

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

50.7 Ω + 5.3 jΩ	
- 25.6 dB	
	NA I CONTRACTO AND IN MEMORY AND A

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.9 Ω + 6.5 jΩ
Return Loss	- 21.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.205 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

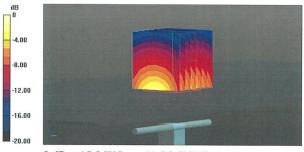
Manufactured by	SPEAG
Manufactured on	March 28, 2008

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 24.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland

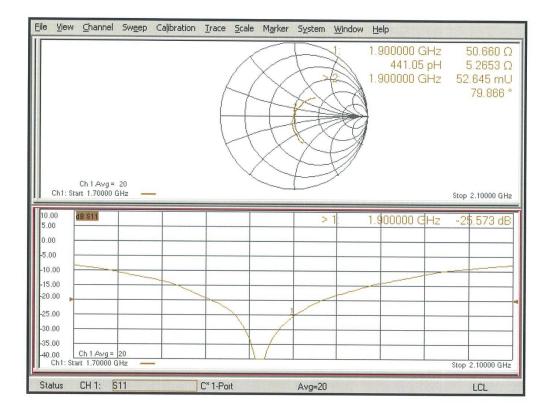

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d101

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.34 S/m; ϵ_r = 39.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.6 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 17.9 W/kg SAR(1 g) = 9.84 W/kg; SAR(10 g) = 5.23 W/kg Maximum value of SAR (measured) = 15.0 W/kg


0 dB = 15.0 W/kg = 11.76 dBW/kg

Certificate No: D1900V2-5d101_Jul18

Page 5 of 8

Impedance Measurement Plot for Head TSL

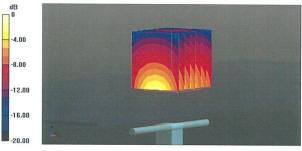
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 24.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d101

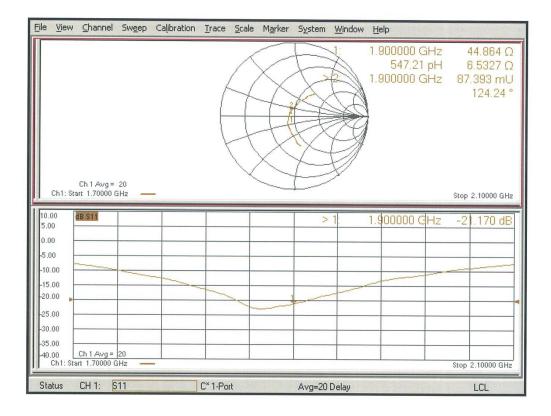

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.46 S/m; ϵ _r = 54.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.15, 8.15, 8.15) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.3 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 9.83 W/kg; SAR(10 g) = 5.26 W/kg Maximum value of SAR (measured) = 14.8 W/kg


0 dB = 14.8 W/kg = 11.70 dBW/kg

Certificate No: D1900V2-5d101_Jul18

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d101_Jul18

Page 8 of 8

2450 MHz Dipole Calibration Certificate

Calibration Laboratory Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich		BC-MRA	 S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service
Accredited by the Swiss Accreditati The Swiss Accreditation Service Multilateral Agreement for the red	is one of the signatori		Accreditation No.: SCS 0108
Client CTTL (Auden)			ate No: D2450V2-853_Jul18
CALIBRATION C	ERTIFICAT		
Object	D2450V2 - SN:8	53	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	edure for dipole validation kits	above 700 MHz
Calibration date:	July 24, 2018		
Calibration Equipment used (M&TE		ry facility: environment temperature (22	
Primary Standards Power meter NRP	SN: 104778	Cal Date (Certificate No.)	Scheduled Calibration
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673)	Apr-19 Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19 Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18
	Name	Function	signature
Calibrated by:	Claudio Leubler	Laboratory Technician	UKA
Approved by:	Katja Pokovic	Technical Manager	Ally
This calibration certificate shall not	be reproduced except ir	full without written approval of the labor	Issued: July 24, 2018 ratory.

Certificate No: D2450V2-853_Jul18

Page 1 of 8

No.I19Z60257-SEM01 Page 180 of 190

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

S Service suisse d'étalonnage C Servizio svizzero di taratura S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid sensitivity in TSL / NORM x,y,z ConvF not applicable or not measured N/A

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-853_Jul18

Page 2 of 8

Schweizerischer Kalibrierdienst Swiss Calibration Service

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	And a state of the second second
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.7 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.13 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.3 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	6.10 W/kg

Certificate No: D2450V2-853_Jul18

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.1 Ω + 3.9 jΩ	
Return Loss	- 25.2 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.5 Ω + 6.0 jΩ	
Return Loss	- 24.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.161 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

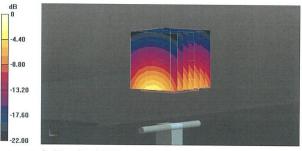
Manufactured by	SPEAG				
Manufactured on	November 10, 2009				

Certificate No: D2450V2-853_Jul18

DASY5 Validation Report for Head TSL

Date: 24.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland

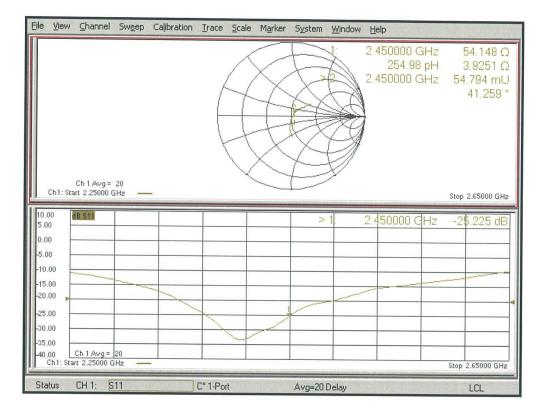

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:853

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.85 S/m; ϵ_r = 37.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 115.3 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 26.1 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.13 W/kg Maximum value of SAR (measured) = 21.6 W/kg


0 dB = 21.6 W/kg = 13.34 dBW/kg

Certificate No: D2450V2-853_Jul18

Page 5 of 8

Impedance Measurement Plot for Head TSL

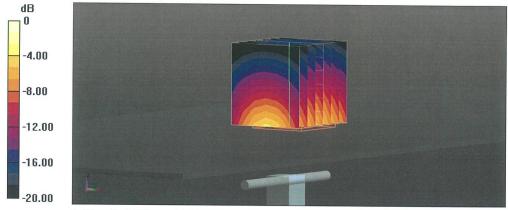
Certificate No: D2450V2-853_Jul18

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 16.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland

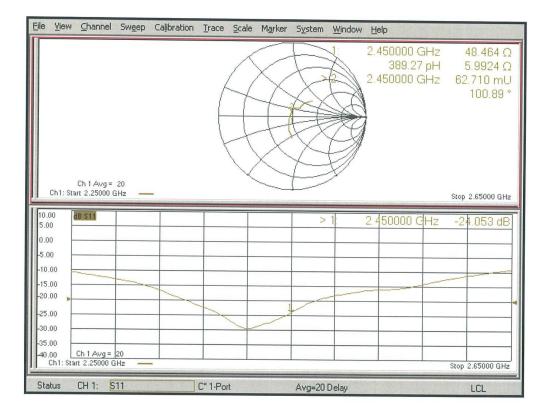

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:853

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.02 S/m; ϵ_r = 51.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.01, 8.01, 8.01) @ 2450 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.0 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 25.6 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.1 W/kg Maximum value of SAR (measured) = 21.0 W/kg



0 dB = 21.0 W/kg = 13.22 dBW/kg

Certificate No: D2450V2-853_Jul18

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-853_Jul18

Page 8 of 8

ANNEX I Sensor Triggering Data Summary

1, Maximum transmit power reduce process follow below strategy when mobile connect network.

Headset	P-sensor	SAR sensor	TX Power reduce
Insert	Near	Near	Yes
Insert	Near	Far	No
Insert	Far	Near	Yes
Insert	Far	Far	No
Pull out	Near	Near	No
Pull out	Near	Far	No
Pull out	Far	Near	Yes
Pull out	Far	Far	No

2, Distance definition

P-sensor Detect	Near	Far			
Distance Detected	<3cm	>=5cm			

SAR Sensor Detect	Near	Far		
black	<=18mm	>18mm		
front	Not Detect	Not Detect		
bottom	<=18mm	>18mm		
top	Not Detect	Not Detect		
right	Not Detect	Not Detect		
left	Not Detect	Not Detect		

3, Reduction and Bands

		Maximum conduct
Band	Requirement	power reduction
DCS	1、2、3、4 Slots	2.5dB
PCS	1、2、3、4 Slots	1dB
WB1		1dB
WB2		1dB
WB4		1.5dB
LTE B2		1dB
LTE B4		1.5dB
LTE		
B66		1.5dB

No.I19Z60257-SEM01 Page 188 of 190

According to the above description, this device was tested by the manufacturer to determine the SAR sensor triggering distances for the rear and bottom edge of the device. The measured power state within \pm 5mm of the triggering points (or until touching the phantom) is included for rear and each applicable edge.

To ensure all production units are compliant it is necessary to test SAR at a distance 1mm less than the smallest distance from the device and SAR phantom with the device at maximum output power without power reduction.

We tested the power and got the different proximity sensor triggering distances for rear and bottom edge. But the manufacturer has declared 18mm is the most conservative triggering distance for main antenna. So base on the most conservative triggering distance of 18mm, additional SAR measurements were required at 17mm from the highest SAR position between rear and bottom edge of main antenna.

Rear

Moving device toward the phantom:

The power state											
Distance [mm]	23	22	21	20	19	18	17	16	15	14	13
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

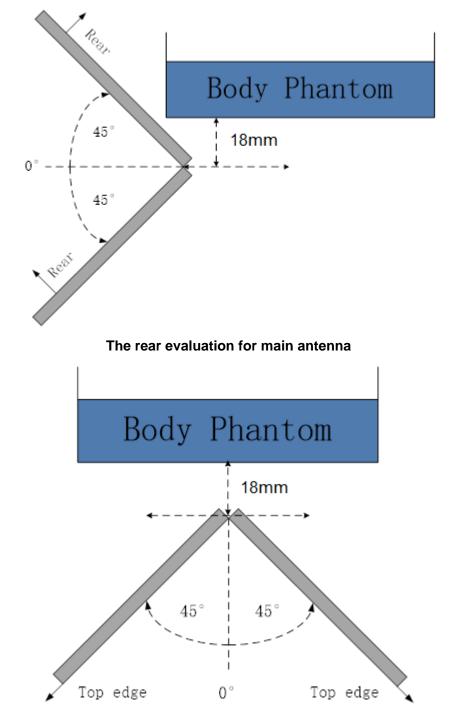
Moving device away from the phantom:

The power state											
Distance [mm]	13	14	15	16	17	18	19	20	21	22	23
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Bottom Edge

Moving device toward the phantom:

The power state											
Distance [mm]	23	22	21	20	19	18	17	16	15	14	13
Main antenna	Normal	Normal	Normal	Low							


Moving device away from the phantom:

The power state												
Distance [mm]	13	14	15	16	17	18	19	20	21	22	23	
Main antenna	Low	Normal	Normal	Normal								

No.I19Z60257-SEM01 Page 189 of 190

The influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is $\pm 45^{\circ}$ or more from the vertical position at 0°.



The bottom edge evaluation for main antenna

Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the $\pm 45^{\circ}$ range at the smallest sensor triggering test distance declared by manufacturer.

ANNEX J Accreditation Certificate

