

FCC TEST REPORT (Part 15, Subpart C)

Applicant:	HMD Global Oy						
Address:	Bertel Jungin aukio 9, 02600 Espo	Bertel Jungin aukio 9, 02600 Espoo, Finland					
	,						
Manufacturer or Supplier:	HMD Global Oy						
Address:	Bertel Jungin aukio 9, 02600 Espo	oo, Finland					
Product:	GSM/WCDMA/LTE Mobile Phone						
Brand Name:	Nokia	Nokia					
Model Name:	TA-1280						
FCC ID:	2AJOTTA-1280						
Date of tests:	Jul. 3, 2020 ~ Jul. 27, 2020						
The tests have bee	en carried out according to the requi	rements of the following standard:					
	Subpart C, Section 15.247						
	013						
CONCLUSION: Th	ne submitted sample was found to	o COMPLY with the test requirement					
Pre	pared by Alex Chen	Approved by Luke Lu					
Engine	er / Mobile Department	Manager / Mobile Department					
	Alex	luke lu					
	ate: Jul. 29, 2020 corporates by reference, CPS Conditions of Service as posted at	Date: Jul. 29, 2020					

This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at <a href="http://www.bureauveritas.com/home/about-us/our-ubsiness/cogs/about-us/ems-conditions/ad is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A fallure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

TABLE OF CONTENTS

K	ELE <i>F</i>	ASE (CONTROL RECORD	5
1	S	UMM	ARY OF TEST RESULTS	6
	1.1	ME	ASUREMENT UNCERTAINTY	7
2	G	ENE	RAL INFORMATION	8
	2.1	GEN	NERAL DESCRIPTION OF EUT	8
	2.2	DES	SCRIPTION OF TEST MODES	9
	2	.2.1	CONFIGURATION OF SYSTEM UNDER TEST	10
	2	.2.2	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	10
	2.3	GEN	NERAL DESCRIPTION OF APPLIED STANDARDS	12
	2.4	DES	SCRIPTION OF SUPPORT UNITS	12
3	Т	EST	TYPES AND RESULTS	13
	3.1	COI	NDUCTED EMISSION MEASUREMENT	13
	3	.1.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	13
	3	.1.2	TEST INSTRUMENTS	13
	3	.1.3	TEST PROCEDURES	13
	3	.1.4	DEVIATION FROM TEST STANDARD	14
	3	.1.5	TEST SETUP	14
	3	.1.6	EUT OPERATING CONDITIONS	14
	3	.1.7	TEST RESULTS	15
	3.2	RAI	DIATED EMISSION AND BANDEDGE MEASUREMENT	17
	3	.2.1	LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT	
	3	.2.2	TEST INSTRUMENTS	18
	3	.2.3	TEST PROCEDURES	19
	3	.2.4	DEVIATION FROM TEST STANDARD	19
	3	.2.5	TEST SETUP	
	3	.2.6	EUT OPERATING CONDITIONS	21
	3	.2.7	TEST RESULTS	22
	3.3	NUI	MBER OF HOPPING FREQUENCY USED	25
	3	.3.1	LIMIT OF HOPPING FREQUENCY USED	25
	3	.3.2	TEST SETUP	25
	3	.3.3	TEST INSTRUMENTS	25
	3	.3.4	TEST PROCEDURES	_
	3	.3.5	DEVIATION FROM TEST STANDARD	26
		.3.6	TEST RESULTS	
	3.4	DW	ELL TIME ON EACH CHANNEL	27

3.4.1	LIMIT OF DWELL TIME USED	27
3.4.2	TEST SETUP	27
3.4.3	TEST INSTRUMENTS	27
3.4.4	TEST PROCEDURES	27
3.4.5	DEVIATION FROM TEST STANDARD	28
3.4.6	TEST RESULTS	28
3.5 CH/	ANNEL BANDWIDTH	29
3.5.1	LIMITS OF CHANNEL BANDWIDTH	29
3.5.2	TEST SETUP	29
3.5.3	TEST INSTRUMENTS	29
3.5.4	TEST PROCEDURE	29
3.5.5	DEVIATION FROM TEST STANDARD	29
3.5.6	EUT OPERATING CONDITION	
3.5.7	TEST RESULTS	30
3.6 HOI	PPING CHANNEL SEPARATION	31
3.6.1	LIMIT OF HOPPING CHANNEL SEPARATION	
3.6.2	TEST SETUP	31
3.6.3	TEST INSTRUMENTS	
3.6.4	TEST PROCEDURES	
3.6.5	DEVIATION FROM TEST STANDARD	
3.6.6	TEST RESULTS	
3.7 MA	XIMUM OUTPUT POWER	
3.7.1	LIMITS OF MAXIMUM OUTPUT POWER MEASUREMENT	
3.7.2	TEST SETUP	
3.7.3	TEST INSTRUMENTS	
3.7.4	TEST PROCEDURES	
3.7.5	DEVIATION FROM TEST STANDARD	
3.7.6	EUT OPERATING CONDITION	
3.7.7	TEST RESULTS	
3.7.7.1		
	2 AVERAGE OUTPUT POWER (FOR REFERENCE)	
3.8 OU	T OF BAND MEASUREMENT	
3.8.1	LIMITS OF OUT OF BAND MEASUREMENT	
3.8.2	TEST INSTRUMENTS	
3.8.3	TEST PROCEDURE	
3.8.4	DEVIATION FROM TEST STANDARD	35

Email: <u>customerservice.sw@bureauveritas.com</u>

3	.8.5	EUT OPERATING CONDITION	. 35
3	.8.6	TEST RESULTS	. 35
4	PHO	TOGRAPHS OF THE TEST CONFIGURATION	36
5	APP	ENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE	Ė
EUT	ВҮ Т	THE LAB	37

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF200629W001-1	Original release	Jul. 20, 2020
	Based on the original report RF200629W001-1 remove	
DE200704W006 4	back camera and 2pcs keymat LED, change Keypad	Jul. 29, 2020
RF200701W006-1	materials and FCC ID, HW version and model name. In this	
	report verify power and RSE worst case.	

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	APPLIED STANDARD: FCC Part 15, Subpart C								
STANDARD	TEST TYPE AND LIMIT	RESULT	REMARK						
15.207	AC Power Conducted Emission	Compliance	Meet the requirement of limit.						
15.247(a)(1) (iii)	Number of Hopping Frequency Used	N.A	See note						
15.247(a)(1) (iii)	Dwell Time on Each Channel	N.A	See note						
15.247(a)(1)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	N.A	See note						
15.247(b)	Maximum Peak Output Power	Compliance	Meet the requirement of limit.						
15.247(d)& 15.209	Transmitter Radiated Emissions	Compliance	Meet the requirement of limit.						
15.247(d)	Out of band Measurement	N.A	See note						
15.203	Antenna Requirement	N.A	See note						

^{*} Refer to KDB 971168 D01 Power Meas License Digital Systems v03r01.

Note:

^{1.} Per the change notice provide by manufactory, the difference is remove back camera and 2pcs keymat LED, change Keypad materials and FCC ID, HW version and model name., all the change no effect any RF parameter, Therefore only verify the radiated emission worse case and the AC Power Conducted emission, power and show the verify test data on this report.

^{2.} Other test data re-use from test report RF200629W001-1, more details please refer test report RF200629W001-1 (FCC ID: 2AJOTTA-1282)

1.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY
AC Power Conducted emissions	±2.70dB
Radiated emissions (30MHz~1GMHz)	±4.98dB
Radiated emissions (1GMHz ~6GMHz)	±4.70dB
Radiated emissions (6GMHz ~18GMHz)	±4.60dB
Radiated emissions (18GMHz ~40GMHz)	±4.12dB
Conducted emissions	±4.01dB
Occupied Channel Bandwidth	±43.58KHz
Conducted Output power	±2.06dB
Power Spectral Density	±0.85 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Tel: +86 755 8869 6566

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

1 GENERAL DESCRIPTION OF EUT				
PRODUCT	GSM/WCDMA/LTE Mobile Phone			
BRAND NAME	Nokia			
MODEL NAME	TA-1280			
NOMINAL VOLTAGE	5.0Vdc (adapter or host equipment)			
NOWINAL VOLTAGE	3.7Vdc (Li-ion, battery)			
MODULATION TECHNOLOGY	FHSS			
MODULATION TYPE	GFSK, 8DPSK, π/4 DQPSK			
OPERATING FREQUENCY	2402MHz~2480MHz			
NUMBER OF CHANNEL	79			
MAX. OUTPUT POWER	11.61mW (Max. Measured)			
ANTENNA TYPE	PCB Antenna with 0dBi gain			
HW VERSION	0144			
SW VERSION	0.2025.11.05			
I/O PORTS	Refer to user's manual			
CABLE SUPPLIED	USB cable: non-shielded, detachable,1meter			
CADLE SUPPLIED	Earphone: non-shielded, detachable, 1.5meter			

NOTE:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.

List of Accessory:

ACCESSORIES	BRAND	MODEL	MANUFACTURER	SPECIFICATION
Battery 1	Nokia	BL-4WL	ТМ	Power Rating:3.7 Vdc, 1150 mAh
AC Adoptor 1	Nokia	Nokia AC-18U DVE		I/P: 100 - 240 Vac, 100mA,
AC Adapter 1	INUKIA	AC-160	DVE	O/P: 5Vdc, 550 mA
AC Adoptor 2	Nokia	AC-18U	Aohai	I/P: 100 - 240 Vac, 100mA,
AC Adapter 2	1 Z NOKIA			O/P: 5Vdc, 550 mA
Earphone 1	Nokia	WH-108	RTF	1.5m non-shielded cable w/ core
USB Cable 1	Nokia	CA-190CD	RTF	1m non-shielded cable w/ core

Tel: +86 755 8869 6566 Fax: +86 755 8869 6577

2.2 DESCRIPTION OF TEST MODES

79 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

2.2.1 CONFIGURATION OF SYSTEM UNDER TEST

Please see section 5 photograph of the test configuration for reference.

2.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports. The worst case was found when positioned on X axis for radiated emission. Following channel(s) was (were) selected for the final test as listed below:

EUT CONFIGURE MODE	APPLICABLE TO				DESCRIPTION
	RE<1G	RE≥1G	PLC	APCM	DESCRIPTION
-	-	√	V	-	-

Where

RE<1G: Radiated Emission below 1GHz
PLC: Power Line Conducted Emission

RE≥1G: Radiated Emission above 1GHz

APCM: Antenna Port Conducted Measurement

RADIATED EMISSION TEST (ABOVE 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE	AVAILABLE	TESTED	MODULATION	MODULATION	PACKET
MODE	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	TYPE
-	0	0	FHSS	GFSK	DH5

POWER LINE CONDUCTED EMISSION TEST:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture) and packet type.

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE	AVAILABLE	TESTED	MODULATION	MODULATION	PACKET
MODE	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	TYPE
-	0 to 78	0	FHSS	GFSK	DH5

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	TEST VOLTAGE (SYSTEM)	TESTED BY
RE≥1G	23deg. C, 70%RH	DC 5V By Adapter	Jacky Liu
PLC	25deg. C, 52%RH	DC 5V By Adapter	Chase Zhou

BV 7Layers Communications Technology (Shenzhen) Co. Ltd

 $\textbf{Email:} \ \underline{\textbf{customerservice.sw@bureauveritas.com}}$

2.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. Section 15.247 ANSI C63.10-2013

NOTE: 1. All test items have been performed and recorded as per the above standards.

 The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (Certification). The test report has been issued separately.

2.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Desktop	Lenovo	M73 SFF	PC04GRQV	N/A
2	Desktop	Lenovo	M73 SFF	PC06CS27	N/A
3	Laptop	Lenovo	Thnikpad L440	R90FTFKN	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	AC Line: Unshielded, Detachable 1.5m
2	AC Line: Unshielded, Detachable 1.5m
3	AC Line: Unshielded, Detachable 1.5m

3 TEST TYPES AND RESULTS

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBμV)		
	Quasi-peak	Average	
0.15 ~ 0.5	66 to 56	56 to 46	
0.5 ~ 5	56	46	
5 ~ 30	60	50	

NOTE: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

3.1.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESR3	101900	Feb. 26,20	Feb. 25,21
EMC32 test software	Rohde&Schwarz	EMC32	NA	NA	NA
LISN network	Rohde&Schwarz	ENV216	101922	Feb. 26,20	Feb. 25,21

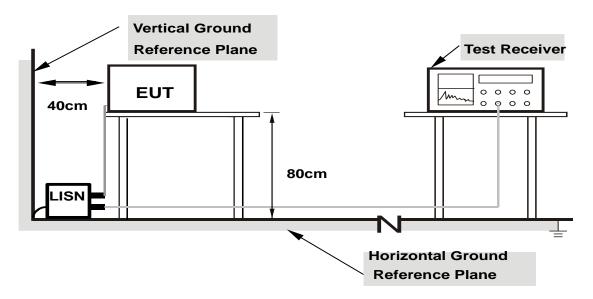
NOTE: 1. The test was performed in CE shielded room.

The calibration interval of the above test instruments is 12 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

3.1.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.


Email: <u>customerservice.sw@bureauveritas.com</u>

3.1.4 DEVIATION FROM TEST STANDARD

No deviation.

3.1.5 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

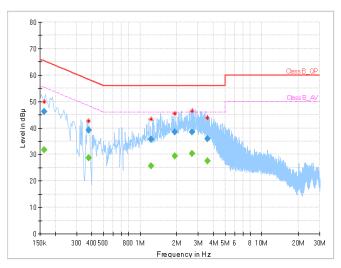
3.1.6 EUT OPERATING CONDITIONS

- a. Turned on the power and connected of all equipment.
- EUT was operated according to the type used was description in manufacturer's specifications or the User's Manual.

Email: customerservice.sw@bureauveritas.com

3.1.7 TEST RESULTS

CONDUCTED WORST-CASE DATA:

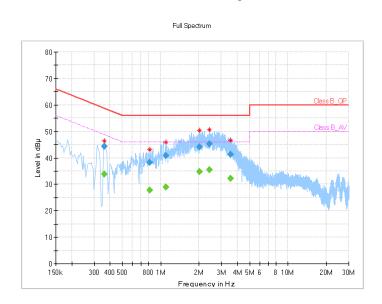

TEST VOLTAGE	DC 5V From Adapter	Detector Function &	Quasi-Peak (QP) /	
TEST VOLTAGE	Input 120 Vac, 60 Hz	Resolution Bandwidth	Average (AV), 9 kHz	
ENVIRONMENTAL	04-l 0 550/DH	TECTED DV	Ob 7b	
CONDITIONS	24deg. C, 55%RH	TESTED BY	Chase Zhou	

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)	Lille	Filler	(dB)
0.162000		31.62	55.36	-23.74	L1	ON	9.7
0.162000	46.20		65.36	-19.16	L1	ON	9.7
0.376000		28.75	48.37	-19.62	L1	ON	9.7
0.376000	39.28		58.37	-19.08	L1	ON	9.7
1.224000		25.63	46.00	-20.37	L1	ON	9.7
1.224000	35.75		56.00	-20.25	L1	ON	9.7
1.928000		29.30	46.00	-16.70	L1	ON	9.8
1.928000	38.40		56.00	-17.60	L1	ON	9.8
2.680000		30.21	46.00	-15.79	L1	ON	9.8
2.680000	38.38		56.00	-17.62	L1	ON	9.8
3.572000		27.43	46.00	-18.57	L1	ON	9.8
3.572000	35.96		56.00	-20.04	L1	ON	9.8

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

Tel: +86 755 8869 6566 Fax: +86 755 8869 6577



TEST VOLTAGE	DC 5V From Adapter	Detector Function &	Quasi-Peak (QP) /
	Input 120 Vac, 60 Hz	Resolution Bandwidth	Average (AV), 9 kHz
ENVIRONMENTAL	24do ~ C 550/DII	TECTED DV	Chana 7hau
CONDITIONS	24deg. C, 55%RH	TESTED BY	Chase Zhou

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr.
0.360000		33.93	48.73	-14.79	N	ON	9.8
0.360000	44.38		58.73	-14.35	N	ON	9.8
0.820000		27.69	46.00	-18.31	N	ON	9.8
0.820000	38.22		56.00	-17.78	N	ON	9.8
1.098000		28.82	46.00	-17.18	N	ON	9.8
1.098000	40.89		56.00	-15.11	N	ON	9.8
2.008000		34.81	46.00	-11.19	N	ON	9.8
2.008000	44.18		56.00	-11.82	N	ON	9.8
2.420000		35.36	46.00	-10.64	N	ON	9.8
2.420000	45.15		56.00	-10.85	N	ON	9.8
3.552000		32.17	46.00	-13.83	N	ON	9.9
3.552000	41.20		56.00	-14.80	N	ON	9.9

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

(Shenzhen) Co. Ltd

RADIATED EMISSION AND BANDEDGE MEASUREMENT

3.2.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). Other emissions shall be at least 20dB below the highest level of the desired power.

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

3.2.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
3m Semi-anechoic Chamber	ETS-LINDGREN	9m*6m*6m	Euroshieldpn- CT0001143-1216	May. 19,20	May. 18,23
Bilog Antenna	ETS-LINDGREN	3143B	00161965	Mar. 27,20	Mar. 26,21
Horn Antenna	ETS-LINDGREN	3117	00168728	Nov. 24, 19	Nov. 23, 20
Horn Antenna (18GHz-40GHz)	N/A	QWH-SL-18-40- K-SG/QMS-003 61	15433	Nov. 24, 19	Nov. 23, 20
Test Software	E3	V 9.160323	N/A	N/A	N/A
Test Software	ADT	ADT_Radiated_ V7.6.15.9.2	N/A	N/A	N/A
10dB Attenuator	JFW/USA	50HF-010-SMA	1505	Jun. 03,20	Jun. 02,21
MXE EMI Receiver	KEYSIGHT	N9038A-544	MY54450026	Apr. 27,20	Apr. 26,21
Signal Pre-Amplifier	EMSI	EMC 9135	980249	Jun. 02,20	Jun. 01,21
Signal Pre-Amplifier	EMSI	EMC 012645B	980257	Jun. 02,20	Jun. 01,21
Signal Pre-Amplifier	EMSI	EMC 184045B	980259	Apr. 30,20	Apr. 29,21

NOTE: 1. The calibration interval of the above test instruments is 12 months or 36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

- 2. The test was performed in 3m Chamber.
- 3. The FCC Site Registration No. is 525120; The Designation No. is CN1171.

3.2.3 TEST PROCEDURES

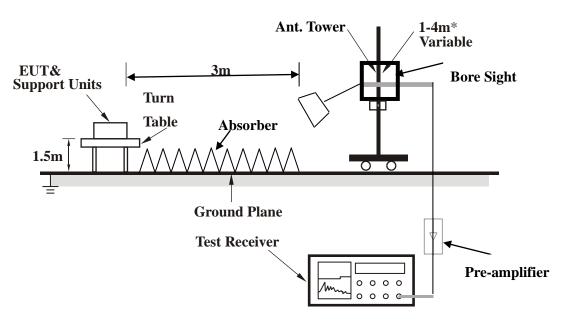
- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz for Average detection (AV) at frequency above 1GHz.
- 4. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit.
- 5. All modes of operation were investigated and the worst-case emissions are reported.


3.2.4 DEVIATION FROM TEST STANDARD

No deviation.


3.2.5 TEST SETUP

< Frequency Range 30MHz~1GHz >

<Frequency Range above 1GHz>

Note: Above 1G is a directional antenna

Depends on the EUT height and the antenna 3dB beamwidth both, refer to section 7.3 of CISPR 16-2-3.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

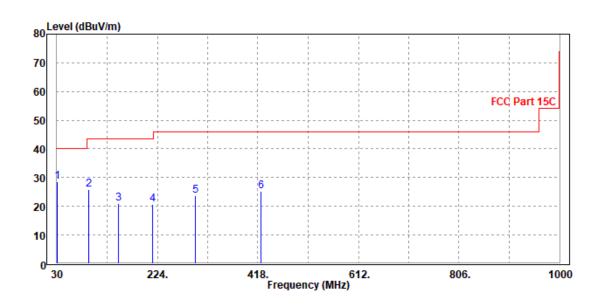
Email: <u>customerservice.sw@bureauveritas.com</u>

- a. Set the EUT under full load condition and placed them on a testing table.
- b. Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.
- c. The necessary accessories enable the EUT in full functions.

3.2.7 TEST RESULTS

BELOW 1GHz:

30 MHz - 1GHz data:


GFSK

CHANNEL	Channel 0	DETECTOR FUNCTION	Overi Beek (OB)
FREQUENCY RANGE	30MHz ~ 1GHz	DETECTOR FUNCTION	Quasi-Peak (QP)

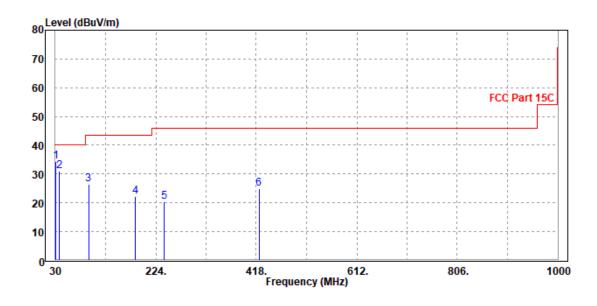
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
FREQ.	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB /m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
31.25	28.71	45.24	40	-11.29	20.27	0.79	37.59	200	0	Peak
92.12	25.87	53.14	43.5	-17.63	8.47	1.29	37.03	200	0	Peak
149.58	20.92	46.53	43.5	-22.58	9.63	1.56	36.8	200	0	Peak
215.53	20.59	44.25	43.5	-22.91	11.09	1.87	36.62	200	0	Peak
297.35	23.71	44.53	46	-22.29	13.59	2.2	36.61	200	0	Peak
423.15	25.32	42.11	46	-20.68	17.36	2.71	36.86	200	0	Peak

REMARKS:

- 1. Emission Level(dBuV/m) = Read Level(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

Tel: +86 755 8869 6566 Fax: +86 755 8869 6577

Email: <u>customerservice.sw@bureauveritas.com</u>



CHANNEL	Channel 0	DETECTOR FUNCTION	Ougai Book (OD)
FREQUENCY RANGE		DETECTOR FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
FREQ.	EMISSION LEVEL	READ LEVEL	LIMIT	MARGIN	ANTENNA FACTOR	CABLE	PREAMP FACTOR	ANTENNA HEIGHT	TABLE	REMARK
(MHz)	(dBuV/m)	(dBuV)	(dBuV/m)	(dB)	(dB /m)	(dB)	(dB)	(cm)	(Degree)	TLIND III
30.25	34.32	50.38	40	-5.68	20.77	0.77	37.6	100	0	Peak
38.15	30.88	52.14	40	-9.12	15.38	0.89	37.53	100	0	Peak
94.15	26.35	53.45	43.5	-17.15	8.63	1.29	37.02	100	0	Peak
184.65	22.08	47.11	43.5	-21.42	9.92	1.72	36.67	100	0	Peak
240.65	20.33	42.11	46	-25.67	12.85	1.99	36.62	100	0	Peak
423.11	24.88	41.68	46	-21.12	17.35	2.71	36.86	100	0	Peak

REMARKS:

- 1. Emission Level(dBuV/m) = Read Level(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

ABOVE 1GHz WORST-CASE DATA:

Note: For higher frequency, the emission is too low to be detected.

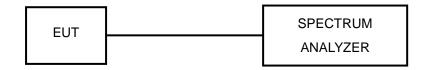
GFSK

CHANNEL	TX Channel 0	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE		DETECTOR FUNCTION	Average (AV)

	A	NTENN	A POLAF	RITY & TE	ST DISTA	NCE: H	ORIZONT	AL AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB /m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2390	52.94	61.53	74	-21.06	32.56	4.88	46.03	100	215	Peak
2390	41.69	50.28	54	-12.31	32.56	4.88	46.03	100	215	Average
2402	97.2	105.77			32.56	4.89	46.02	100	215	Peak
2402	94.6	103.17			32.56	4.89	46.02	100	215	Average
2483.5	52.63	61.04	74	-21.37	32.59	4.98	45.98	100	215	Peak
2483.5	42.39	50.8	54	-11.61	32.59	4.98	45.98	100	215	Average
		ANTEN	INA POLA	ARITY & 1	TEST DIST	ANCE: \	VERTICA	LAT3M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB /m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2390	54.78	63.37	74	-19.22	32.56	4.88	46.03	100	270	Peak
2390	41.89	50.48	54	-12.11	32.56	4.88	46.03	100	270	Average
2402	95.45	104.02			32.56	4.89	46.02	100	270	Peak
2402	93.04	101.61			32.56	4.89	46.02	100	270	Average
2483.5	53.41	61.82	74	-20.59	32.59	4.98	45.98	100	270	Peak
2483.5	42.2	50.61	54	-11.8	32.59	4.98	45.98	100	270	Average

REMARKS:

- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Emission level – Limit value.
- 2. 2402MHz: Fundamental frequency.



3.3 NUMBER OF HOPPING FREQUENCY USED

3.3.1 LIMIT OF HOPPING FREQUENCY USED

At least 15 channels frequencies, and should be equally spaced.

3.3.2 TEST SETUP

3.3.3 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Power Meter	ANRITSU	ML2495A	1506002	Feb. 26,20	Feb. 25,21
EXA Signal Analyzer	KEYSIGHT	N9010A-526	MY54510523	Mar. 10,20	Mar. 09,21
EXA Signal Analyzer	KEYSIGHT	N9010A-544	MY54510355	Jun. 03,20	Jun. 02,21
Power Sensor	ANRITSU	MA2411B	1339352	Feb. 26,20	Feb. 25,21
CBT32 BLUETOOTH TESTER 4HU	Rohde&Schwarz	CBT32	101176	Mar. 10,20	Mar. 09,21

NOTE:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
- 2. The test was performed in RF Oven room.

Email: customerservice.sw@bureauveritas.com

3.3.4 TEST PROCEDURES

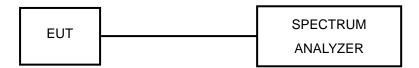
- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were completed.

3.3.5 DEVIATION FROM TEST STANDARD

No deviation.

3.3.6 TEST RESULTS

N/A



3.4 DWELL TIME ON EACH CHANNEL

3.4.1 LIMIT OF DWELL TIME USED

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.4.2 TEST SETUP

3.4.3 TEST INSTRUMENTS

Refer to section 3.3.3 to get information of above instrument.

3.4.4 TEST PROCEDURES

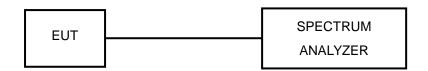
- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

3.4.5 DEVIATION FROM TEST STANDARD

No deviation.

3.4.6 TEST RESULTS N/A

Tel: +86 755 8869 6566 Fax: +86 755 8869 6577



3.5 CHANNEL BANDWIDTH

3.5.1 LIMITS OF CHANNEL BANDWIDTH

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

3.5.2 TEST SETUP

3.5.3 TEST INSTRUMENTS

Refer to section 3.3.3 to get information of above instrument.

3.5.4 TEST PROCEDURE

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

3.5.5 DEVIATION FROM TEST STANDARD

No deviation.

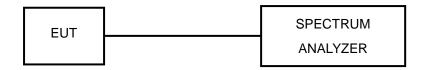
3.5.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

3.5.7 TEST RESULTS

N/A

Email: <u>customerservice.sw@bureauveritas.com</u>



3.6 HOPPING CHANNEL SEPARATION

3.6.1 LIMIT OF HOPPING CHANNEL SEPARATION

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

3.6.2 TEST SETUP

3.6.3 TEST INSTRUMENTS

Refer to section 3.3.3 to get information of above instrument.

3.6.4 TEST PROCEDURES

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the MaxHold function record the separation of two adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

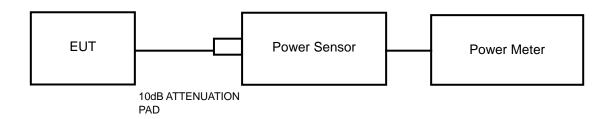
3.6.5 DEVIATION FROM TEST STANDARD

No deviation.

3.6.6 TEST RESULTS

N/A

Tel: +86 755 8869 6566 Fax: +86 755 8869 6577



3.7 MAXIMUM OUTPUT POWER

3.7.1 LIMITS OF MAXIMUM OUTPUT POWER MEASUREMENT

The Maximum Output Power Measurement is 125mW.

3.7.2 TEST SETUP

3.7.3 TEST INSTRUMENTS

Refer to section 3.3.3 to get information of above instrument.

3.7.4 TEST PROCEDURES

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

3.7.5 DEVIATION FROM TEST STANDARD No deviation.

3.7.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

Email: customerservice.sw@bureauveritas.com

3.7.7 TEST RESULTS

3.7.7.1 MAXIMUM PEAK OUTPUT POWER

GFSK

CHANNEL	CHANNEL FREQUENCY (MHz)	POWER OUTPUT (dBm)	POWER OUTPUT (mW)	POWER LIMIT (mW)	PASS/FAIL
0	2402	8.35	6.84	125	PASS
39	2441	8.66	7.35	125	PASS
78	2480	8.87	7.71	125	PASS

π/4 DQPSK

CHANNEL	CHANNEL FREQUENCY (MHz)	POWER OUTPUT (dBm)	POWER OUTPUT (mW)	POWER LIMIT (mW)	PASS/FAIL
0	2402	9.87	9.71	125	PASS
39	2441	9.94	9.86	125	PASS
78	2480	10.53	11.30	125	PASS

8DPSK

BV 7Layers Communications Technology

(Shenzhen) Co. Ltd

CHANNEL	CHANNEL FREQUENCY (MHz)	POWER OUTPUT (dBm)	POWER OUTPUT (mW)	POWER LIMIT (mW)	PASS/FAIL
0	2402	9.79	9.53	125	PASS
39	2441	10.42	11.02	125	PASS
78	2480	10.65	11.61	125	PASS

3.7.7.2 Average Output Power (FOR REFERENCE)

The average power sensor was used on the output port of the EUT. A power meter was used to read the response of the power sensor. Record the power level.

GFSK

CHANNEL	CHANNEL FREQUENCY (MHz)	AVERAGE POWER (dBm)	PASS/FAIL
0	2402	7.67	N/A
39	2441	7.64	N/A
78	2480	7.92	N/A

π/4 DQPSK

CHANNEL	CHANNEL FREQUENCY (MHz)	AVERAGE POWER (dBm)	PASS/FAIL
0	2402	7.19	N/A
39	2441	7.24	N/A
78	2480	7.43	N/A

8DPSK

CHANNEL	CHANNEL FREQUENCY (MHz)	AVERAGE POWER (dBm)	PASS/FAIL
0	2402	7.41	N/A
39	2441	7.33	N/A
78	2480	7.62	N/A

3.8 OUT OF BAND MEASUREMENT

3.8.1 LIMITS OF OUT OF BAND MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100KHz RBW).

3.8.2 TEST INSTRUMENTS

Refer to section 3.3.3 to get information of above instrument.

3.8.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low loss cable. Spectrum Analyzer was set RBW to 100 kHz and VBW to 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. Detector = PEAK and Trace mode = Max Hold. The band edges was measured and recorded.

3.8.4 DEVIATION FROM TEST STANDARD

No deviation.

3.8.5 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

3.8.6 TEST RESULTS

N/A

4 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

Tel: +86 755 8869 6566 Fax: +86 755 8869 6577

5 **APPENDIX** MODIFICATIONS **RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB**

No any modifications are made to the EUT by the lab during the test.

---END---

District, Shenzhen, Guangdong, China

Tel: +86 755 8869 6566 Fax: +86 755 8869 6577