Sweep	i		
1Pk View				·					
10 dBm					M	2[1]			-61.50 dBm 367.40 MHz
	D1 3.970 de	m			M	1[1]		MI	3.97 dBn
0 dBm	01.00000		-				1	2	.43910 GHz
-10 dBm—	-								
-20 dBm	02 -16	.030 d8m-							
-30 dBm—									
40 dBm—									
50 dBm—	-								-
-60 dBm	M2			-				4	
Harmoneters	harhowneamathe	unshallalthe	where where he has	astren with the	ulmunununu	montoneous	weight	Monworkto	neubleastream
-70 dBm—									
-80 dBm—			-						
Start 30.	0 MHz			691	nts			Sto	op 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 30 JUL 2020 12:15:11

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att	20 dB	SWT	230 ms 🖷	VBW 300 kH	12 Mode	Auto Sweep	6		
1Pk View		~	ï	1		10111			
10 dBm					M	12[1]			-56.58 dBr 6.9430 GH
V11					N	11[1]			2.35 dBr
dBm	01 2.350 de	3m				100	-	¥.	2.4490 GH
10 dBm									
20 dBm-		.650 dBm-				-			
30 dBm									
and a second second									
40 dBm									
S0 dBm-					-			-	
		M2							
-00 dBm	ween john and	July .	what we have a star	10 10 15 15 K	and and the second	and the month	monterland	1	whenter
Juniver	Art on a	10000000	Norman Ports	where the the	an de ce a		second to many others of	numerun	M. M. Martin
70 dBm						-			
-80 dBm		0							
Start 2.0 G	11-			601	pts			Sto	p 25.0 GHz

Date: 30.JUL 2020 12:15:37

Att 1Pk View	20 dB	SWT	6211 Mi2 🔮	VBW 300 ki	in Hous	Auto Swee	, ,		
10 dBm						1[1]		M1	4.32 dBm 2.47780 GHz
0 dBm	D1 4.320 de	Im	-		M	2[1]	1	Ť	-54.66 dBm 1.90180 GHz
-10 dBm—									
-20 dBm—	D2 -15	.680 dBm-	-						
-30 dBm—	-						-		
-40 dBm—									
-50 dBm—						M2		-	
-60 dBm-	stimment	rubonator	when when he	unouround	menhouselly	and dimonstration	mbindown	when	menter annual de bar
-70 abm									
	D MHz				pts				Stop 3.0 GHz

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 30. JUL 2020 12:07:50

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Att	20 dB	SWT	230 ms 🥃 🛚	/BW 300 kH	z Mode	Auto Sweep			
1Pk View		÷	-	-					
0 dBm-					M	1[1]			4.11 dB
0 dBm	20 Martin				M	2[1]			-56.93 dB
dBm	D1 4.110 di	3m						, 1	9.8910 GF
donn.									
10 dBm-									
10 0011									
0 dBm-		.890 dBm							
o abiii									
30 d8m-						ļ			
10.000									
40 dBm—									
50 dBm—	-		-		-	· · · · ·			
							M2		
O dBm-	1 Harperto	Jac.	- Uhile Mer robert	aline produce at	ditte And	and multiture	mary hours	Harres	humahille
Mound	and the second second	Lannahar	Manager and a star	man a D.	~~~			man an	
70 dBm—									-
80 dBm—	-	0			-				
tart 2.0	CH2			691	nte			Sto	p 25.0 GHz

Date: 30. JUL 2020 12:08:23

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

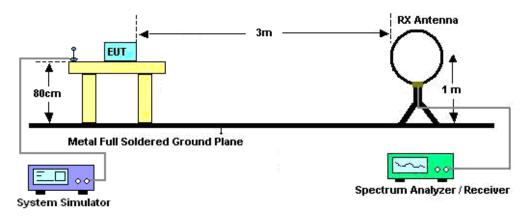
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

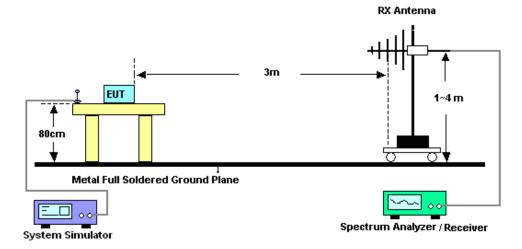
3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

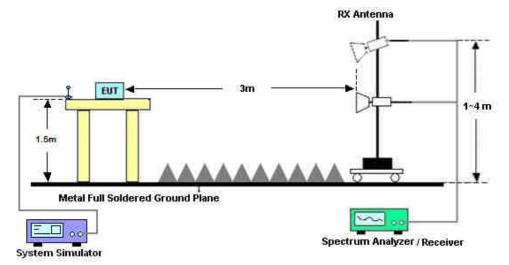
3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.76dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: 2AJOTTA-1285

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.8.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C.

3.8.8 Duty cycle correction factor for average measurement

Please refer to Appendix D.

3.9 AC Conducted Emission Measurement

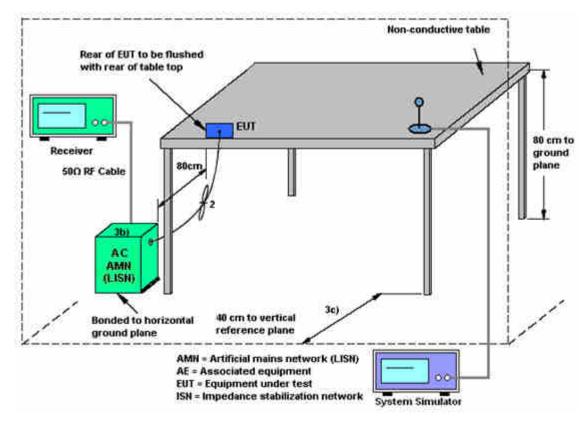
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Nov. 02, 2019	Jul. 29, 2020~ Jul. 30, 2020	Nov. 01, 2020	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 15, 2020	Jul. 29, 2020~ Jul. 30, 2020	Jan. 14, 2021	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 08, 2020	Jul. 29, 2020~ Jul. 30, 2020	Jan. 07, 2021	Conducted (TH01-KS)
EMI Test Receiver	Keysight	N9038A	MY572901 51	3Hz~8.5GHz;M ax 30dBm	Jul. 17, 2020	Aug. 23, 2020	Jul. 16, 2021	Radiation (03CH05-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY551502 44	10Hz-44G,MAX 30dB	Apr. 15, 2020	Aug. 23, 2020	Apr. 14, 2021	Radiation (03CH05-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Nov. 10, 2019	Aug. 23, 2020	Nov. 09, 2020	Radiation (03CH05-KS)
Bilog Antenna	TeseQ	CBL6111D	49922	30MHz-1GHz	Jun. 08, 2020	Aug. 23, 2020	Jun. 07, 2021	Radiation (03CH05-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00218652	1GHz~18GHz	Apr. 26, 2020	Aug. 23, 2020	Apr. 25, 2021	Radiation (03CH05-KS)
SHF-EHF Horn	Com-power	AH-840	101115	18GHz~40GHz	Nov. 10, 2019	Aug. 23, 2020	Nov. 09, 2020	Radiation (03CH05-KS)
Amplifier	SONOMA	310N	187289	9KHz-1GHz	Apr. 14, 2020	Aug. 23, 2020	Apr. 13, 2021	Radiation (03CH05-KS)
Amplifier	MITEQ	EM18G40GG A	060728	18~40GHz	Jan. 08, 2020	Aug. 23, 2020	Jan. 07, 2021	Radiation (03CH05-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2025788	1Ghz-18Ghz	Oct. 18, 2019	Aug. 23, 2020	Oct. 17, 2020	Radiation (03CH05-KS)
Amplifier	Keysight	83017A	MY532703 16	500MHz~26.5G Hz	Oct. 18, 2019	Aug. 23, 2020	Oct. 17, 2020	Radiation (03CH05-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Aug. 23, 2020	NCR	Radiation (03CH05-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Aug. 23, 2020	NCR	Radiation (03CH05-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Aug. 23, 2020	NCR	Radiation (03CH05-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 14, 2020	Aug. 06, 2020	Apr. 13, 2021	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Oct. 18, 2019	Aug. 06, 2020	Oct. 17, 2020	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060105	9kHz~30MHz	Oct. 28, 2019	Aug. 06, 2020	Oct. 27, 2020	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 18, 2019	Aug. 06, 2020	Oct. 17, 2020	Conduction (CO01-KS)

NCR: No Calibration Required

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.9dB
of 95% (U = 2Uc(y))	2.908

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

Appendix A. Conducted Test Results

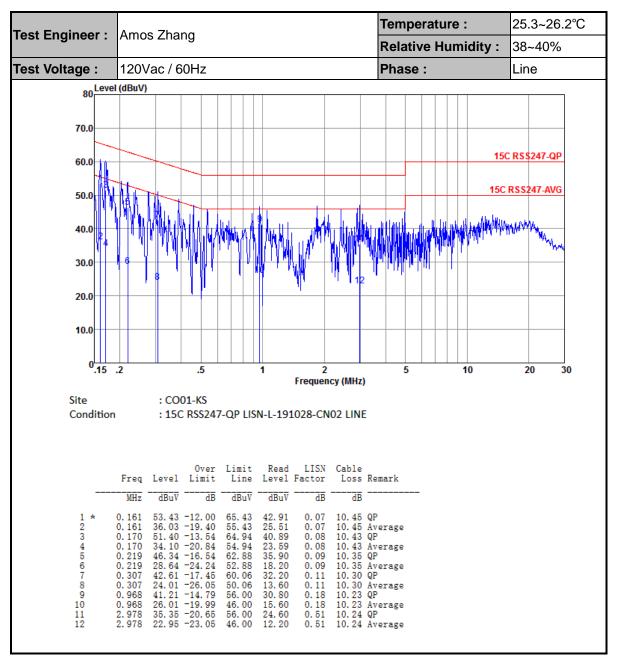
SPORTON LAB.

Report Number : FR070302-01A

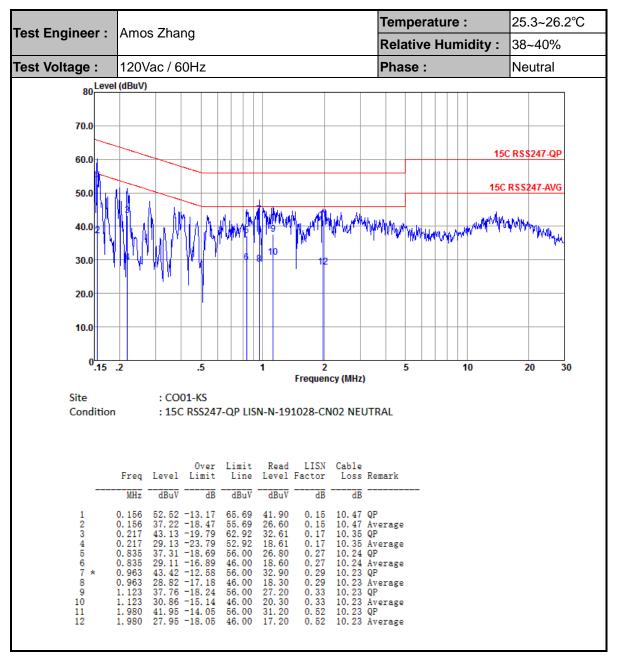
<u>Bluetooth</u>

Test Engineer:	Aaron shen	Temperature:	20~26	°C
Test Date:	2020/7/29~2020/7/30	Relative Humidity:	40~51	%

<u>TEST RESULTS DATA</u> 20dB and 99% Occupied Bandwidth and Hopping Channel Separation									
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (kHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.944	0.860	998.600	0.6291	Pass
DH	1Mbps	1	39	2441	0.947	0.865	1002.900	0.6310	Pass
DH	1Mbps	1	78	2480	0.947	0.860	998.600	0.6310	Pass
2DH	2Mbps	1	0	2402	1.259	1.166	1154.800	0.8393	Pass
2DH	2Mbps	1	39	2441	1.259	1.164	1089.700	0.8393	Pass
2DH	2Mbps	1	78	2480	1.259	1.166	998.600	0.8393	Pass
3DH	3Mbps	1	0	2402	1.233	1.149	998.600	0.8220	Pass
3DH	3Mbps	1	39	2441	1.233	1.149	1306.800	0.8220	Pass
3DH	3Mbps	1	78	2480	1.229	1.146	1154.800	0.8191	Pass


			<u>TES</u>	ST RESULTS Dwell Time		
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Nomal	79	106.67	2.9029	0.31	0.4	Pass
AFH	20	53.33	2.9029	0.15	0.4	Pass

					<u>ST RESUL</u> Peak Powe
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	6.79	20.97	Pass
DH1	39	1	7.51	20.97	Pass
	78	1	6.95	20.97	Pass
2DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	7.22	20.97	Pass
2DH1	39	1	7.97	20.97	Pass
20111	78	1	7.34	20.97	Pass
	70	1 1	1.54	20.91	1 455
			Peak Power	Power Limit	Test
3DH	CH.	NTX	(dBm)	(dBm)	Result
	0	1	7.65	20.97	Pass
3DH1	39	1	8.38	20.97	Pass
İ	78	1	7.73	20.97	Pass


		<u>TEST RES</u> Number of Ho	<u>SULTS DA'</u> pping Fred	
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail	
79	79	> 15	Pass	

Appendix B. AC Conducted Emission Test Results

Note:

- 1. Level(dBµV) = Read Level(dBµV) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dBµV) Limit Line(dBµV)

Appendix C. Radiated Spurious Emission

2.4GHz	2400~2483.5MHz	

BT (Band Edge @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2337.3	54.66	-19.34	74	47.75	31.17	7.41	31.67	349	300	Ρ	Н
	*	Limit Line Level Factor Loss Factor Pos Pos (MHz) (dBµV/m) (dBµ <	-	А	Н								
DT	*	2402	Limit Line Level Factor Loss Factor Pos Pos	Ρ	Н								
	Image: Section of the second of the section of the section of the section of the section	-	А	Н									
		2388.78	54.43	-19.57	74	47.38	31.2	7.5	31.65	352	60	Avg. (P/A) (H P A P P P P P P	V
240210112	Image: Second	-	А	V									
	*	2402	103.2	-	-	96.15	31.2	7.5	31.65	352	60	Ρ	V
		2402	78.44	-	-	-	-	-	-	-	-	А	V
	*	2483.56	64.87	-9.13	74	57.04	31.77	7.64	31.58	206	87	Ρ	Н
		2483.56	40.11	-13.89	54	-	-	-	-	-	-	А	Н
DT		2480	106.63	-	-	98.8	31.77	7.64	31.58	206	87	Ρ	Н
		2480	81.87	-	-	-	-	-	-	-	-	А	Н
	*	2483.5	63.35	-10.65	74	55.52	31.77	7.64	31.58	376	52	Ρ	V
240010112		2483.5	38.59	-15.41	54	-	-	-	-	-	-	А	V
		2480	105.33	-	-	97.5	31.77	7.64	31.58	376	52	Ρ	V
		2480	80.57	-	-	-	-	-	-	-	-	А	V
Remark		•		st Peak	and Averag	je limit lin	е.						

_				I	BT (Harmo	onic @ 3	Bm)						_
ВТ	Note	Frequency	Level (dBµV/m)	Over Limit (dB)	Limit Line (dBµV/m)	Read Level	Antenna Factor (dB/m)	Cable Loss	Preamp Factor	Ant Pos (cm)	Table Pos	Avg.	
BT		4806	(аврул і) 39.68	-34.32	(α Βμν/ Π) 74	(dBμV) 55.24	33.7	(dB) 10.78	(dB) 60.04	300	(deg) 0	P	H
CH 00 2402MHz		4806	38.78	-35.22	74	54.34	33.7	10.78	60.04	100	360	Р	V
вт		4884 7320	39.72 43.16	-34.28 -30.84		55.11 54.39	33.77 35.89	10.87 13.4	60.03 60.52	300 300	0	P P	H
CH 39 2441MHz		4884	39.48	-34.52	74	54.87	33.77	10.87	60.03	100	360	P	V
244 110172		7320	42.59	-31.41	74	53.82	35.89	13.4	60.52	100	360	Р	V
вт		4962	38.83	-35.17	74	54.01	33.85	10.98	60.01	300	0	P	A) (H/V) P H P V P H P H P H P H P H P H P H P H P H P H P H P H P H P H
CH 78 2480MHz		7440 4962	41.26 38.77	-32.74 -35.23	74 74	52.18 53.95	36.11 33.85	13.51 10.98	60.54 60.01	300 100	0 360	P P	
24000012		7440	41.12	-32.88	74	52.04	36.11	13.51	60.54	100	360	Ρ	V
Remark		o other spurio I results are P		st Peak	and Averag	e limit lin	e.						

2.4GHz 2400~2483.5MHz

Emission below 1GHz

2.4GHz BT	(LF)
-----------	------

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	($dB\mu V/m$)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30	18.07	-21.93	40	23.76	25.1	1.19	31.98	-	-	Ρ	Н
		58.13	11.97	-28.03	40	29.91	12.4	1.59	31.93	-	-	Р	Н
	4GHz 30 4GHz 30 58.13 128.94 157.07 861.29 861.29 945.68 945.68 30.97 LF 58.13 92.08 790.48 892.33 955.38 1. No other spuri	15.45	-28.05	43.5	27.24	17.6	2.55	31.94	-	-	Р	Н	
		157.07	16.1	-27.4	43.5	28.56	16.68	2.79	31.93	-	-	Ρ	Н
2.4GHz Linit Linit Line Level Factor Lo Image: Imag	6.55	31.71	-	-	Ρ	Н							
_		945.68	28.8	-17.2	46	22.12	30.85	6.86	31.03	100	0	Ρ	Н
		30.97	18.72	-21.28	40	24.93	24.57	1.2	31.98	-	-	Р	V
Initial Initial <t< td=""><td>-17.91</td><td>40</td><td>40.03</td><td>12.4</td><td>1.59</td><td>31.93</td><td>-</td><td>-</td><td>Р</td><td>V</td></t<>	-17.91	40	40.03	12.4	1.59	31.93	-	-	Р	V			
		92.08	16.74	-26.76	43.5	31.53	15.06	2.07	31.92	-	-	Р	V
		790.48	26.36	-19.64	46	24.03	28.2	6.28	32.15	-	Pos / (deg) (- - - - - 0 0	Ρ	V
		892.33	28.31	-17.69	46	24.02	29.13	6.67	31.51	-	-	Ρ	V
		955.38	29.39	-16.61	46	22.47	30.95	6.9	30.93	100	0	Ρ	V
Remark		•		st limit li	ne.								

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

1. Level(dBµV/m) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

1. Level(dBµV/m)

```
= Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)
```

```
= 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) - 35.86 (dB)
```

- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Duty Cycle Plots

3DH5 on time (One Pulse) Plot on Channel 00

KEYSIGHT	Input RF Couping DC Align, Off	+ Input Z: 50 Ω Corrections: Off Freq Ref. Int (S)	#Atten: 10 dB	PNO Fast Gate Off IF Gain, Low	#Avg Type Pov Trig: Free Run	vor (RMS <mark>123456</mark> WWWWWW	Marker Select Marker Marker 3	201
g Spectrum cale/Div 10 di	*		Ref Level 106.99	Sig Track: Off	۵	PPPPPP Akr3 3.750 ms 0.01 dB	Marker ∆ Time 3.75000 ms	Settings Peak
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	0000 GHz		¢2	Δ1 3Δ1	Swee	Span 0 Hz	Marker Mode Normal Detta (Δ) Fixed Off Detta Marker (Reset Detta) Marker Table	Propertie Marker Function Marker Counter
Marker Table	Trace Scale 1 t 1 t 1 t	(Δ) 3.750 ms	Υ 92.01 dBµV (Δ) 0.09555 dB (Δ) 0.01029 dB	Function	Function Width	Function Value	Off Off Marker Settings Diagram All Markers Off Couple Markers On Off	

3DH5 on time (Count Pulses) Plot on Channel 00

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = $2 \times 2.89 / 100 = 5.78 \%$
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.76 dB
- 3. 3DH5 has the highest duty cycle worst case and is reported.