

FCC TEST REPORT (PART 24)

Bertel Jungin aukio 9, 02600 Espoo, Finland			
2AJOTTA-1190			
Apr. 02, 2019 ~ Apr. 10, 2019			
☐ FCC PART 24, Subpart E☐ ANSI C63.26-2015☐ ANSI/TIA/EIA-603-D☐ ANSI/TIA/EIA-603-E			
CONCLUSION: The submitted sample was found to COMPLY with the test requirement			
Date: Apr. 11, 2019 Date: Apr. 11, 2019 This report is governed by, and incorporate by reference, CPS Conditions of Service as posted at the date of issuance of this report at the complete by the complete			

http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or ormission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

TABLE OF CONTENTS

R	ELEASE	CONTROL RECORD	4
1	SUMM	ARY OF TEST RESULTS	5
	11 ME	ASUREMENT UNCERTAINTY	5
		ST SITE AND INSTRUMENTS	
_			
2	GENE	RAL INFORMATION	7
	2.1 GE	NERAL DESCRIPTION OF EUT	7
		NFIGURATION OF SYSTEM UNDER TEST	
	2.3 DE	SCRIPTION OF SUPPORT UNITS	g
	2.4 TES	ST ITEM AND TEST CONFIGURATION	9
		IT OPERATING CONDITIONS	
	2.6 GE	NERAL DESCRIPTION OF APPLIED STANDARDS	11
3	TEST 1	YPES AND RESULTS	12
	3.1 OU	TPUT POWER MEASUREMENT	12
		LIMITS OF OUTPUT POWER MEASUREMENT	
	3.1.2	TEST PROCEDURES	12
	3.1.3	TEST SETUP	12
	3.1.4	TEST RESULTS	14
		EQUENCY STABILITY MEASUREMENT	
		LIMITS OF FREQUENCY STABILITY MEASUREMENT	
		TEST PROCEDURE	
		TEST SETUP	
	3.2.4	TEST RESULTS	16
		CUPIED BANDWIDTH MEASUREMENT	
		TEST PROCEDURES	
		TEST SETUP	
		TEST RESULTS	
	3.4 BAI	ND EDGE MEASUREMENT LIMITS OF BAND EDGE MEASUREMENT	19
		TEST SETUP	
		TEST PROCEDURES	
		TEST RESULTS	
		NDUCTED SPURIOUS EMISSIONS	
		LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT	
		TEST PROCEDURE	
		TEST SETUP	
		TEST RESULTS	
		DIATED EMISSION MEASUREMENT	
		LIMITS OF RADIATED EMISSION MEASUREMENT	
		TEST PROCEDURES	
	3.6.3	DEVIATION FROM TEST STANDARD	23
	3.6.4	TEST SETUP	24
		TEST RESULTS	
		AK TO AVERAGE RATIO	
	-	LIMITS OF PEAK TO AVERAGE RATIO MEASUREMENT	_
		TEST SETUP	
		TEST PROCEDURES	
	3.7.4	TEST RESULTS	35

4	INFORMATION ON THE TESTING LABORATORIES	38
-	APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE	39

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF190401W002-2	Original release	Apr. 11, 2019

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	APPLIED STANDARD: FCC Part 24 & Part 2					
STANDARD SECTION	TEST TYPE	RESULT	REMARK			
2.1046 24.232	Equivalent isotropic radiated		Meet the requirement of limit.			
2.1055 24.235	Frequency Stability		Meet the requirement of limit.			
2.1049 24.238(b) Occupied Bandwidth	Occupied Bandwidth	PASS	Meet the requirement of limit.			
24.232(d) Peak to average ratio 24.238(b) Band Edge Measurements 2.1051 24.238 Conducted Spurious Emissions		PASS	Meet the requirement of limit.			
		PASS	Meet the requirement of limit.			
		PASS	Meet the requirement of limit.			
2.1053 24.238	Radiated Spurious Emissions		Meet the requirement of limit. Minimum passing margin is -25.52dB at 51.24MHz.			

1.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY
Effective Radiated Power	±4.48dB
Frequency Stability	\pm 39.27Hz
Radiated emissions	±4.48dB
Conducted emissions	±2 dB
Occupied Channel Bandwidth	±21.7KHz
Band Edge Measurements	±4.48dB
Peak to average ratio	±0.76dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.2 TEST SITE AND INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
MXE EMI Receiver	KEYSIGHT	N9038A-544	MY54450026	Feb. 26,19	Feb. 25,20
EXA Signal Analyzer	KEYSIGHT	N9010A-526	MY54510322	Feb. 26,19	Feb. 25,20
Bilog Antenna 1	ETS-LINDGREN	3143B	00161964	Feb. 26,19	Feb. 25,20
Bilog Antenna 2	ETS-LINDGREN	3143B	00161965	Feb. 26,19	Feb. 25,20
Horn Antenna 1	ETS-LINDGREN	3117	00168728	Feb. 26,19	Feb. 25,20
Horn Antenna 2	ETS-LINDGREN	3117	00168692	Nov. 30, 18	Nov. 29, 19
Loop antenna	Daze	ZN30900A	0708	Oct. 23,18	Oct. 22, 19
Horn Antenna (18GHz-40GHz)	N/A	QWH-SL-18-40 -K-SG/QMS-00 361	15433	Nov. 21, 18	Nov. 20, 19
Radio Communication Analyzer	ANRITSU	MT8820C	6201465426	Feb. 26,19	Feb. 25,20
Signal Pre-Amplifier	EMSI	EMC 9135	980249	Jul. 09,18	Jul. 08,19
Signal Pre-Amplifier	EMSI	EMC 012645B	980257	Jul. 09,18	Jul. 08,19
Signal Pre-Amplifier	EMSI	EMC 184045B	980259	Jul. 09,18	Jul. 08,19
3m Semi-anechoic Chamber	ETS-LINDGREN	9m*6m*6m	Euroshieldpn- CT0001143-1216	Feb. 26,19	Feb. 25,20
Test Software	E3	V 9.160323	N/A	N/A	N/A
Test Software	ADT	ADT_Radiated _V7.6.15.9.2	N/A	N/A	N/A
10dB Attenuator	JFW/USA	50HF-010-SM A	1505	Jul. 09,18	Jul. 08,19
Power Meter	Anritsu	ML2495A	1506002	Feb. 26,19	Feb. 25,20
Power Sensor	Anritsu	MA2411B	1339352	Feb. 26,19	Feb. 25,20
Humid & Temp Programmable Tester	Juyi	ITH-120-45-CP -AR	IAA1504-001	Jul. 09,18	Jul. 08,19
MXG Analog Microvave Signal Generator	KEYSIGHT	N5183A	MY50143024	Feb. 26,19	Feb. 25,20

NOTE: 1. The calibration interval of the above test instruments is 12 months or 24 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

- 2. The test was performed in 3m Semi-anechoic Chamber and RF Oven Room.
- 3. The horn antenna is used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 525120; The Designation No. is CN1171.

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

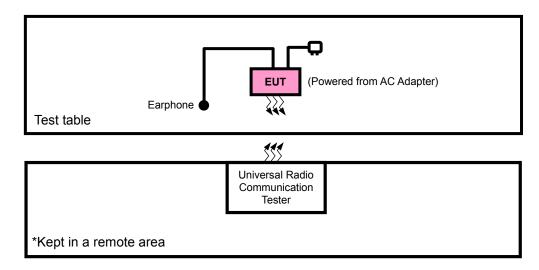
PRODUCT	GSM mobile phone		
BRAND NAME	NOKIA		
MODEL NAME	TA-1190		
POWER SUPPLY	5.0Vdc (adapter or host equipment) 3.7Vdc (Li-ion, battery)		
MODULATION TYPE	GSM: GMSK		
FREQUENCY RANGE	GSM 1850.2MHz ~ 1909.8MHz		
MAX. EIRP POWER	GSM 628mW		
EMISSION DESIGNATOR	GSM	245KGXW	
ANTENNA TYPE	PCB embedded Antenna with -5	odBi gain	
HW VERSION	HW0102		
SW VERSION	12.01.10		
I/O PORTS	Refer to user's manual		
CABLE SUPPLIED	Earphone cable: non-shielded, o	detachable, 1.5 meter	

NOTE:

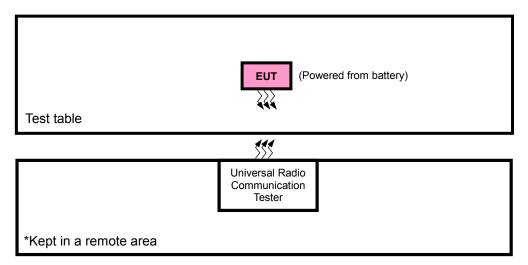
- 1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 2. The EUT was powered by the following adapter:

ADAPTER	·
BRAND:	NOKIA
MODEL:	AC-18U
INPUT:	AC 100-240V, 100mA
OUTPUT:	DC 5V, 550mA
MANUFACTURER:	DVE

3. The EUT matched the following Earphone:


The Let materied the remembly Larphene.			
EARPHONE			
BRAND:	NOKIA		
MODEL:	WH-108		
SIGNAL LINE:	1.5 METER		
MANUFACTURER:	Rongtaifeng		

4. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.



2.2 CONFIGURATION OF SYSTEM UNDER TEST

FOR RADIATION EMISSION TEST

FOR CONDUCTED & E.I.R.P. TEST

2.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	DC source	LONG WEI	PS-6403D	010934269	N/A
2	PC	HP	A6608CN	3CR83825X3	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS						
1	DC Line: Unshielded, Detachable 1.0m						
2	AC Line: Unshielded, Detachable 1.5m						

NOTE:

2.4 TEST ITEM AND TEST CONFIGURATION

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports

The worst case in EIRP and radiated emission was found when positioned on X-plane for GSM. Following channel(s) was (were) selected for the final test as listed below:

EUT CONFIGURE MODE	DESCRIPTION
Α	EUT + Adapter + Earphone with GSM link
В	EUT + Battery with GSM link

GSM MODE

EUT CONFIGURE MODE	TEST ITEM	AVAILABLE CHANNEL	TESTED CHANNEL	MODE
В	EIRP	512 to 810	512, 661, 810	GSM
В	FREQUENCY STABILITY	512 to 810	512, 810	GSM
В	OCCUPIED BANDWIDTH	512 to 810	512, 661, 810	GSM
В	PEAK TO AVERAGE RATIO	512 to 810	512, 661, 810	GSM
В	BAND EDGE	512 to 810	512, 810	GSM
В	CONDCUDETED EMISSION	512 to 810	512, 661, 810	GSM
А	RADIATED EMISSION	512 to 810	512, 661, 810	GSM

Email: customerservice.dg@cn.bureauveritas.com

^{1.} All power cords of the above support units are non shielded (1.8m).

TEST CONDITION:

TEST ITEM	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
EIRP	25deg. C, 57%RH	3.7Vdc from Battery	Rose Ma
FREQUENCY STABILITY	23deg. C, 61%RH	DC 3.4V/3.7V/4.2V	Rain Wang
OCCUPIED BANDWIDTH	23deg. C, 61%RH	3.7Vdc from Battery	Rain Wang
PEAK TO AVERAGE RATIO	23deg. C, 61%RH	3.7Vdc from Battery	Rain Wang
BAND EDGE	23deg. C, 61%RH	3.7Vdc from Battery	Rain Wang
CONDCUDETED EMISSION	23deg. C, 61%RH	3.7Vdc from Battery	Rain Wang
RADIATED EMISSION	23deg. C, 70%RH	5Vdc from adapter	Rose Ma

2.5 EUT OPERATING CONDITIONS

The EUT makes a call to the communication simulator. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency

2.6 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2 FCC 47 CFR Part 24 KDB 971168 D01 Power Meas License Digital Systems v03r01 ANSI/TIA/EIA-603-D ANSI/TIA/EIA-603-E ANSI C63.26-2015

NOTE: All test items have been performed and recorded as per the above standards.

Page 11 of 39

Tel: +86 755 8869 6566

3 TEST TYPES AND RESULTS

3.1 OUTPUT POWER MEASUREMENT

3.1.1 LIMITS OF OUTPUT POWER MEASUREMENT

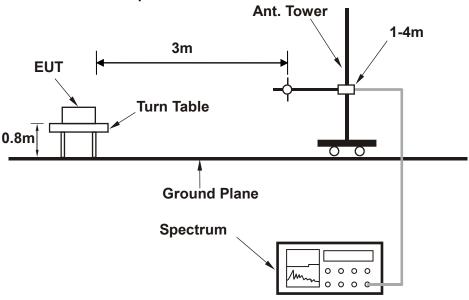
Mobile and portable stations are limited to 2 watts EIRP.

3.1.2 TEST PROCEDURES

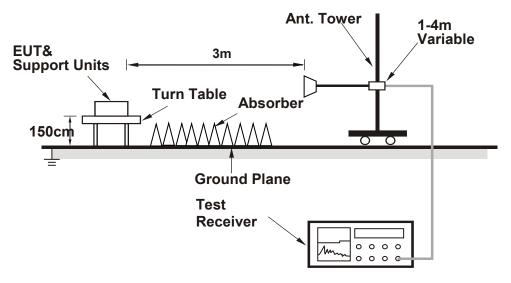
EIRP MEASUREMENT:

- a. All measurements were done at low, middle and high operational frequency range. RBW and VBW is 1MHz for GSM.
- b. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- c. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step b. Record the power level of S.G
- d. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.

CONDUCTED POWER MEASUREMENT:


The EUT was set up for the maximum power with GSM link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

3.1.3 TEST SETUP



EIRP / ERP Measurement:

<Radiated Emission below or equal 1 GHz>

<Radiated Emission above 1 GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

CONDUCTED POWER MEASUREMENT:

Email: customerservice.dg@cn.bureauveritas.com

3.1.4 TEST RESULTS

CONDUCTED OUTPUT POWER (dBm)

Band	GSM1900				
Channel	512 661 810				
Frequency (MHz)	1850.2 1880.0 1909.8				
GSM	29.01	29.03	29.57		

EIRP POWER (dBm)

GSM

Channel	Frequency (MHz)	SPA LVL (dBm)	Correction Factor(dB)	EIRP(dBm)	EIRP(mW)	Polarization (H/V)
512	1850.2	-15.85	43.83	27.98	628.06	Н
661	1880.0	-16.42	43.57	27.15	518.80	Н
810	1909.8	-16.76	44.57	27.81	603.95	Н
512	1850.2	-28.02	46.39	18.37	68.71	V
661	1880.0	-28.56	47.10	18.54	71.42	V
810	1909.8	-29.12	45.98	16.86	48.48	V

REMARKS: 1. EIRP Output Power (dBm) = SPA LVL (dBm) + Correction Factor (dB).

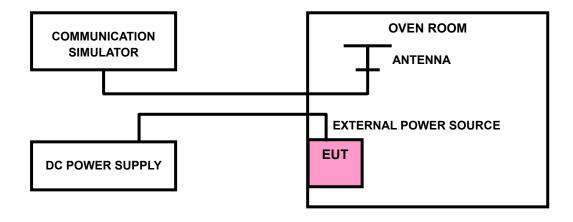
2. Correction factor (dB) = Free Space Loss + Antenna Factor + Cable Loss

Tel: +86 755 8869 6566

Fax: +86 755 8869 6577

3.2 FREQUENCY STABILITY MEASUREMENT

3.2.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT


The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

3.2.2 TEST PROCEDURE

- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the $\pm 0.5^{\circ}$ C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

NOTE: The frequency error was recorded frequency error from the communication simulator.

3.2.3 TEST SETUP

Email: customerservice.dg@cn.bureauveritas.com

3.2.4 TEST RESULTS

GSM1900

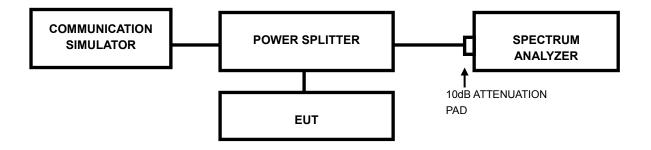
FREQUENCY ERROR VS. VOLTAGE

VOLTACE (Volta)	FREQUENCY E	LIMIT (none)	
VOLTAGE (Volts)	Low Channel	High Channel	LIMIT (ppm)
3.7	0.0009	0.0012	2.5
3.4	-0.0012	-0.0012	2.5
4.2	0.0009	0.0011	2.5

NOTE: The applicant defined the normal working voltage of the battery is from 3.4Vdc to 4.2Vdc.

FREQUENCY ERROR vs. TEMPERATURE.

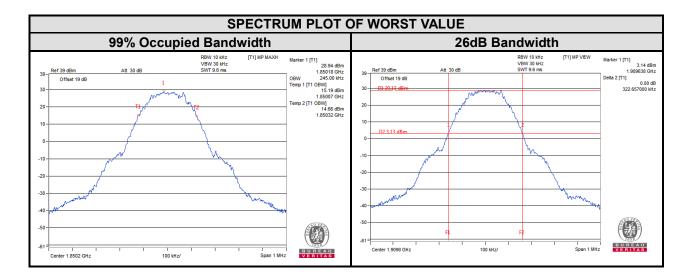
TEMP. (℃)	FREQUENCY E	LIMIT (ppm)	
TEMP. (C)	Low Channel	High Channel	LIMIT (ppin)
-30	-0.0055	-0.0053	2.5
-20	-0.0051	-0.0048	2.5
-10	-0.0046	-0.0044	2.5
0	-0.0037	-0.0035	2.5
10	-0.0030	-0.0028	2.5
20	-0.0023	-0.0021	2.5
30	-0.0018	-0.0016	2.5
40	-0.0014	-0.0012	2.5
50	-0.0005	-0.0003	2.5



3.3 OCCUPIED BANDWIDTH MEASUREMENT

3.3.1 TEST PROCEDURES

The EUT makes a call to the communication simulator. All measurements were done at low, middle and high operational frequency range. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.

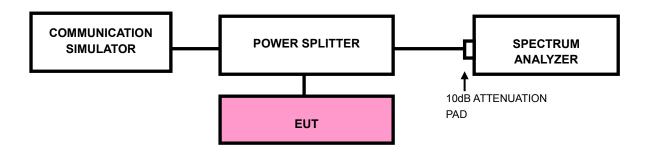

3.3.2 TEST SETUP

3.3.3 TEST RESULTS

CHANNEL	Frequency	99% OCCUPIED Bandwidth (kHz)	CHANNEL	Frequency	26dB Bandwidth (kHz)
	(MHz)	GSM	(MHz)		GSM
512	1850.2	245.00	512	1850.2	322.09
661	1880.0	244.00	661	1880.0	320.60
810	1909.8	243.00	810	1909.8	322.66

Tel: +86 755 8869 6566

Fax: +86 755 8869 6577

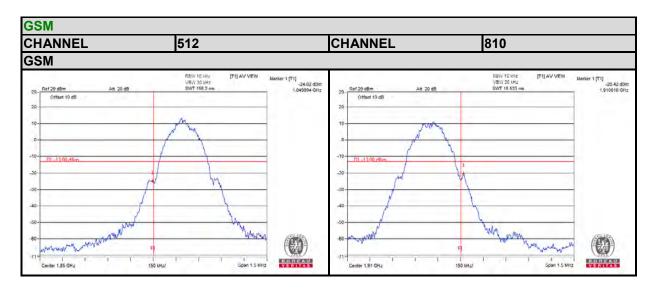


3.4 BAND EDGE MEASUREMENT

3.4.1 LIMITS OF BAND EDGE MEASUREMENT

Power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

3.4.2 TEST SETUP

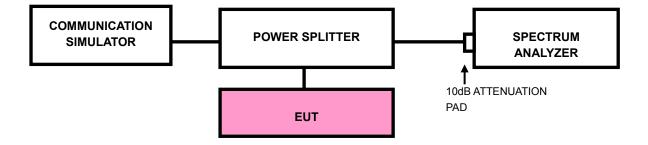


3.4.3 TEST PROCEDURES

- a. All measurements were done at low and high operational frequency range.
- The center frequency of spectrum is the band edge frequency and span is 1.5 MHz. RBW of the spectrum is 10kHz and VBW of the spectrum is 30kHz (GSM).
- c. Record the max trace plot into the test report.

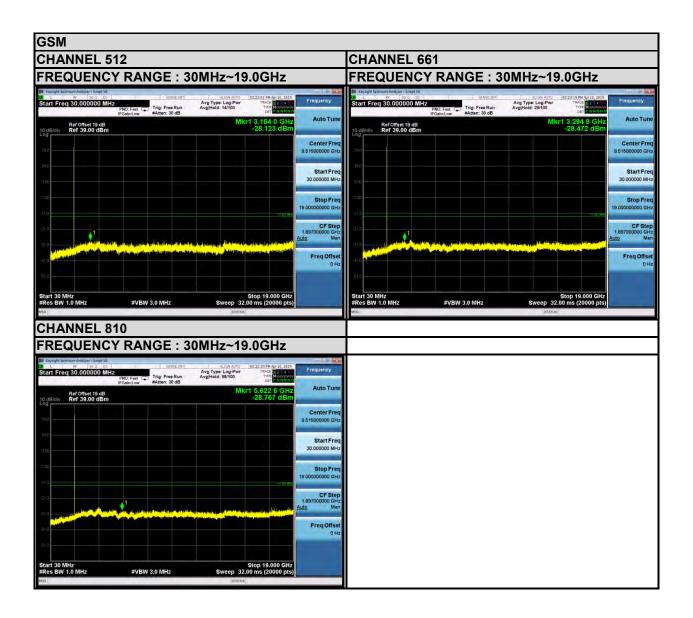
3.4.4. TEST RESULTS

3.5 CONDUCTED SPURIOUS EMISSIONS


3.5.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The emission limit equal to -13dBm.

3.5.2 TEST PROCEDURE


- a. The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range.
- b. Measuring frequency range is from 9 kHz to 19GHz. 10dB attenuation pad is connected with spectrum. RBW=1MHz and VBW=3MHz is used for conducted emission measurement.

3.5.3 TEST SETUP

3.5.4 TEST RESULTS

3.6 RADIATED EMISSION MEASUREMENT

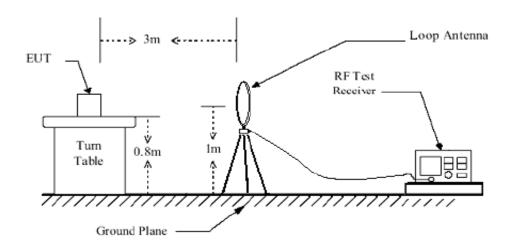
3.6.1 LIMITS OF RADIATED EMISSION MEASUREMENT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The emission limit equal to -13dBm.

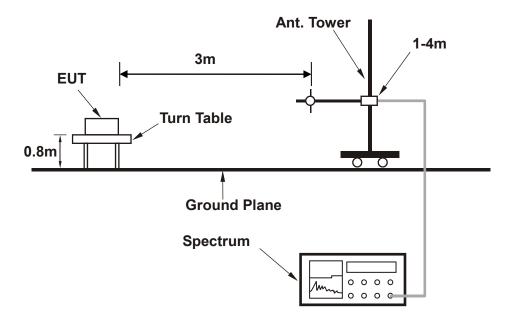
3.6.2 TEST PROCEDURES

- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.

NOTE: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.


3.6.3 DEVIATION FROM TEST STANDARD

No deviation



3.6.4 TEST SETUP

<Below 30MHz>

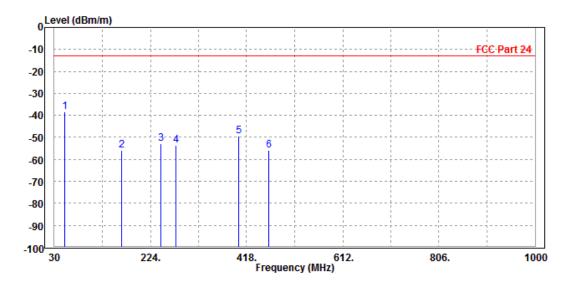
< Frequency Range 30MHz~1GHz >

< Frequency Range above 1GHz >

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.6.5 TEST RESULTS

BELOW 1GHz WORST-CASE DATA

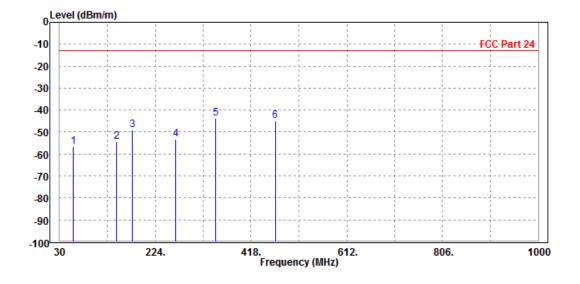

9 KHz – 30 MHz data: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

30 MHz - 1GHz data:

PCS 1900:

MODE	TX channel 661	Below 1000MHz				
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 5V from adapter			
TESTED BY	Rose Ma					
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						

	Freq	Level	Read Level	Limit Line	Over Limit	Factor	Remark	Pol/Phase
_	MHz	dBm/m	dBm	dBm/m	dB	dB/m		
1 PP	51.240	-38.52	-40.36	-13.00	-25.52	1.84	Peak	Horizontal
2	165.480	-55.96	-37.68	-13.00	-42.96	-18.28	Peak	Horizontal
3	245.610	-52.93	-36.57	-13.00	-39.93	-16.36	Peak	Horizontal
4	275.860	-53.59	-38.59	-13.00	-40.59	-15.00	Peak	Horizontal
5	401.210	-49.41	-38.95	-13.00	-36.41	-10.46	Peak	Horizontal
6	462.150	-56.08	-45.67	-13.00	-43.08	-10.41	Peak	Horizontal

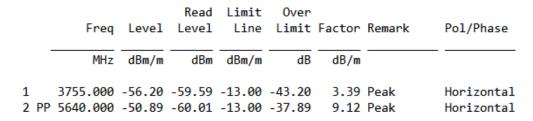


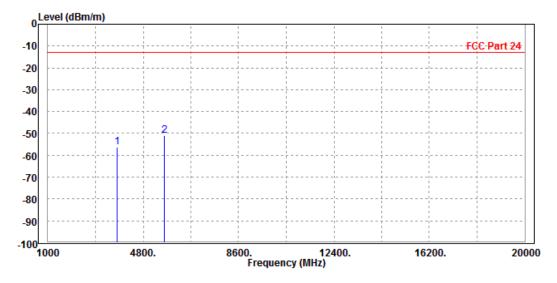
Email: customerservice.dg@cn.bureauveritas.com

MODE	TX channel 661	FREQUENCY RANGE	Below 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 5V from adapter			
TESTED BY	Rose Ma					
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						

			Read	Limit	0ver			
	Freq	Level	Level	Line	Limit	Factor	Remark	Pol/Phase
_								
	MHz	dBm/m	dBm	dBm/m	dB	dB/m		
1	58.420	-56.52	-45.36	-13.00	-43.52	-11.16	Peak	Vertical
2	145.210	-54.51	-38.54	-13.00	-41.51	-15.97	Peak	Vertical
3	176.940	-48.91	-35.42	-13.00	-35.91	-13.49	Peak	Vertical
4	265.310	-53.23	-41.78	-13.00	-40.23	-11.45	Peak	Vertical
5 PP	345.690	-43.77	-32.64	-13.00	-30.77	-11.13	Peak	Vertical
6	466.980	-45.04	-36.58	-13.00	-32.04	-8.46	Peak	Vertical

Page 27 of 39

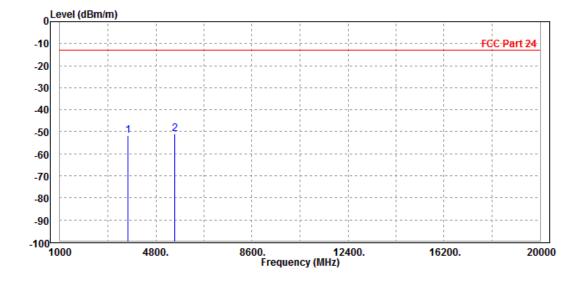

ABOVE 1GHz DATA


Note: For higher frequency, the emission is too low to be detected.

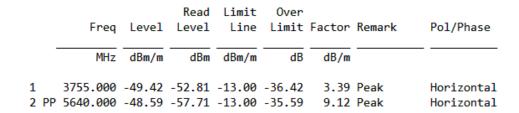
PCS 1900:

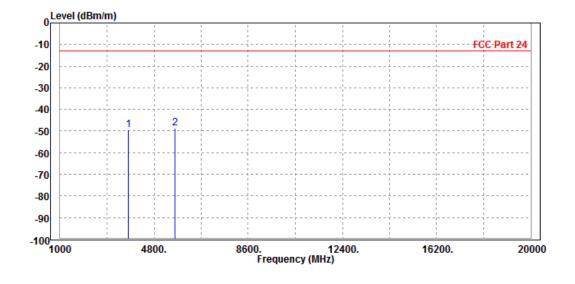
CH 512

MODE	TX channel 512	FREQUENCY RANGE	Above 1000MHz				
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 5V from adapter				
TESTED BY	TESTED BY Rose Ma						
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							



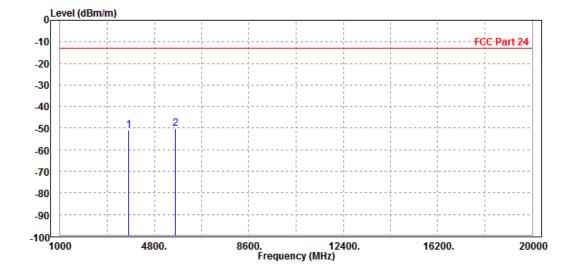
MODE TX channel 512		FREQUENCY RANGE	Above 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 5V from adapter			
TESTED BY	Rose Ma					
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						


		Freq	Level		Limit Line		Factor	Remark	Pol/Phase	
	-	MHz	dBm/m	——dRm	dRm/m	dB			-	
_			•		•		,			
1		3698.000	-51./8	-55.35	-13.00	-38./8	3.5/	Peak	Vertical	
2	PP	5550.600	-50.86	-58.93	-13.00	-37.86	8.07	Peak	Vertical	



CH 661

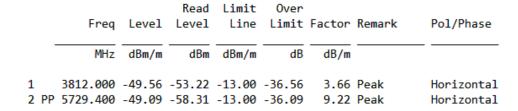
MODE	TX channel 661	FREQUENCY RANGE	Above 1000MHz				
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 5V from adapter				
TESTED BY	TESTED BY Rose Ma						
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							

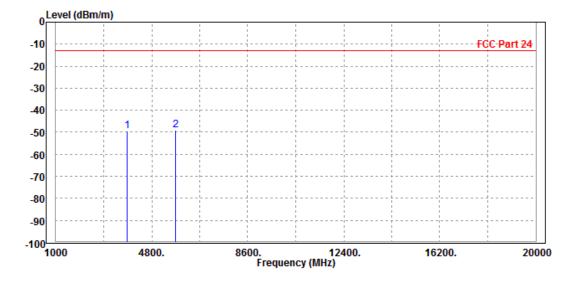


MODE	DE TX channel 661 F		Above 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 5V from adapter			
TESTED BY	ED BY Rose Ma					
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						

	Freq	Level		Limit Line		Factor	Remark	Pol/Phase
	MHz	dBm/m	dBm	dBm/m	dB	dB/m		
1	3755.000 5640.000							Vertical Vertical

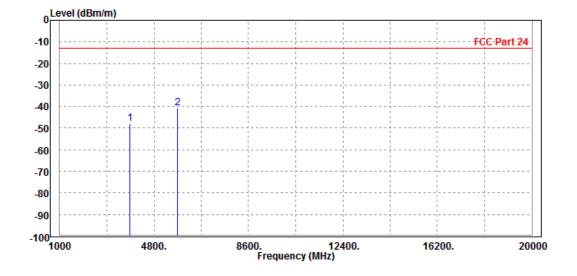
District, Shenzhen, Guangdong, China


Tel: +86 755 8869 6566 Fax: +86 755 8869 6577


Email: customerservice.dg@cn.bureauveritas.com

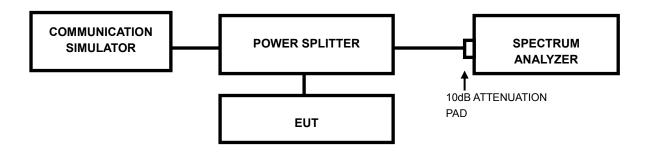
CH 810

MODE	TX channel 810	FREQUENCY RANGE	Above 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 5V from adapter			
TESTED BY	TESTED BY Rose Ma					
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						



MODE TX channel 810		FREQUENCY RANGE	Above 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 5V from adapter			
TESTED BY	TED BY Rose Ma					
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						

			Read	Limit	0ver			
	Freq	Level	Level	Line	Limit	Factor	Remark	Pol/Phase
_	MHz	dBm/m	dBm	dBm/m	dB	dB/m		
		•						
1	3812.000	-47.95	-52.09	-13.00	-34.95	4.14	Peak	Vertical
_	3012.000		32.03	13.00	22		· cuit	
2 PP	5729.400	-40.80	-49.24	-13.00	-27.80	8.44	Peak	Vertical
				00				



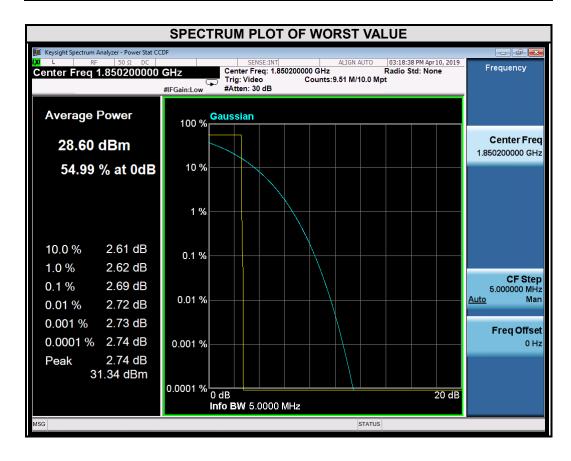
3.7 PEAK TO AVERAGE RATIO

3.7.1 LIMITS OF peak to average ratio MEASUREMENT

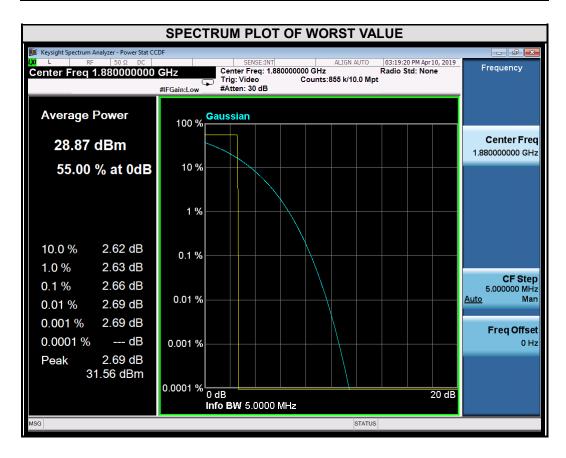
In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB

3.7.2 TEST SETUP

3.7.3 TEST PROCEDURES

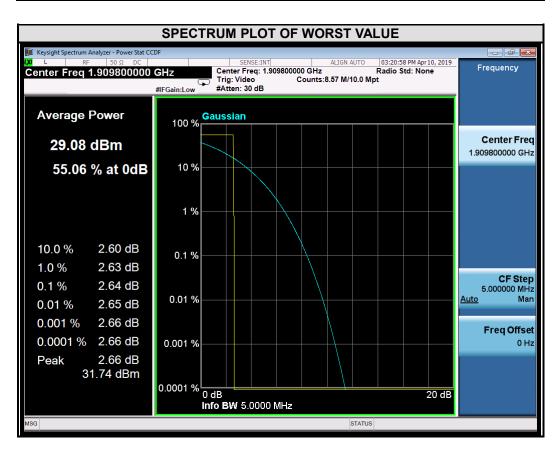

- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Record the maximum PAPR level associated with a probability of 0.1%.

3.7.4 TEST RESULTS


GSM

CHANNEL	FREQUENCY (MHz)	PEAK TO AVERAGE RATIO (dB)
512	1850.2	2.69

CHANNEL	FREQUENCY (MHz)	PEAK TO AVERAGE RATIO (dB)
661	1880	2.66



Tel: +86 755 8869 6566

Fax: +86 755 8869 6577

CHANNEL	FREQUENCY (MHz)	PEAK TO AVERAGE RATIO (dB)
810	1909.8	2.64

INFORMATION ON THE TESTING LABORATORIES

We, BV 7LAYERS COMMUNICATIONS TECHNOLOGY (SHENZHEN) CO. LTD., were founded in 2015 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Shenzhen EMC/RF Lab:

Tel: +86-755-88696566 Fax: +86-755-88696577

Email: <u>customerservice.dg@cn.bureauveritas.com</u>

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

Tel: +86 755 8869 6566

Fax: +86 755 8869 6577

BUREAU Test Report No.: RF190401W002-2

APPENDIX A - MODIFICATIONS RECORDERS FOR **ENGINEERING CHANGES TO THE EUT BY THE LAB**

No any modifications are made to the EUT by the lab during the test.

---END---