

No. I19Z60257-SEM03

For

HMD Global Oy phone

Model name: TA-1182

With

Hardware Version: 1.0

Software Version: 00VZW_0_150

FCC ID: 2AJOTTA-1182

Results Summary: T Category = T4

Issued Date: 2019-4-10

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 51, Xueyuan Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

Email: cttl terminals@caict.ac.cn, website: www.caict.ac.cn

REPORT HISTORY

Report Number	Revision	Issue Date	Description	
I19Z60257-SEM03 Rev.0		2019-4-10	Initial creation of test report	

TABLE OF CONTENT

1 TEST LABORATORY	5
1.1 TESTING LOCATION	
1.2 TESTING ENVIRONMENT	
1.4 SIGNATURE	
2 CLIENT INFORMATION	6
2.1 APPLICANT INFORMATION	6
2.2 Manufacturer Information	6
3 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE	
3.1 ABOUT EUT	
3.2 Internal Identification of EUT used during the test	
3.4 Air Interfaces / Bands Indicating Operating Modes	7
4 REFERENCE DOCUMENTS	8
5 OPERATIONAL CONDITIONS DURING TEST	8
5.1 HAC MEASUREMENT SET-UP	
5.2 AM1D PROBE	10
5.3 AMCC	
5.5 Test Arch Phantom & Phone Positioner	11
5.6 ROBOTIC SYSTEM SPECIFICATIONS	11
5.7 T-COIL MEASUREMENT POINTS AND REFERENCE PLANE	
6 T-COIL TEST PROCEDUERES	13
7 T-COIL PERFORMANCE REQUIREMENTS	14
7.1 T-Coil coupling field intensity	
8 CMRS VOICE DUT CONFIGURATION	
8.1 GSM Codec Investigation	
9 VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION	
9.1 TEST SYSTEM SETUP FOR VOLTE OVER IMS T-COIL TESTING	
	17
9.3 RADIO CONFIGURATION	18
10 VOWIFI TEST SYSTEM SETUP AND DUT CONFIGURATION	19
10.1 Test System Setup for VoWiFI over IMS T-coil Testing	
10.2 CODEC CONFIGURATION	
	_
11 OTT VOIP TEST SYSTEM AND DUT CONFIGURATION	
11.1 TEST SYSTEM SETUP FOR OTT VOIP T-COIL TESTING	
11.2 CODEC CONFIGURATION	24
11.4 RADIO CONFIGURATION FOR OTT VOIP (WIFi)	25
12 HAC T-COIL TEST DATA SUMMARY	26
12.1 Test Results for 2/3G	
12.2 Test Results for LTE	
12.4 TEST RESULTS FOR OTT VOIP	
12.5 TOTAL MEASUREMENT CONCLUSION	30

No. I19Z60257-SEM03 Page 4 of 99

13 MEASUREMENT UNCERTAINTY	31
14 MAIN TEST INSTRUMENTS	32
ANNEX A TEST LAYOUT	33
ANNEX B TEST PLOTS	34
ANNEX C FREQUENCY REPONSE CURVES	86
ANNEX D PROBE CALIBRATION CERTIFICATE	91
ANNEX E DAE CALIBRATION CERTIFICATE	94

1 Test Laboratory

1.1 Testing Location

Company Name:	CTTL(Shouxiang)	
Address:	No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District,	
	Beijing, P. R. China100191	

1.2 Testing Environment

Temperature:	18°C~25°C,
Relative humidity:	30%~ 70%
Ground system resistance:	< 0.5 Ω

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

1.3 Project Data

Project Leader:	Qi Dianyuan
Test Engineer:	Lin Hao
Testing Start Date:	March 5, 2019
Testing End Date:	April 8, 2019

1.4 Signature

Lin Xiaojun

(Prepared this test report)

Qi Dianyuan

(Reviewed this test report)

Lu Bingsong

Deputy Director of the laboratory (Approved this test report)

2 Client Information

2.1 Applicant Information

Company Name:	HMD Global Oy
Address /Post:	Bertel Jungin aukio 9, 02600 Espoo, Finland
Contact:	\
Email:	\
Telephone:	\
Fax:	\

2.2 Manufacturer Information

Company Name:	HMD Global Oy		
Address /Post:	Bertel Jungin aukio 9, 02600 Espoo, Finland		
Contact:	1		
Email:	1		
Telephone:	1		
Fax:	\		

3 Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1 About EUT

Description:	phone
Model name:	TA-1182
Operating mode(s):	GSM 850/900/1800/1900, UMTS FDD 1/2/4/5/8, BT, Wi-Fi LTE Band 2/4/5/13/66

3.2 Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version
EUT1	352910100008188	1.0	00VZW_0_150
EUT2	352910100007438	1.0	00VZW_0_150
EUT3	352910100005929	1.0	00VZW_0_150

^{*}EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test T-coil with the EUT1&2 and conducted power with the EUT3.

3.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	WT241	/	Jiade Energy Technology(Zhuhai) Co.,Ltd.

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4 Air Interfaces / Bands Indicating Operating Modes

Air-interface	Band(MHz)	Туре	C63.19/tested	Simultaneous Transmissions	отт
GSM	850	VO	Yes	BT, WLAN	NA
GSIVI	1900	7 0	res		
CDDC/EDCE	850	ОТ	Vaa		Google duo
GPRS/EDGE	1900	DT	Yes		
	850		Yes	BT, WLAN	NA
WCDMA	1700	VO			
(UMTS)	1900				
	HSPA	DT	Yes		Google duo
LTE	Band 2/5/13/66	V/D	Yes	BT, WLAN	Google duo
BT	2450	DT	NA	GSM, WCDMA,LTE	NA
WLAN	2450	V/D	Yes	GSM, WCDMA,LTE	Google duo

VO: Voice CMRS/PSTN Service Only V/D: Voice CMRS/PSTN and Data Service DT: Digital Transport

Note1 = No Associated T-Coil measurement has been made in accordance with 285076 D02 T-Coil testing for CMRS IP

^{*} HAC Rating was not based on concurrent voice and data modes, Non current mode was found to represent worst case rating for both M and T rating

4 Reference Documents

The following document listed in this section is referred for testing.

Reference	Title	Version
ANSI C63.19-2011	American National Standard for Methods of Measurement	2011
	of Compatibility between Wireless Communication Devices	Edition
	and Hearing Aids	

5 OPERATIONAL CONDITIONS DURING TEST

5.1 HAC MEASUREMENT SET-UP

These measurements are performed using the DASY5 NEO automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Stäubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor. The robot is a six-axis industrial robot performing precise movements. A cell controller system contains the power supply, robot controller, teach pendant (Joystick),and remote control, is used to drive the robot motors. The PC consists of the HP Intel Core21.86 GHz computer with Windows XP system and HAC Measurement Software DASY5 NEO, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE)circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

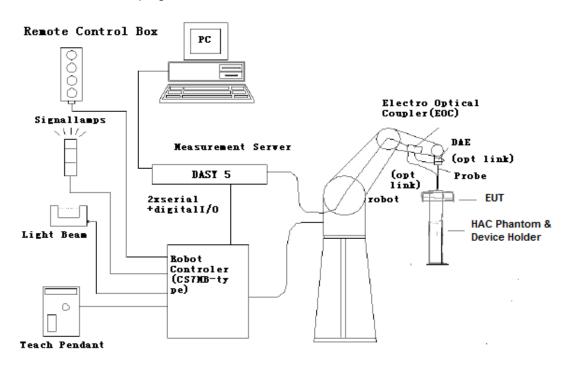


Figure 5.1 HAC Test Measurement Set-up

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

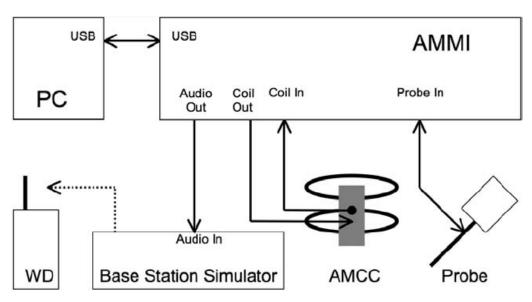


Figure 5.2 T-Coil setup with HAC Test Arch and AMCC

5.2 AM1D probe

The AM1D probe is an active probe with a single sensor. It is fully RF-shielded and has a rounded tip 6mm in diameter incorporating a pickup coil with its center offset 3mm from the tip and the sides. The symmetric signal preamplifier in the probe is fed via the shielded symmetric output cable from the AMMI with a 48V "phantom" voltage supply. The 7-pin connector on the back in the axis of the probe does not carry any signals. It is mounted to the DAE for the correct orientation of the sensor. If the probe axis is tilted 54.7 degree from the vertical, the sensor is approximately vertical when the signal connector is at the underside of the probe (cable hanging downwards).

Specification:

Frequency range	0.1~20kHz (RF sensitivity < -100dB, fully RF shielded)
Sensitivity	< -50dB A/m @ 1kHz
Pre-amplifier	40dB, symmetric
Dimensions	Tip diameter/length: 6/290mm, sensor according to ANSI-C63.19

5.3 AMCC

The Audio Magnetic Calibration coil is a Helmholtz Coil designed for calibration of the AM1D probe. The two horizontal coils generate a homogeneous magnetic field in the z direction. The DC input resistance is adjusted by a series resistor to approximately 500hm, and a shunt resistor of 100hm permits monitoring the current with a scale of 1:10

Port description:

Signal	Connector	Resistance
Coil In	BNC	Typically 500hm
Coil Monitor	BNO	10Ohm±1% (100mV corresponding to 1 A/m)

Specification:

Dimensions	370 x 370 x 196 mm, according to ANSI-C63.19

5.4 AMMI

Figure 5.3 AMMI front panel

The Audio Magnetic Measuring Instrument (AMMI) is a desktop 19-inch unit containing a sampling unit, a waveform generator for test and calibration signals, and a USB interface.

Specification:

Sampling rate	48 kHz / 24 bit
Dynamic range	85 dB
Test signal generation	User selectable and predefined (vis PC)
Calibration	Auto-calibration / full system calibration using AMCC with monitor output
Dimensions	482 x 65 x 270 mm

5.5 Test Arch Phantom & Phone Positioner

The Test Arch phantom should be positioned horizontally on a stable surface. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. It enables easy and well defined positioning of the phone and validation dipoles as well as simple teaching of the robot (Dimensions: $370 \times 370 \times 370 \text{ mm}$).

The Phone Positioner supports accurate and reliable positioning of any phone with effect on near field $<\pm 0.5$ dB.

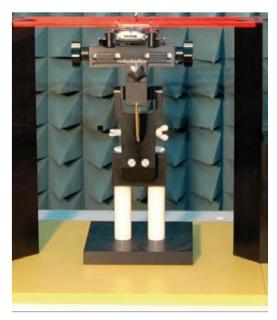


Figure 5.4 HAC Phantom & Device Holder

5.6 Robotic System Specifications

Specifications

Positioner: Stäubli Unimation Corp. Robot Model: RX160L

Repeatability: ±0.02 mm

No. of Axis: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor:Intel Core2 Clock Speed: 1.86GHz

Operating System: Windows XP

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic

Software: DASY5 software

Connecting Lines:Optical downlink for data and status info.

Optical uplink for commands and clock

5.7 T-Coil measurement points and reference plane

Figure 6.5 illustrates the standard probe orientations. Position 1 is the perpendicular orientation of the probe coil; orientation 2 is the transverse orientations. The space between the measurement positions is not fixed. It is recommended that a scan of the WD be done for each probe coil orientation and that the maximum level recorded be used as the reading for that orientation of the probe coil.

- 1) The reference plane is the planar area that contains the highest point in the area of the phone that normally rests against the user's ear. It is parallel to the centerline of the receiver area of the phone and is defined by the points of the receiver-end of the WD handset, which, in normal handset use, rest against the ear.
- 2) The measurement plane is parallel to, and 10 mm in front of, the reference plane.
- 3) The reference axis is normal to the reference plane and passes through the center of the receiver speaker section (or the center of the hole array); or may be centered on a secondary inductive source. The actual location of the measurement point shall be noted in the test report as the measurement reference point.
- 4) The measurement points may be located where the axial and radial field intensity measurements are optimum with regard to the requirements. However, the measurement points should be near the acoustic output of the WD and shall be located in the same half of the phone as the WD receiver. In a WD handset with a centered receiver and a circularly symmetrical magnetic field, the measurement axis and the reference axis would coincide.
- 5) The relative spacing of each measurement orientation is not fixed. The axial and two radial orientations should be chosen to select the optimal position.
- 6) The measurement point for the axial position is located 10 mm from the reference plane on the measurement axis. The actual location of the measurement point shall be noted in test reports and designated as the measurement reference point.

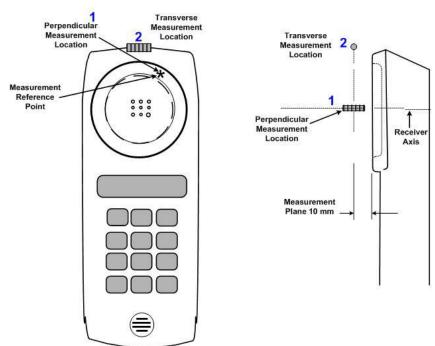


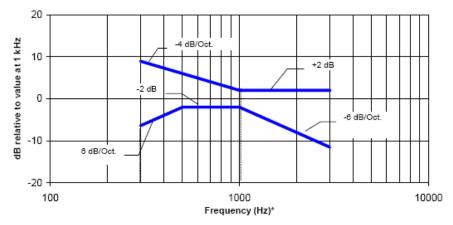
Figure 5.5 Axis and planes for WD audio frequency magnetic field measurements

6 T-Coil TEST PROCEDUERES

The following illustrate a typical test scan over a wireless communications device:

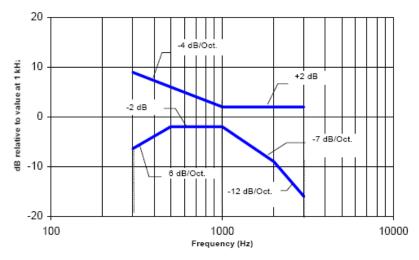
- 1) Geometry and signal check: system probe alignment, proper operation of the field probe, probe measurement system, other instrumentation, and the positioning system was confirmed. A surface calibration was performed before each setup change to ensure repeatable spacing and proper maintenance of the measurement plane using the test Arch.
- 2) Set the reference drive level of signal voice defined in C63.19 per 7.4.2.1.
- 3) The ambient and test system background noise (dB A/m) was measured as well as ABM2 over the full measurement. The maximum noise level must be at least 10dB below the limit.
- 4) The DUT was positioned in its intended test position, acoustic output point of the device perpendicular to the field probe.
- 5) The DUT operation for maximum rated RF output power was configured and connected by using of coaxial cable connection to the base station simulator at the test channel and other normal operating parameters as intended for the test. The battery was ensured to be fully charged before each test. The center sub-grid was centered over the center of the acoustic output (also audio band magnetic output, if applicable). The DUT audio output was positioned tangent (as physically possible) to the measurement plane.
- 6) The DUT's RF emission field was eliminated from T-coil results by using a well RF-shielding of the probe, AM1D, and by using of coaxial cable connection to a Base Station Simulator. One test channel was pre-measurement to avoid this possibility.
- 7) Determined the optimal measurement locations for the DUT by following the three steps, coarse resolution scan, fine resolution scans, and point measurement, as described in C63.19 per 7.4.4.2. At each measurement locations, samples in the measurement window duration were evaluated to get ABM1 and the signal spectrum. The noise measurement was performed after the scan with the signal, the same happened, just with the voice signal switched off. The ABM2 was calculated from this second scan.
- 8) All results resulting from a measurement point in a T-Coil job were calculated from the signal samples during this window interval. ABM values were averaged over the sequence of there samples.
- 9) At an optimal point measurement, the SNR (ABM1/ABM2) was calculated for perpendicular and transverse orientation, and the frequency response was measured for perpendicular.
- 10) Corrected for the frequency response after the DUT measurement since the DASY5 system had known the spectrum of the input signal by using a reference job.
- 11) In SEMCAD postprocessing, the spectral points are in addition scaled with the high-pass (half-band) and the A-weighting, bandwidth compensated factor (BWC) and those results are final as shown in this report.

7 T-Coil PERFORMANCE REQUIREMENTS


In order to be rated for T-Coil use, a WD shall meet the requirements for signal level and signal quality contained in this part.

7.1 T-Coil coupling field intensity

When measured as specified in ANSI C63.19, the T-Coil signal shall be ≥ -18 dB (A/m) at 1 kHz, ina1/3 octave band filter for all orientations.


7.2 Frequency response

The frequency response of the axial component of the magnetic field, measured in 1/3 octave bands, shall follow the response curve specified in this sub-clause, over the frequency range 300 Hz to 3000 Hz. Figure 7.1 and Figure 7.2 provide the boundaries for the specified frequency. These response curves are for true field strength measurements of the T-Coil signal. Thus the 6 dB/octave probe response has been corrected from the raw readings.

NOTE-Frequency response is between 300 Hz and 3000 Hz.

Figure 7.1—Magnetic field frequency response for WDs with a field ≤ −15 dB (A/m) at 1 kHz

NOTE—Frequency response is between 300 Hz and 3000 Hz.

Figure 7.2—Magnetic field frequency response for WDs with a fieldthat exceeds –15 dB(A/m) at 1 kHz

7.3 Signal quality

This part provides the signal quality requirement for the intended T-Coil signal from a WD. Only the RF immunity of the hearing aid is measured in T-Coil mode. It is assumed that a hearing aid can have noimmunity to an interference signal in the audio band, which is the intended reception band for this mode. So, the only criteria that can be measured is the RF immunity in T-Coil mode. This is measured using the same procedure as for the audio coupling mode and at the same levels. The worst signal quality of the three T-Coil signal measurements shall be used to determine the T-Coil mode category per Table 1

Table 1:T-Coil signal quality categories

<u> </u>					
Category	Telephone parameters				
	WD signal quality				
	[(signal + noise) - to - noise ratio in decibels]				
Category T1	0 dB to 10 dB				
Category T2	10 dB to 20 dB				
Category T3	20 dB to 30 dB				
Category T4	> 30 dB				

8 CMRS Voice DUT CONFIGURATION

8.1 GSM Codec Investigation

The middle channel of each frequency band is used for T-coil testing according ANSI C63.19-2011. Choose worst case from radio configuration investigation. After investigation was performed to determine the audio codec configuration to be used for testing, the following tests results which the worst case codec would be remarked to be used for the testing for the DUT.

Table 8-1 GSM CMRS Codec Investigation

Codec Setting	FR VR	HR V1	EFR	Orientation	Band	Channel
ABM1 (dBA/m)	11.39	-3.13	11.26			
Frequency Response	PASS	PASS	PASS	Z(axial)	GSM1900	661
SNR (dB)	<mark>33.69</mark>	33.91	36.55			

8.2 UMTS Codec Investigation

The middle channel of each frequency band is used for T-coil testing according ANSI C63.19-2011. Choose worst case from radio configuration investigation. After investigation was performed to determine the audio codec configuration to be used for testing, the following tests results which the worst case codec would be remarked to be used for the testing for the DUT.

Table 8-2 WCDMA/UMTS CMRS Codec Investigation

Codec Setting	AMR	AMR	AMR	Orientation	Band	Channel
Codec Setting	12.2kbps	7.95kbps	4.75kbps	Onentation	Dariu	Charine
ABM1 (dBA/m)	-3.10	-2.59	-2.69		\A\(\c)\D\\\\\\	
Frequency Response	PASS	PASS	PASS	Z(axial)	WCDMA 1900	9400
SNR (dB)	38.46	38.95	<mark>37.97</mark>		1900	

9 Volte test system setup and dut configuration

9.1 Test System Setup for VoLTE over IMS T-coil Testing

The general test setup used for VoLTE over IMS is shown below. The callbox used when performing VoLTE over IMS T-coil measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

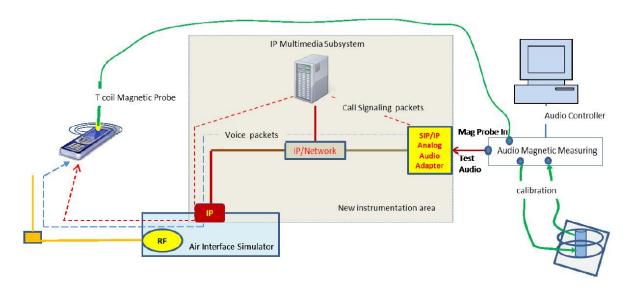


Figure 9.1 Test Setup for VoLTE over IMS T-coil Measurements

9.2 Codec Configuration

An investigation was performed to determine the audio codec configuration to be used for testing. The NB AMR 4.75kbps setting was used for the audio codec on the CMW500 for VoLTE over IMS T-coil testing. See below table for comparisons between different codecs and codec data rates:

Tubic 3 TAIM Codes investigation - VOLTE over into								
Codoo Sotting	WB AMR	WB AMR	NB AMR	NB AMR	Orientation	Band/BW	Channel	
Codec Setting	23.85kbps	6.60kbps	12.2kbps	4.75kbps	Onemation	Danu/DVV		
ABM1 (dBA/m)	9.75	14.05	15.74	1.17				
Frequency Response	PASS	PASS	PASS	PASS	Z(axial)	B2/20M	18900	
SNR (dB)	45.80	45.01	45.47	<mark>43.82</mark>				

Table 9-1 AMR Codec Investigation - VoLTE over IMS

Table 9-2 EVS Codec Investigation – VoLTE over IMS

Codec Setting	EVS Primary SWB 13.2kbps	EVS Primary SWB 9.6kbps	EVS Primary WB 13.2kbps	EVS Primary WB 5.9kbps	EVS Primary NB 13.2kbps	EVS Primary NB 5.9kbps	Orientation	Band /BW	Channel
ABM1 (dBA/m)	14.66	14.39	14.59	15.81	15.63	10.52			
Frequency Response	PASS	PASS	PASS	PASS	PASS	PASS	Z(axial)	B2/20M	18900
SNR (dB)	53.47	53.47	53.29	51.44	44.36	44.12			

9.3 Radio Configuration

An investigation was performed to determine the modulation and RB configuration to be used for testing. 16QAM, 1RB, 0RB offset was used for the testing as the worst-case configuration for the handset. See below table for comparisons between different radio configurations:

Table 9-3 VoLTE over IMS SNR by Radio Configuration

Frequency	Channal	Bandwidth	Modulation	RB Size	RB Offset	ABM1	SNR
[MHz]	Channel	[MHz]	iviodulation	RB Size	RB Offset	[dB(A/m)]	[dB]
1880	18900	20	QPSK	1	0	-5.59	36.98
1880	18900	20	QPSK	1	50	-6.02	36.48
1880	18900	20	QPSK	1	99	-5.51	37.38
1880	18900	20	QPSK	50	0	-5.85	37.64
1880	18900	20	QPSK	50	25	-6.09	37.55
1880	18900	20	QPSK	50	50	-6.17	37.06
1880	18900	20	QPSK	100	0	-5.82	36.97
1880	18900	20	16QAM	1	0	-6.18	<mark>35.96</mark>
1880	18900	20	16QAM	1	50	-6.04	36.32
1880	18900	20	16QAM	1	99	-6.17	36.65
1880	18900	20	16QAM	50	0	-5.55	38.34
1880	18900	20	16QAM	50	25	-6.00	37.75
1880	18900	20	16QAM	50	50	-5.99	37.08
1880	18900	20	16QAM	100	0	-6.14	36.65
1880	18900	20	64QAM	1	0	-6.05	36.58
1880	18900	20	64QAM	1	50	-6.46	37.02
1880	18900	20	64QAM	1	99	-5.24	36.96
1880	18900	20	64QAM	50	0	-5.68	36.41
1880	18900	20	64QAM	50	25	-6.52	37.11
1880	18900	20	64QAM	50	50	-6.37	36.42
1880	18900	20	64QAM	100	0	-5.84	36.87

10 VoWIFI TEST SYSTEM SETUP AND DUT CONFIGURATION

10.1 Test System Setup for VoWiFI over IMS T-coil Testing

The general test setup used for VoWiFi over IMS, or CMRS WiFi Calling, is shown below. The callbox used when performing VoWiFi over IMS T-coil measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

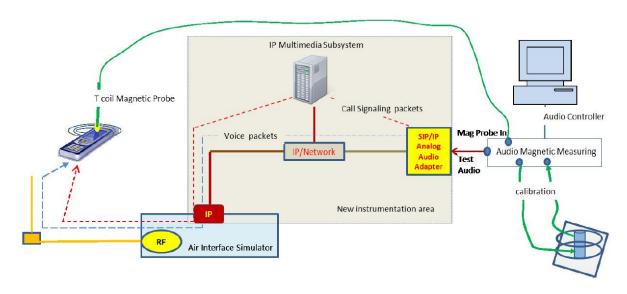


Figure 10.1 Test Setup for VoWiFi over IMS T-coil Measurements

10.2 Codec Configuration

An investigation was performed to determine the audio codec configuration to be used for testing. The NB AMR 4.75kbps setting was used for the audio codec on the CMW500 for VoWiFi over IMS T-coil testing. See below table for comparisons between different codecs and codec data rates:

Table	e 10-1 AMR Co	dec Investigat	ion – VoWiFi d	over IMS
AMD		NID AMD	NID AMD	

			_				
Codes Setting	WB AMR	WB AMR	NB AMR	NB AMR	Orientation	Band/BW	Channel
Codec Setting	23.85kbps	6.60kbps	12.2kbps	4.75kbps	Onentation	I Dallu/DVV	Charine
ABM1 (dBA/m)	11.25	13.56	11.68	14.77		2.4GHz 802.11b	
Frequency Response	Pass	Pass	Pass	Pass	Z(axial)		6
SNR (dB)	43.43	43.82	45.59	<mark>43.02</mark>		002.110	

Table 10-2 EVS Codec Investigation – VoWiFi over IMS

Codec Setting	EVS Primary SWB 13.2kbps	EVS Primary SWB 9.6kbps	EVS Primary WB 13.2kbps	EVS Primary WB 5.9kbps	EVS Primary NB 13.2kbps	EVS Primary NB 5.9kbps	Orientation	Band /BW	Channel
ABM1 (dBA/m)	11.35	10.89	11.46	12.79	11.38	10.73		2.4011-	
Frequency Response	Pass	Pass	Pass	Pass	Pass	Pass	Z(axial)	2.4GHz 802.11b	6
SNR (dB)	43.90	45.34	45.11	44.96	45.69	45.46			

10.3 Radio Configuration

An investigation was performed on all applicable data rates and modulations to determine the radio configuration to be used for testing. See below table for comparisons between different radio configurations in each 802.11 standard:

Table10-3 802.11b SNR by Radio Configuration

Mode	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	SNR [dB]	
802.11b	6	DSSS	1	14.77	<mark>43.02</mark>	
802.11b	6	DSSS	2	14.29	44.52	
802.11b	6	CCK	5.5	13.67	45.15	
802.11b	6	CCK	11	11.50	43.11	

Table 10-4 802.11g SNR by Radio Configuration

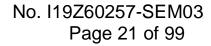

		•	•	•	
Mode	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	SNR [dB]
802.11g	6	BPSK	6	11.47	44.54
802.11g	6	BPSK	9	10.52	44.26
802.11g	6	QPSK	12	11.25	43.98
802.11g	6	QPSK	18	10.70	43.41
802.11g	6	16-QAM	24	10.83	43.57
802.11g	6	16-QAM	36	9.45	43.86
802.11g	6	64-QAM	48	10.85	44.08
802.11g	6	64-QAM	54	12.43	<mark>42.57</mark>

Table 10-5 802.11n 20MHz BW SNR by Radio Configuration

Mode	Bandwidth	Channel	Modulation	Data Rate	ABM1	SNR		
Mode	[MHz]	Chamei	iviodulation	[Mbps]	[dB(A/m)]	[dB]		
802.11n	20	6	BPSK	6.5	6.14	44.07		
802.11n	20	6	QPSK	13	6.62	43.64		
802.11n	20	6	QPSK	19.5	7.46	43.40		
802.11n	20	6	16-QAM	26	10.70	43.72		
802.11n	20	6	16-QAM	39	7.47	43.59		
802.11n	20	6	64-QAM	52	6.87	43.39		
802.11n	20	6	64-QAM	58.5	10.94	<mark>43.03</mark>		
802.11n	20	6	64-QAM	65	11.79	43.66		

Table 10-6 802.11n 40MHz BW SNR by Radio Configuration

Mada	Bandwidth	Channal	Channel Modulation		ABM1	SNR
Mode [MHz]	Channel	iviodulation	[Mbps]	[dB(A/m)]	[dB]	
802.11n	40	6	BPSK	13.5	12.56	44.23
802.11n	40	6	QPSK	27	13.28	44.62

802.11n	40	6	QPSK	40.5	7.23	44.55
802.11n	40	6	16-QAM	54	11.58	45.66
802.11n	40	6	16-QAM	81	12.35	45.78
802.11n	40	6	64-QAM	108	8.90	44.62
802.11n	40	6	64-QAM	121.5	11.08	<mark>43.92</mark>
802.11n	40	6	64-QAM	135	13.67	44.05

11 OTT VOIP TEST SYSTEM AND DUT CONFIGURATION

11.1 Test System Setup for OTT VoIP T-coil Testing

OTT VolP Application

Google Duo is a pre-installed application on the DUT which allows for VoIP calls in a head-to-ear scenario. Duo uses the OPUS audio codec and supports a bitrate range of 6kbps to 64kbps. All air interfaces capable of a data connection were evaluated with Google Duo.

Equipment Setup

A CMW500 callbox was used to perform OTT VoIP T-coil measurements. The Data Application Unit (DAU) of the CMW500 was connected to the internet and allowed for an IP data connection on the DUT. An auxiliary VoIP unit was used to initiate an OTT VoIP call to the DUT. The auxiliary VoIP unit allowed for the configuration and monitoring of the OTT VoIP codec bitrate during a call. Both high and low bitrate settings were evaluated in to determine the worst-case configuration.

Audio Level Settings

According to KDB 285076 D02, the average speech level of -20dBm0 shall be used for protocols not specifically listed in Table 7.1 of ANSI C63.19-2001. The auxiliary VoIP unit allowed for monitoring the signal input level to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 speech input level to the DUT for the OTT VoIP call.

11.2 Codec Configuration

An investigation was performed for each applicable data mode to determine the audio codec configuration to be used for testing. The 6kbps codec setting was used for the audio codec on the auxiliary VoIP unit for OTT VoIP T-coil testing. See below tables for comparisons between codec data rates on all applicable data modes:

Table 11-1 Codec Investigation – OTT over EDGE

Codec Setting	64kbps	6kbps	Orientation	Channel
ABM1 (dBA/m)	2.57	-2.04		
Frequency Response	Pass	Pass	Z(axial)	661
SNR (dB)	38.77	<mark>38.31</mark>		

Table 11-2 Codec Investigation - OTT over HSPA

Codec Setting	64kbps	6kbps	Orientation	Channel
ABM1 (dBA/m)	3.10	1.06		
Frequency Response	Pass	Pass	Z(axial)	9400
SNR (dB)	47.51	<mark>45.26</mark>		

Table 11-3 Codec Investigation – OTT over LTE

Codec Setting	64kbps	6kbps	Orientation	Band/BW	Channel
ABM1 (dBA/m)	4.00	2.75			
Frequency Response	Pass	Pass	Z(axial)	B2/20M	18900
SNR (dB)	45.27	<mark>44.26</mark>			

Table 11-4 Codec Investigation – OTT over WiFi

Codec Setting	64kbps	6kbps	Orientation	Band/BW	Channel
ABM1 (dBA/m)	3.53	1.92		2.401.1-	
Frequency Response	Pass	Pass	Z(axial)	2.4GHz 802.11b	6
SNR (dB)	41.62	<mark>41.19</mark>		002.110	

11.3 Radio Configuration for OTT VoIP (LTE)

An investigation was performed to determine the modulation and RB configuration to be used for testing. 16QAM, 1RB, 50RB offset was used for the testing as the worst-case configuration for the handset. See below table for comparisons between different radio configurations:

Table 11-5 OTT VoIP (LTE) SNR by Radio Configuration

Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	SNR [dB]
1880	18900	20	QPSK	1	0	-3.75	37.24
1880	18900	20	QPSK	1	50	-4.74	36.28
1880	18900	20	QPSK	1	99	-5.08	35.62
1880	18900	20	QPSK	50	0	-3.57	36.78
1880	18900	20	QPSK	50	25	-4.18	36.74
1880	18900	20	QPSK	50	50	-3.93	37.04
1880	18900	20	QPSK	100	0	-4.19	36.92
1880	18900	20	16QAM	1	0	-4.32	36.52
1880	18900	20	16QAM	1	50	-5.35	<mark>35.14</mark>
1880	18900	20	16QAM	1	99	-3.57	36.78
1880	18900	20	16QAM	50	0	-4.08	37.04
1880	18900	20	16QAM	50	25	-4.05	36.96
1880	18900	20	16QAM	50	50	-4.29	36.52
1880	18900	20	16QAM	100	0	-3.35	37.64
1880	18900	20	64QAM	1	0	-4.53	36.35
1880	18900	20	64QAM	1	50	-3.39	37.34
1880	18900	20	64QAM	1	99	-4.54	36.48
1880	18900	20	64QAM	50	0	-3.61	37.42
1880	18900	20	64QAM	50	25	-4.03	37.25
1880	18900	20	64QAM	50	50	-4.40	36.85
1880	18900	20	64QAM	100	0	-4.06	36.47

An investigation was performed to determine the worst-case LTE band to be used for OTT VoIP testing. LTE Band 13 was used for the testing as the worst-case configuration for the handset. See below table for comparisons between different LTE bands:

Table 11-6 OTT VoIP (LTE) SNR by LTE bands

Pand	d Frequency Channel Bandwidth Modulation		Modulation	RB	RB	ABM1	SNR			
Band	[MHz]	Channel [MHz]		iviodulation	Size	Offset	[dB(A/m)]	[dB]		
2	1880	18900	20	16QAM	1	50	2.75	44.26		
5	836.5	20525	10	16QAM	1	50	0.38	42.30		
13	782	23230	10	16QAM	1	50	0.55	<mark>42.25</mark>		
66	1745	132322	20	16QAM	1	50	1.29	42.29		

11.4 Radio Configuration for OTT VoIP (WiFi)

An investigation was performed on all applicable data rates and modulations to determine the radio configuration to be used for testing. See below tables for comparisons between different radio configurations in each 802.11 standard:

Table 11-7 802.11b SNR by Radio Configuration

Mode	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	SNR [dB]
802.11b	6	DSSS	1	1.92	41.19
802.11b	6	DSSS	2	2.03	39.81
802.11b	6	CCK	5.5	2.21	<mark>39.65</mark>
802.11b	6	CCK	11	2.59	40.17

Table 11-8 802.11g SNR by Radio Configuration

Mode	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	SNR [dB]
802.11g	6	BPSK	6	1.61	49.23
802.11g	6	BPSK	9	-0.93	44.54
802.11g	6	QPSK	12	-0.01	<mark>43.95</mark>
802.11g	6	QPSK	18	1.10	45.91
802.11g	6	16-QAM	24	80.0	44.56
802.11g	6	16-QAM	36	1.26	45.41
802.11g	6	64-QAM	48	1.12	45.42
802.11g	6	64-QAM	54	0.01	44.07

Table 11-9 802.11n 20MHz BW SNR by Radio Configuration

Mode	Bandwidth	Channel	Modulation	Data Rate	ABM1	SNR			
[MHz]		Channel	iviodulation	[Mbps]	[dB(A/m)]	[dB]			
802.11n	20	6	BPSK	6.5	-7.24	35.63			
802.11n	20	6	QPSK	13	-8.11	<mark>34.50</mark>			
802.11n	20	6	QPSK	19.5	-5.56	37.15			
802.11n	20	6	16-QAM	26	-5.50	36.46			
802.11n	20	6	16-QAM	39	-4.41	37.86			
802.11n	20	6	64-QAM	52	-5.59	37.05			
802.11n	20	6	64-QAM	58.5	-4.88	37.05			
802.11n	20	6	64-QAM	65	-5.43	36.86			

Table 11-10 802.11n 40MHz BW SNR by Radio Configuration

Mode	Bandwidth [MHz]	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	SNR [dB]
802.11n	40	6	BPSK	13.5	1.21	43.01
802.11n	40	6	QPSK	27	-0.12	43.21
802.11n	40	6	QPSK	40.5	0.90	43.83
802.11n	40	6	16-QAM	54	1.43	43.05
802.11n	40	6	16-QAM	81	0.27	43.32
802.11n	40	6	64-QAM	108	0.88	42.60
802.11n	40	6	64-QAM	121.5	0.88	<mark>41.94</mark>
802.11n	40	6	64-QAM	135	1.62	43.47

©Copyright. All rights reserved by CTTL.

12 HAC T-Coil TEST DATA SUMMARY

12.1 Test Results for 2/3G

Table 12-1 Test results for 2/3G

Probe Position	Band	Ch.	Measurement Position (x mm, y mm)	ABM1 (dB A/m)	SNR (dB)	T category
	GSM 850	190	-0.8,-7.1	2.85	34.60	T4
	GSM 1900	661	2.5, -0.8	5.97	34.92	T4
transverse	WCDMA850	4182	-4.2,-0.4	-2.07	35.62	T4
	WCDMA1900	9400	0,16.2	2.43	34.98	T4
	WCDMA1700	1412	8.3,-0.8	5.83	37.10	T4
	GSM 850	190	3.3,3.7	10.65	32.17	T4
	GSM 1900	661	7.1,4.2	11.39	33.69	T4
perpendicular	WCDMA850	4182	5.4,-13.8	-3.59	38.83	T4
	WCDMA1900	9400	7.1,-13.8	-2.69	37.97	T4
	WCDMA1700	1412	6.3,-14.2	-3.23	38.04	T4

- 1. Bluetooth and WiFi function is turn off and microphone is muted.
- 2. Signal strength measurement scan plots are presented in Annex B.
- 3. The volume is adjusted to maximum level during T-Coil testing.

12.2 Test Results for LTE

Table 12-2 Test results for LTE

		14.5.5	12-2 Test res	Measurement	ABM1	2112	_
Probe	Band	Ch.	Bandwidth	Position	(dB	SNR	Т
Position				(x mm, y mm)	À/m)	(dB)	category
			1.4M	8.3,-4.2	10.02	44.86	T4
			3M	-4.2,-3.8	0.78	44.32	T4
	LTE B2	18900	5M	3.3,20.4	2.83	43.20	T4
	LIEBZ	10900	10M	11.3,-0.8	8.63	42.02	T4
			15M	8.8,16.7	6.98	46.03	T4
			20M	0,16.2	2.45	42.24	T4
			1.4M	-4.2,-1.7	0.64	43.07	T4
	LTE B5	20525	3M	8.3,-7.1	8.27	44.64	T4
Transverse	LIL DJ	20323	5M	4.2,-5.4	7.91	42.82	T4
Transverse			10M	7.9,-7.9	7.58	42.59	T4
	LTE B13	23230	5M	5.4,3.7	1.27	44.14	T4
			10M	2.5,-1.3	7.37	44.50	T4
		132322	1.4M	7.9,-1.7	9.98	43.13	T4
			3M	7.9,0	9.49	44.77	T4
	LTE B66		5M	5.8,-0.4	9.02	43.85	T4
	LIL BOO		10M	3.3,-0.8	7.53	43.27	T4
			15M	7.9,4.2	2.19	44.36	T4
			20M	-4.2,-2.5	0.08	43.01	T4
			1.4M	7.1,-15	0.80	42.85	T4
			3M	4.2,8.3	12.74	47.54	T4
	LTE B2	18900	5M	7.5,-14.6	0.74	42.97	T4
		10000	10M	7.1,-14.2	0.68	42.95	T4
			15M	0,9.2	9.01	45.27	T4
			20M	7.9,-14.6	1.22	42.42	T4
			1.4M	1.7,5	10.73	43.06	T4
	LTE B5	20525	3M	5.8,-13.8	0.71	42.17	T4
Perpendicular	2.2.50	20020	5M	4.2,8.3	13.11	46.19	T4
. or portational			10M	5,-13.8	0.42	44.83	T4
	LTE B13	23230	5M	7.1,-14.2	0.62	44.22	T4
		20200	10M	4.2,8.7	13.24	46.52	T4
			1.4M	4.2,2.5	13.48	43.12	T4
			3M	0.4,4.6	8.91	42.50	T4
	LTE B66	132322	5M	7.1,-13.8	0.70	42.58	T4
	LTE B66	132322	10M	6.7,-13.8	0.33	43.74	T4
			15M	6.7,-13.8	0.72	42.57	T4
			20M	4.2,5.4	13.72	45.91	T4

- 1. Bluetooth and WiFi function is turn off and microphone is muted.
- 2. The worse case of each band for signal strength measurement scan plots are presented in Annex B.
- 3. The volume is adjusted to maximum level during T-Coil testing.

12.3 Test Results for WiFi

Table 12-3 Test results for WiFi

Probe Position	Mode	Ch.	Bandwidth	Measurement Position (x mm, y mm)	ABM1 (dB A/m)	SNR (dB)	T category
	802.11b	6	20M	4.2,-2.5	8.14	45.29	T4
Transverse	802.11g	6	20M	3.8,20	2.76	43.99	T4
Transverse	802.11n	6	20M	2.1,-8.3	3.01	44.11	T4
	802.11n	6	40M	0,-8.3	0.33	43.51	T4
	802.11b	6	20M	4.2,4.6	14.77	43.02	T4
Dornandiaular	802.11g	6	20M	11.7,0.4	12.43	42.57	T4
Perpendicular	802.11n	6	20M	3.8,0	11.08	43.92	T4
	802.11n	6	40M	3.8,4.2	13.67	44.05	T4

Note:

- 1. Bluetooth and WiFi function is turn off and microphone is muted.
- 2. The worse case of each mode for signal strength measurement scan plots are presented in Annex B.
- 3. The volume is adjusted to maximum level during T-Coil testing.

12.4 Test Results for OTT VolP

Table 12-4 Test results for 2/3G

		ı	T		ı	
			Measurement	ABM1	SNR	т
Probe Position	Band	Ch.	Position	(dB		ootogow.
			(x mm, y mm)	A/m)	(dB)	category
	EDGE850	190	4.2,12.9	0.81	46.55	T4
	EDGE1900	661	3.8,-21.7	-6.60	42.04	T4
transverse	WCDMA850	4182	1.3,-21.3	-7.96	43.25	T4
	WCDMA1900	9400	4.2,-20.8	-5.16	46.13	T4
	WCDMA1700	1412	3.8,-20.8	-5.09	46.08	T4
	EDGE850	190	4.6,-12.9	0.64	36.15	T4
	EDGE1900	661	0.4,-12.5	-2.04	38.31	T4
perpendicular	WCDMA850	4182	3.3,-12.5	0.91	45.81	T4
	WCDMA1900	9400	6.7,-12.5	1.06	45.26	T4
	WCDMA1700	1412	6.7,-12.9	3.92	48.05	T4

- 1. Bluetooth and WiFi function is turn off and microphone is muted.
- 2. Signal strength measurement scan plots are presented in Annex B.
- 3. The volume is adjusted to maximum level during T-Coil testing.

Table 12-5 Test results for LTE

Probe Position	Band	Ch.	Bandwidth	Measurement Position (x mm, y mm)	ABM1 (dB A/m)	SNR (dB)	T category
Transverse	LTE B13	23230	5M	3.8,-20.8	-7.13	43.23	T4
ITalisveise	LIEBIS		10M	0,-20.4	-8.13	42.29	T4
Perpendicular	LTE B13	23230	5M	4.6,-13.3	1.10	42.72	T4
	LIEDIS	23230	10M	3.3,-12.5	0.55	42.25	T4

Note:

- 1. Bluetooth and WiFi function is turn off and microphone is muted.
- 2. The worse case of each band for signal strength measurement scan plots are presented in Annex B.
- 3. The volume is adjusted to maximum level during T-Coil testing.

Table 12-6 Test results for WiFi

Probe Position	Mode	Ch.	Bandwidth	Measurement Position (x mm, y mm)	ABM1 (dB A/m)	SNR (dB)	T category		
	802.11b	6	20M	-0.4,1.2	-9.77	39.65	T4		
Transverse	802.11g	6	20M	2.1,-17.9	-14.04	37.66	T4		
Transverse	802.11n	6	20M	3.3,-20.8	-13.73	34.53	T4		
	802.11n	6	40M	10.8,-17.5	-7.45	42.56	T4		
	802.11b	6	20M	7.1,-12.5	2.21	39.65	T4		
Perpendicular	802.11g	6	20M	7.5,-11.7	-0.01	43.95	T4		
	802.11n	6	20M	8.3,-14.6	-8.11	34.50	T4		
	802.11n	6	40M	12.9,-9.2	0.88	41.94	T4		

- 1. Bluetooth and WiFi function is turn off and microphone is muted.
- 2. The worse case of each mode for signal strength measurement scan plots are presented in Annex B.
- 3. The volume is adjusted to maximum level during T-Coil testing.

12.5 Total Measurement Conclusion

Probe Position	Frequency Band(MHz)	ABM1	Frequency Response	T Category
	GSM 850	Pass		T4
	GSM 1900	Pass		T4
	WCDMA850	Pass		T4
	WCDMA1900	Pass		T4
	WCDMA1700	Pass		T4
Transvaras	LTE B2	Pass	,	T4
Transverse	LTE B5	Pass	/	T4
	LTE B13	Pass		T4
	LTE B66	Pass		T4
	802.11b	Pass		T4
	802.11g	Pass		T4
	802.11n	Pass		T4
	GSM 850	Pass	Pass	T4
	GSM 1900	Pass	Pass	T4
	WCDMA850	Pass	Pass	T4
	WCDMA1900	Pass	Pass	T4
	WCDMA1700	Pass	Pass	T4
Perpendicular	LTE B2	Pass	Pass	T4
i ei periulculai	LTE B5	Pass	Pass	T4
	LTE B13	Pass	Pass	T4
	LTE B66	Pass	Pass	T4
	802.11b	Pass	Pass	T4
	802.11g	Pass	Pass	T4
	802.11n	Pass	Pass	T4

13 MEASUREMENT UNCERTAINTY

No.	Error source	Туре	Uncertainty Value a _i (%)	Prob.	Div.	ABM1	ABM2	Std. Unc.	Std. Unc.	
								ABM1 u_i	$ABM2^{u_i^{'}}$	
								(%)	(%)	
1	System Repeatability	A	0.016	N	1	1	1	0.016	0.016	
Probe Sensitivity										
2	Reference Level	В	3. 0	R	$\sqrt{3}$	1	1	3.0	3. 0	
3	AMCC Geometry	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	
4	AMCC Current	В	0.6	R	$\sqrt{3}$	1	1	0.4	0.4	
5	Probe Positioning during Calibration	В	0.1	R	$\sqrt{3}$	1	1	0.1	0. 1	
6	Noise Contribution	В	0.7	R	$\sqrt{3}$	0.014	1	0.0	0. 4	
7	Frequency Slope	В	5. 9	R	$\sqrt{3}$	0.1	1	0.3	3. 5	
Prob	Probe System									
8	Repeatability / Drift	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	
9	Linearity / DynamicRange	В	0.6	N	1	1	1	0.4	0. 4	
10	Acoustic Noise	В	1.0	R	$\sqrt{3}$	0.1	1	0.1	0.6	
11	Probe Angle	В	2. 3	R	$\sqrt{3}$	1	1	1.4	1.4	
12	Spectral Processing	В	0.9	R	$\sqrt{3}$	1	1	0.5	0.5	
13	Integration Time	В	0.6	N	1	1	5	0.6	3.0	
14	Field Distribution	В	0.2	R	$\sqrt{3}$	1	1	0.1	0. 1	
Test Signal										
15	Ref.Signal Spectral Response	В	0.6	R	$\sqrt{3}$	0	1	0.0	0.4	
Positioning										
16	Probe Positioning	В	1.9	R	$\sqrt{3}$	1	1	1.1	1.1	
17	Phantom Thickness	В	0.9	R	$\sqrt{3}$	1	1	0.5	0.5	

18	DUT Positioning	В	1.9	R	$\sqrt{3}$	1	1	1.1	1. 1
External Contributions									
19	RF Interference	В	0.0	R	$\sqrt{3}$	1	0.3	0.0	0.0
20	Test Signal Variation	В	2. 0	R	$\sqrt{3}$	1	1	1.2	1.2
	pined Std. Uncertainty	$u_{c}' = \sqrt{\sum_{i=1}^{20} c_{i}^{2} u_{i}^{2}}$						4.1	6. 1
Expanded Std. Uncertainty		$u_e = 2u_c$		N	k = 2			8. 2	12. 2

14 MAIN TEST INSTRUMENTS

List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Audio Magnetic 1D Field Probe	AM1DV2	1064	July 17, 2018	NCR
02	Audio Magnetic Calibration Coil	AMCC	1064	NCR	NCR
03	Audio Measuring Instrument	AMMI	1044	NCR	NCR
04	HAC Test Arch	N/A	1014	NCR	NCR
05	DAE	DAE4	1555	August 20, 2018	One year
06	Software	DASY5 V5.0 Build 119.9	N/A	NCR	NCR
07	Software	SEMCAD V13.2 Build 87	N/A	NCR	NCR
08	Universal Radio Communication Tester	CMW 500	166370	August 23, 2018	One year

END OF REPORT BODY

ANNEX A TEST LAYOUT

Picture A1: HAC T-Coil System Layout

ANNEX B TEST PLOTS

T-Coil GSM 850 Transverse

Date: 2019-3-5

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Probe: AM1DV2 - 1064;

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 37.15

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 9.14 dBA/m BWC Factor = 0.16 dB

Location: 8.3, -4.6, 3.7 mm

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated

SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 37.15

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 34.60 dBABM1 comp = 2.85 dBA/m

BWC Factor = 0.16 dB

Location: -0.8, -7.1, 3.7 mm

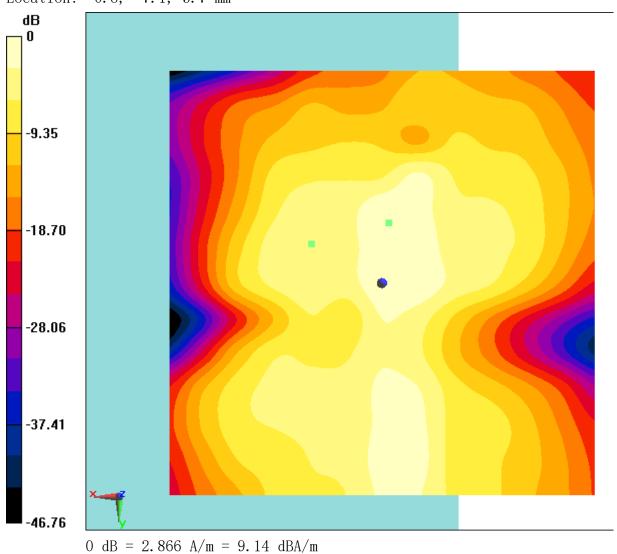


Fig B.1 T-Coil GSM 850

T-Coil GSM 850 Perpendicular

Date: 2019-3-5

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Probe: AM1DV2 - 1064;

T-Coil/General Scans/z (axial) 4.2mm 50 x 50/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 37.15

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 14.43 dBA/mBWC Factor = 0.16 dB

Location: 9.2, 7.9, 3.7 mm

T-Coil/General Scans/z (axial) 4.2mm 50 x 50/ABM Interpolated

SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 37.15

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 32.17 dB

ABM1 comp = 10.65 dBA/m

BWC Factor = 0.16 dB

Location: 3.3, 3.7, 3.7 mm

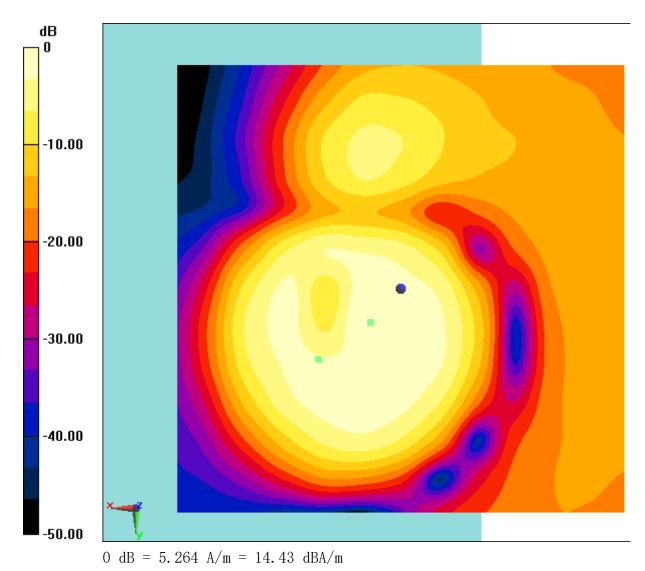


Fig B.2 T-Coil GSM 850

T-Coil GSM 1900 Transverse

Date: 2019-3-5

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Probe: AM1DV2 - 1064;

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 37.15

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 9.04 dBA/m BWC Factor = 0.16 dB

Location: 9.2, -4.6, 3.7 mm

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated

SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 37.15

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 34.92 dB ABM1 comp = 5.97 dBA/m

BWC Factor = 0.16 dB

Location: 2.5, -0.8, 3.7 mm

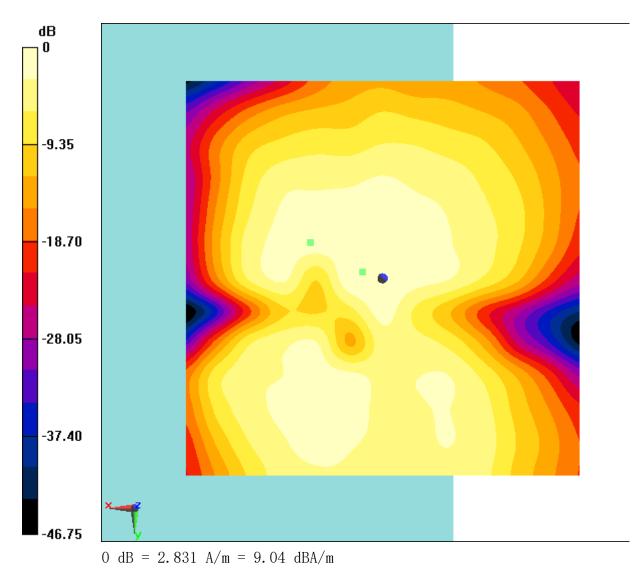


Fig B.3 T-Coil GSM 1900

T-Coil GSM 1900 Perpendicular

Date: 2019-3-5

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Probe: AM1DV2 - 1064;

T-Coil/General Scans/z (axial) 4.2mm 50 x 50 FRV1/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 37.15

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 14.44 dBA/m BWC Factor = 0.16 dB

Location: 9.2, 7.9, 3.7 mm

T-Coil/General Scans/z (axial) 4.2mm 50 x 50 FRV1/ABM Interpolated

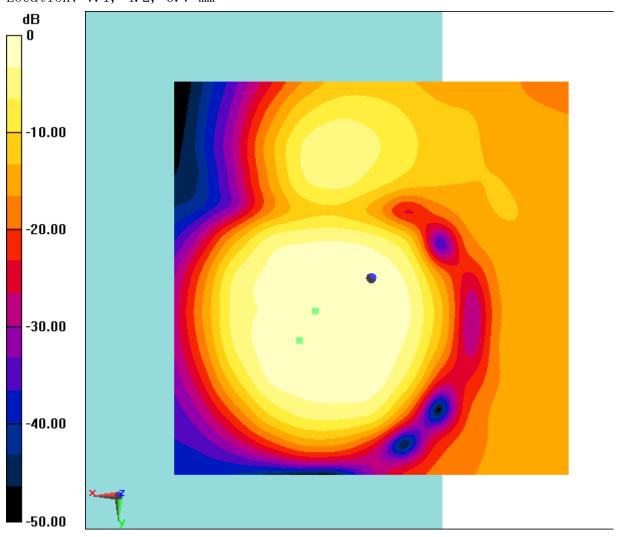
SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 37.15

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB


Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 33.69 dBABM1 comp = 11.39 dBA/m

Location: 7.1, 4.2, 3.7 mm

0 dB = 5.275 A/m = 14.44 dBA/m

Fig B.4 T-Coil GSM 1900

T-Coil WCDMA 850 Transverse

Date: 2019-3-5

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: WCDMA 850; Frequency: 836.4 MHz; Duty Cycle: 1:1

Probe: AM1DV2 - 1064;

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50 2/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 37.15

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 8.58 dBA/mBWC Factor = 0.16 dB

Location: 8.8, -4.2, 3.7 mm

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50 2/ABM Interpolated

SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 37.15

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 35.62 dBABM1 comp = -2.07 dBA/m

BWC Factor = 0.16 dB

Location: -4.2, -0.4, 3.7 mm

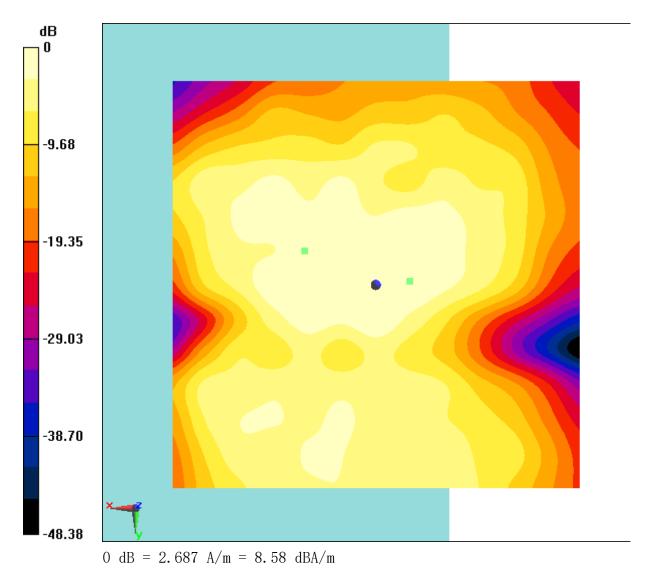


Fig B.5 T-Coil WCDMA 850

T-Coil WCDMA 850 Perpendicular

Date: 2019-3-5

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: WCDMA 850; Frequency: 836.4 MHz; Duty Cycle: 1:1

Probe: AM1DV2 - 1064;

T-Coil/General Scans/z (axial) 4.2mm 50 x 50/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 37.15

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 15.16 dBA/m BWC Factor = 0.16 dB Location: 9.2, 5, 3.7 mm

T-Coil/General Scans/z (axial) 4.2mm 50 x 50/ABM Interpolated

SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 37.15

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 38.83 dBABM1 comp = -3.59 dBA/m

Location: 5.4, -13.8, 3.7 mm

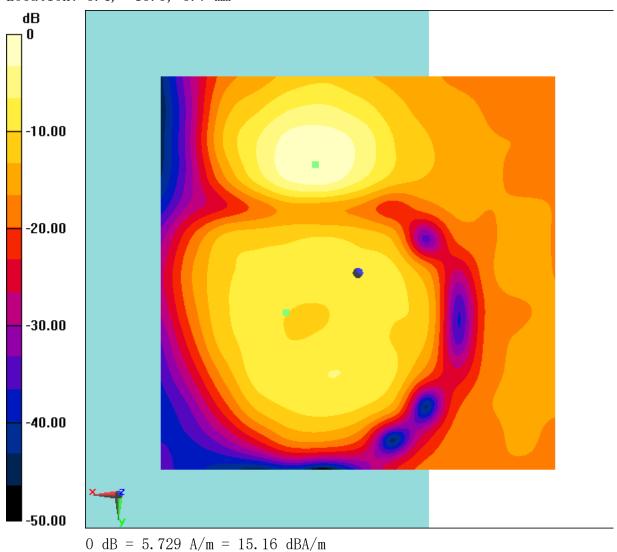


Fig B.6 T-Coil WCDMA 850

T-Coil WCDMA 1900 Transverse

Date: 2019-3-5

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: WCDMA 1900; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: AM1DV2 - 1064;

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 37.15

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 8.63 dBA/mBWC Factor = 0.16 dB

Location: 8.3, -4.2, 3.7 mm

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated

SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 37.15

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 34.98 dB ABM1 comp = 2.43 dBA/m BWC Factor = 0.16 dB Location: 0, 16.2, 3.7 mm

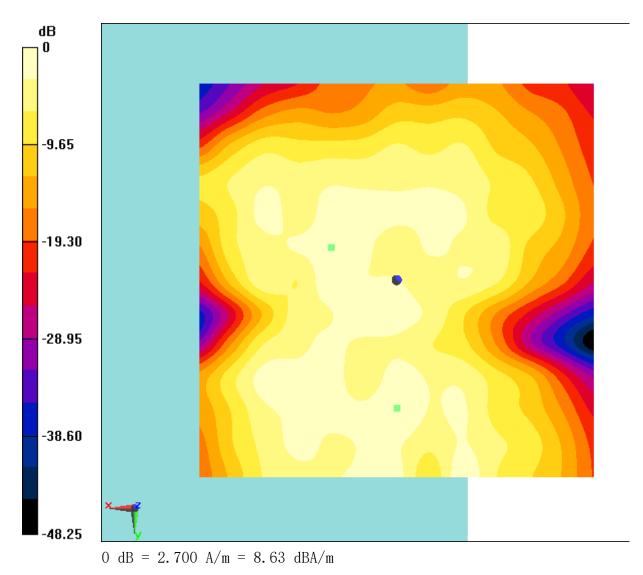


Fig B.7 T-Coil WCDMA 1900

T-Coil WCDMA 1900 Perpendicular

Date: 2019-3-5

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: WCDMA 1900; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: AM1DV2 - 1064;

T-Coil/General Scans/z (axial) 4.2mm 50 x 50 4.75kbps/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 37.15

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 14.24 dBA/m BWC Factor = 0.16 dB

Location: 9.2, 7.9, 3.7 mm

T-Coil/General Scans/z (axial) 4.2mm 50 x 50 4.75kbps/ABM Interpolated

SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 37.15

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 37.97 dB

ABM1 comp = -2.69 dBA/m

BWC Factor = 0.16 dB

Location: 7.1, -13.8, 3.7 mm

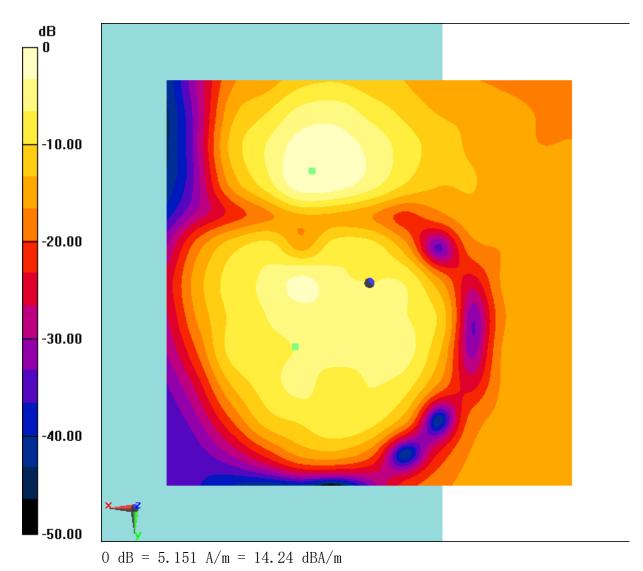


Fig B.8 T-Coil WCDMA 1900

T-Coil WCDMA 1700 Transverse

Date: 2019-3-5

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: WCDMA 1700; Frequency: 1732.4 MHz; Duty Cycle: 1:1

Probe: AM1DV2 - 1064;

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 37.15

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 8.61 dBA/mBWC Factor = 0.16 dB

Location: 8.8, -4.2, 3.7 mm

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated

SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 37.15

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 37.10 dB ABM1 comp = 5.83 dBA/m

BWC Factor = 0.16 dB

Location: 8.3, -0.8, 3.7 mm

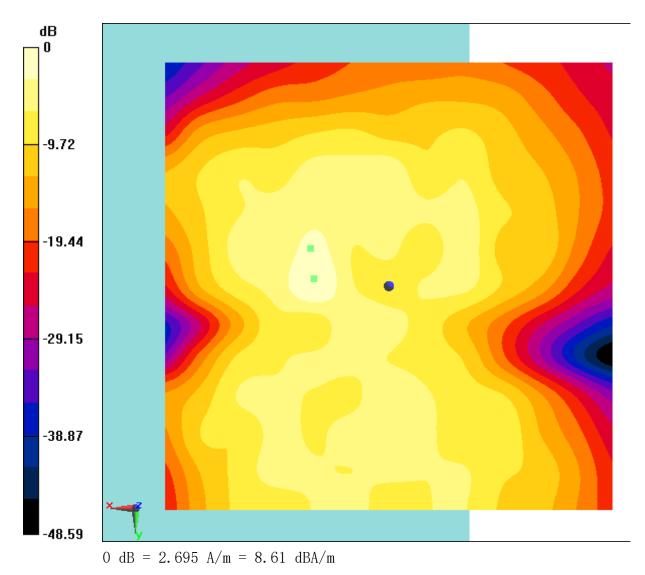


Fig B.9 T-Coil WCDMA 1700

T-Coil WCDMA 1700 Perpendicular

Date: 2019-3-5

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: WCDMA 1700; Frequency: 1732.4 MHz; Duty Cycle: 1:1

Probe: AM1DV2 - 1064;

T-Coil/General Scans/z (axial) 4.2mm 50 x 50/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 37.15

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 15.66 dBA/mBWC Factor = 0.16 dB

Location: 9.2, 4.6, 3.7 mm

T-Coil/General Scans/z (axial) 4.2mm 50 x 50/ABM Interpolated

SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 37.15

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 38.04 dB

ABM1 comp = -3.23 dBA/m

BWC Factor = 0.16 dB

Location: 6.3, -14.2, 3.7 mm

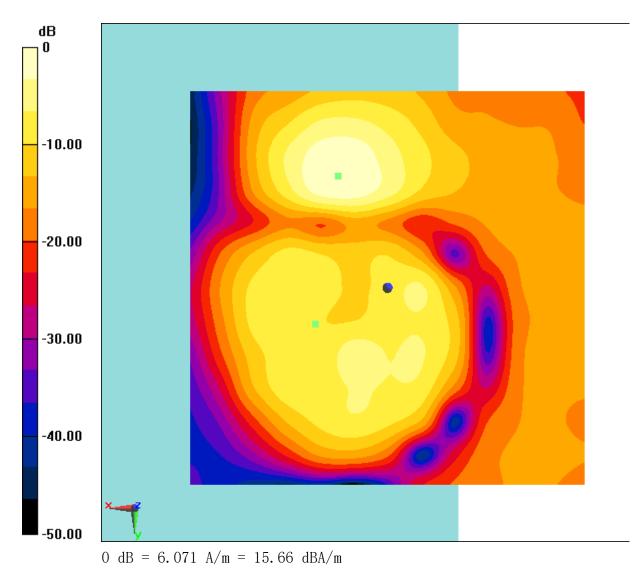


Fig B.10 T-Coil WCDMA 1700

T-Coil LTE B2 10M Transverse

Date: 2019-3-7

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: LTE B2; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: AM1DV2 - 1064;

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50 10M/ABM

Interpolated Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 10.06 dBA/m BWC Factor = 0.16 dB

Location: 7.9, -2.9, 3.7 mm

T-Coil/General Scans/v (transversal) 4.2mm 50 x 50 10M/ABM

Interpolated SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 42.02 dB ABM1 comp = 8.63 dBA/m

Location: 11.3, -0.8, 3.7 mm

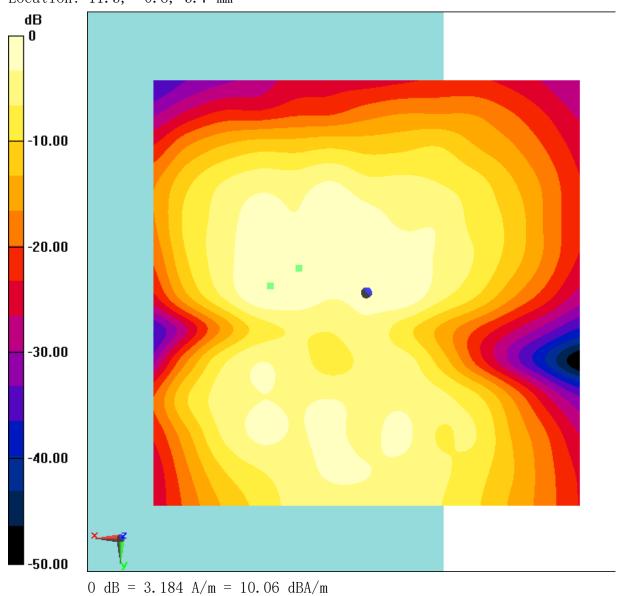


Fig B.11 T-Coil LTE B2

T-Coil LTE B2 20M Perpendicular

Date: 2019-3-7

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: LTE B2; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: AM1DV2 - 1064;

T-Coil/General Scans/z (axial) 4.2mm 50 x 50 20M/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 16.10 dBA/m BWC Factor = 0.16 dB Location: 9.6, 5, 3.7 mm

T-Coil/General Scans/z (axial) 4.2mm 50 x 50 20M/ABM Interpolated

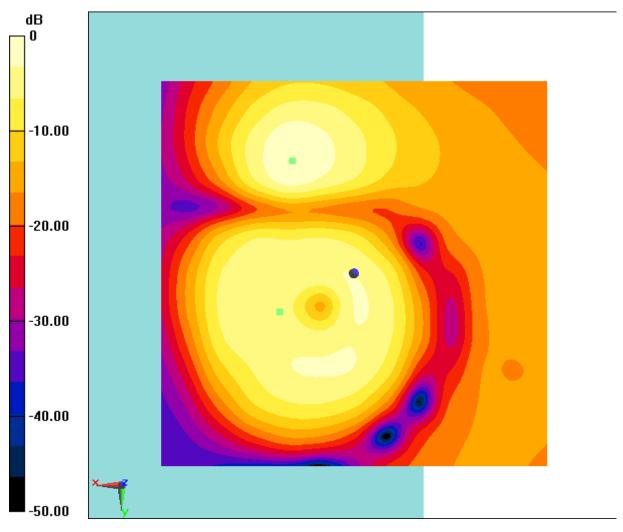
SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB


Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 42.42 dB ABM1 comp = 1.22 dBA/m

Location: 7.9, -14.6, 3.7 mm

0 dB = 6.382 A/m = 16.10 dBA/m

Fig B.12 T-Coil LTE B2

T-Coil LTE B5 10M Transverse

Date: 2019-3-7

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: LTE B5; Frequency: 836.5 MHz; Duty Cycle: 1:1

Probe: AM1DV2 - 1064;

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50 10M/ABM

Interpolated Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 10.33 dBA/m BWC Factor = 0.16 dB

Location: 8.8, -1.7, 3.7 mm

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50 10M/ABM

Interpolated SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm,

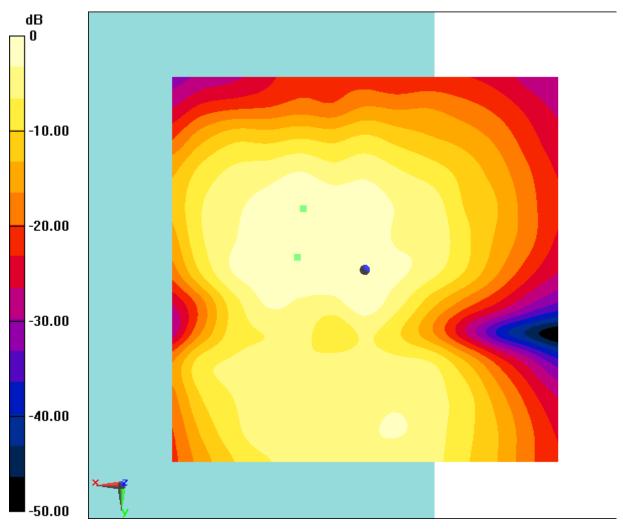
dy=1.000 mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB


Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 42.59 dB ABM1 comp = 7.58 dBA/m

Location: 7.9, -7.9, 3.7 mm

0 dB = 3.285 A/m = 10.33 dBA/m

Fig B.13 T-Coil LTE B5

T-Coil LTE B5 3M Perpendicular

Date: 2019-3-7

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: LTE B5; Frequency: 836.5 MHz; Duty Cycle: 1:1

Probe: AM1DV2 - 1064;

T-Coil/General Scans/z (axial) 4.2mm 50 x 50 3M/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 16.20 dBA/m BWC Factor = 0.16 dB Location: 9.2, 5, 3.7 mm

T-Coil/General Scans/z (axial) 4.2mm 50 x 50 3M/ABM Interpolated

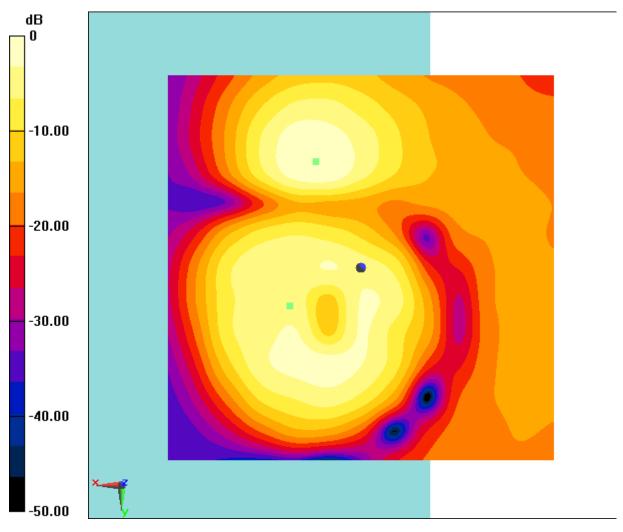
SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB


Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 42.17 dB ABM1 comp = 0.71 dBA/m

Location: 5.8, -13.8, 3.7 mm

0 dB = 6.455 A/m = 16.20 dBA/m

Fig B.14 T-Coil LTE B5

T-Coil LTE B13 5M Transverse

Date: 2019-3-8

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: LTE B13; Frequency: 782 MHz; Duty Cycle: 1:1

Probe: AM1DV2 - 1064;

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50 5M/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 10.08 dBA/mBWC Factor = 0.16 dB

Location: 8.8, -1.7, 3.7 mm

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50 5M/ABM Interpolated

SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 44.14 dB ABM1 comp = 1.27 dBA/m

BWC Factor = 0.16 dB

Location: 5.4, 3.7, 3.7 mm

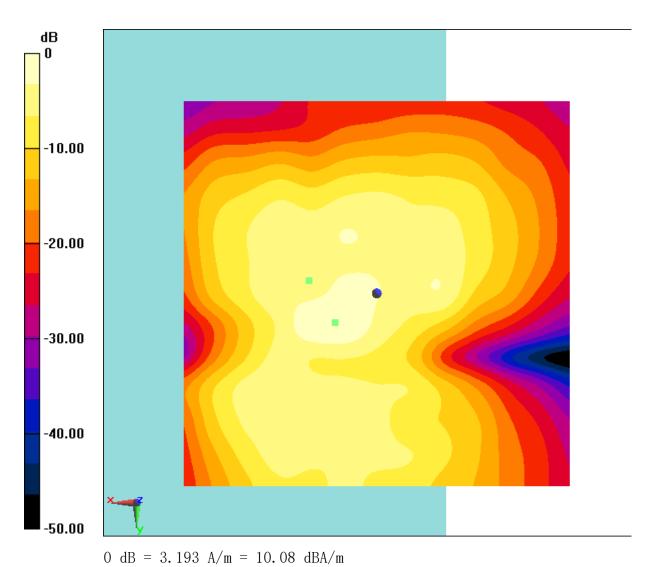


Fig B.15 T-Coil LTE B13

T-Coil LTE B13 5M Perpendicular

Date: 2019-3-8

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: LTE B13; Frequency: 782 MHz; Duty Cycle: 1:1

Probe: AM1DV2 - 1064;

T-Coil/General Scans/z (axial) 4.2mm 50 x 50 5M/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 15.82 dBA/mBWC Factor = 0.16 dB

Location: 9.2, 5.4, 3.7 mm

T-Coil/General Scans/z (axial) 4.2mm 50 x 50 5M/ABM Interpolated

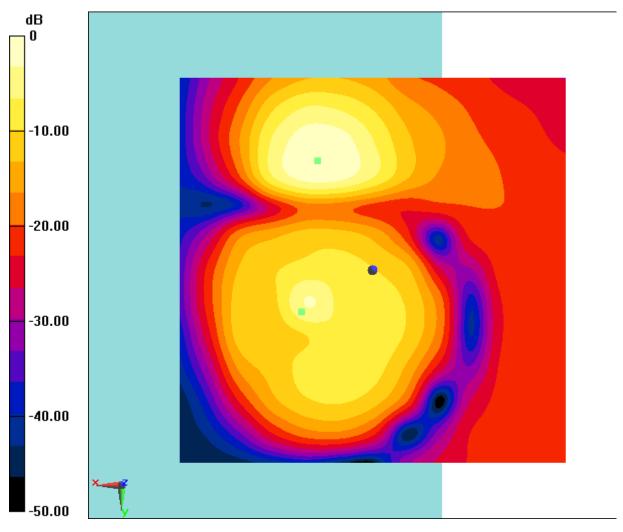
SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB


Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 44.22 dBABM1 comp = 0.62 dBA/m

Location: 7.1, -14.2, 3.7 mm

0 dB = 6.183 A/m = 15.82 dBA/m

Fig B.16 T-Coil LTE B13

T-Coil LTE B66 20M Transverse

Date: 2019-3-8

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: LTE B66; Frequency: 1745 MHz; Duty Cycle: 1:1

Probe: AM1DV2 - 1064;

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50 20M/ABM

Interpolated Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 10.11 dBA/m BWC Factor = 0.16 dB

Location: 8.8, -1.7, 3.7 mm

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50 20M/ABM

Interpolated SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm,

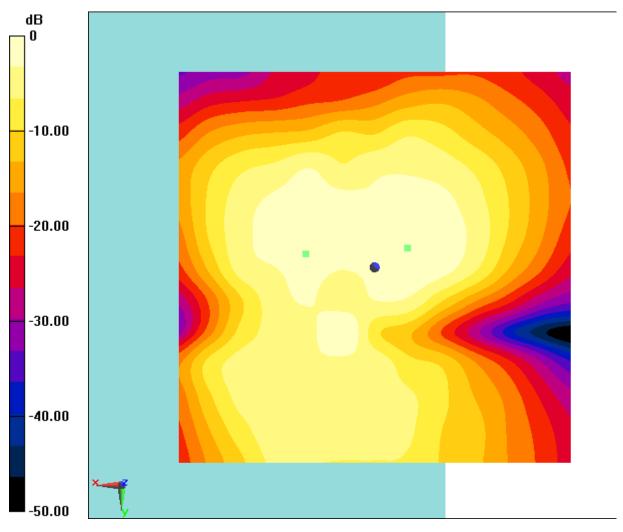
dy=1.000 mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB


Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 43.01 dBABM1 comp = 0.08 dBA/m

Location: -4.2, -2.5, 3.7 mm

0 dB = 3.202 A/m = 10.11 dBA/m

Fig B.17 T-Coil LTE B66

T-Coil LTE B66 3M Perpendicular

Date: 2019-3-8

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: LTE B66; Frequency: 1745 MHz; Duty Cycle: 1:1

Probe: AM1DV2 - 1064;

T-Coil/General Scans/z (axial) 4.2mm 50 x 50 3M/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 15.75 dBA/m BWC Factor = 0.16 dB Location: 8.8, 5, 3.7 mm

T-Coil/General Scans/z (axial) 4.2mm 50 x 50 3M/ABM Interpolated

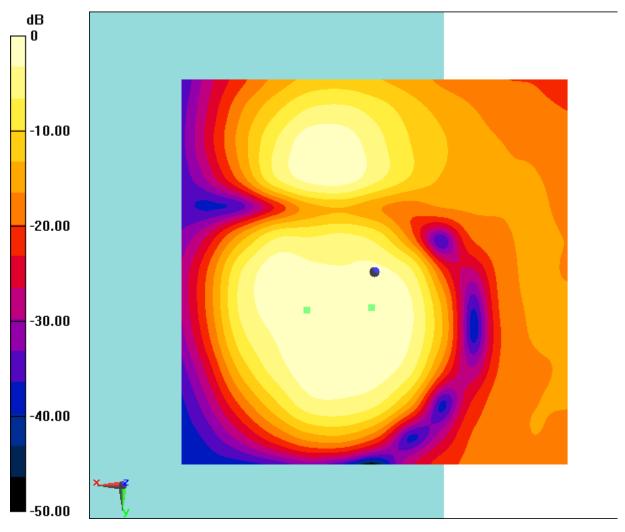
SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB


Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 42.50 dB ABM1 comp = 8.91 dBA/m

Location: 0.4, 4.6, 3.7 mm

0 dB = 6.132 A/m = 15.75 dBA/m

Fig B.18 T-Coil LTE B66

T-Coil WiFi-2.4G 11n 40M Transverse

Date: 2019-4-8

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: WiFi-2.4G; Frequency: 2437 MHz; Duty Cycle: 1:1

Probe: AM1DV2 - 1064;

T-Coil/General Scans 11n 40M ch6/y (transversal) 4.2mm 50 x 50 MCS6/ABM

Interpolated Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 5.82 dBA/m BWC Factor = 0.16 dB

Location: 8.3, -2.9, 3.7 mm

T-Coil/General Scans 11n 40M ch6/y (transversal) 4.2mm 50 x 50 MCS6/ABM

Interpolated SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm,

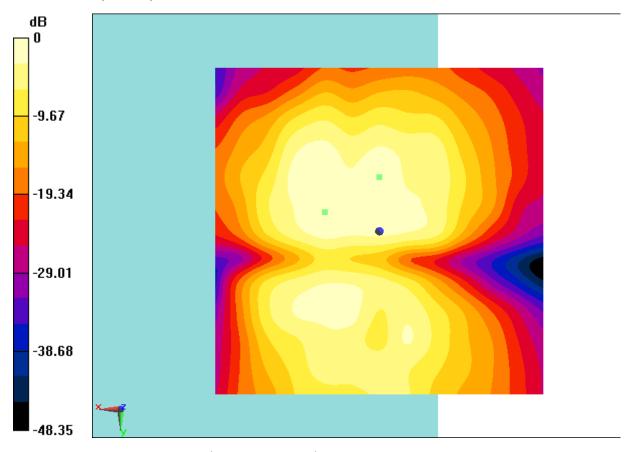
dy=1.000 mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB


Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 43.51 dBABM1 comp = 0.33 dBA/m

BWC Factor = 0.16 dB Location: 0, -8.3, 3.7 mm

0 dB = 1.954 A/m = 5.82 dBA/m

Fig B.19 T-Coil WiFi-2. 4G

T-Coil WiFi-2.4G 11g Perpendicular

Date: 2019-4-8

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: WiFi-2.4G; Frequency: 2437 MHz; Duty Cycle: 1:1

Probe: AM1DV2 - 1064;

T-Coil/General Scans 11b ch6/z (axial) 4.2mm 50 x 50 11g 54Mbps/ABM

Interpolated Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 15.03 dBA/m BWC Factor = 0.16 dB

Location: 7.9, 4.6, 3.7 mm

T-Coil/General Scans 11b ch6/z (axial) 4.2mm 50 x 50 11g 54Mbps/ABM

Interpolated SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

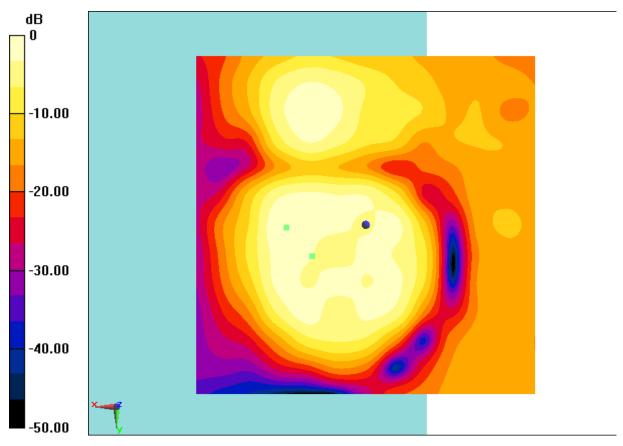
Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm


Cursor:

ABM1/ABM2 = 42.57 dB

ABM1 comp = 12.43 dBA/mBWC Factor = 0.16 dB

Location: 11.7, 0.4, 3.7 mm

0 dB = 5.644 A/m = 15.03 dBA/m

Fig B.20 T-Coil WiFi-2.4G

T-Coil EDGE 1900 Transverse - OTT VoIP

Date: 2019-3-25

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Probe: AM1DV2 - 1064;

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 37.15

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = -6.50 dBA/mBWC Factor = 0.16 dB

Location: 4.2, -22.1, 3.7 mm

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated

SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 37.15

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 42.04 dB

ABM1 comp = -6.60 dBA/m

BWC Factor = 0.16 dB

Location: 3.8, -21.7, 3.7 mm

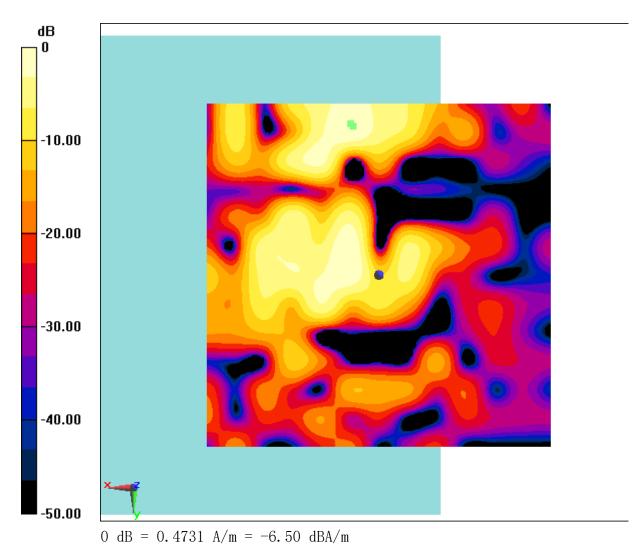


Fig B.21 T-Coil GSM 1900

T-Coil EDGE 850 Perpendicular - OTT VoIP

Date: 2019-3-25

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Probe: AM1DV2 - 1064;

T-Coil/General Scans 3tx/z (axial) 4. 2mm 50 x 50 6kbps/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 37.15

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 0.81 dBA/m BWC Factor = 0.16 dB

Location: 5.4, -13.3, 3.7 mm

T-Coil/General Scans 3tx/z (axial) 4. 2mm 50 x 50 6kbps/ABM Interpolated

SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 37.15

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 36.15 dB ABM1 comp = 0.64 dBA/m

BWC Factor = 0.16 dB

Location: 4.6, -12.9, 3.7 mm

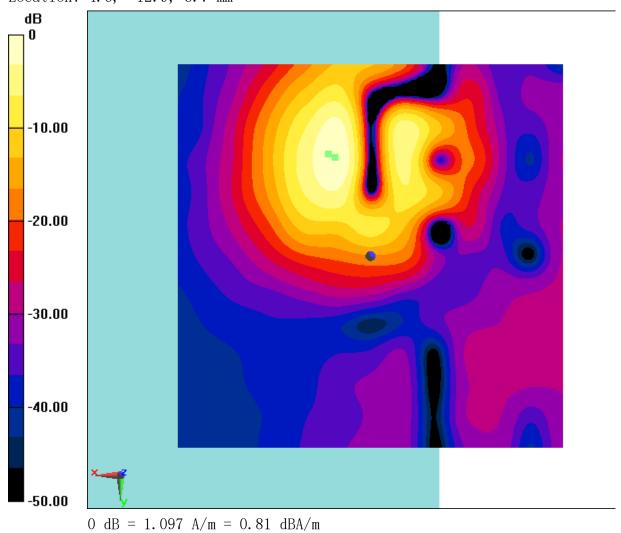


Fig B.22 T-Coil GSM 850

T-Coil LTE B13 10M Transverse - OTT VoIP

Date: 2019-3-22

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: LTE B13; Frequency: 782 MHz; Duty Cycle: 1:1

Probe: AM1DV2 - 1064;

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50 10M/ABM

Interpolated Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = -6.80 dBA/mBWC Factor = 0.16 dB

Location: 4.2, -2.9, 3.7 mm

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50 10M/ABM

Interpolated SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 42.29 dBABM1 comp = -8.13 dBA/m

BWC Factor = 0.16 dB

Location: 0, -20.4, 3.7 mm

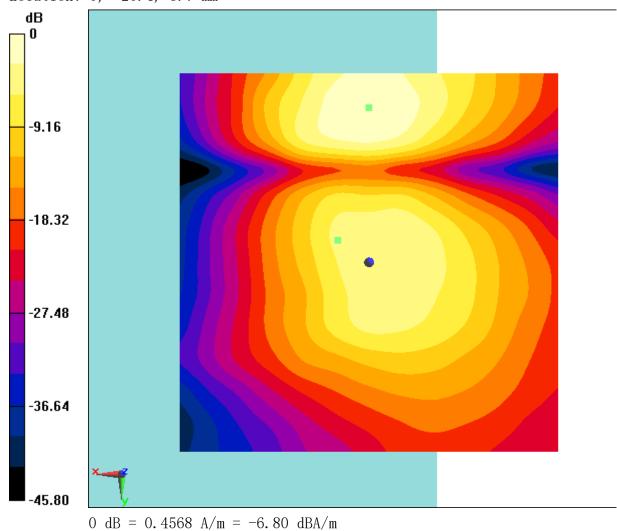


Fig B.23 T-Coil LTE B13

T-Coil LTE B13 10M Perpendicular

Date: 2019-3-22

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: LTE B13; Frequency: 782 MHz; Duty Cycle: 1:1

Probe: AM1DV2 - 1064;

T-Coil/General Scans/z (axial) 4.2mm 50 x 50 10M/ABM Interpolated

Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 0.79 dBA/m BWC Factor = 0.16 dB

Location: 4.6, -12.1, 3.7 mm

T-Coil/General Scans/z (axial) 4.2mm 50 x 50 10M/ABM Interpolated

SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 42.25 dB ABM1 comp = 0.55 dBA/m

BWC Factor = 0.16 dB

Location: 3.3, -12.5, 3.7 mm

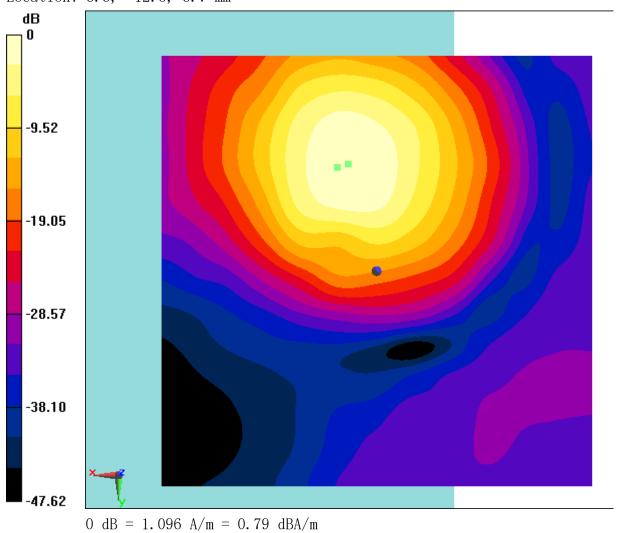


Fig B.24 T-Coil LTE B13

T-Coil WiFi-2.4G 11n Transverse

Date: 2019-3-24

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: WiFi-2.4G; Frequency: 2437 MHz; Duty Cycle: 1:1

Probe: AM1DV2 - 1064;

T-Coil/General Scans 11n 20M ch6/y (transversal) 4.2mm 50 x 50 MCS1/ABM

Interpolated Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = -13.33 dBA/mBWC Factor = 0.16 dB

Location: 5.8, -20.8, 3.7 mm

T-Coil/General Scans 11n 20M ch6/y (transversal) 4.2mm 50 x 50 MCS1/ABM

Interpolated SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

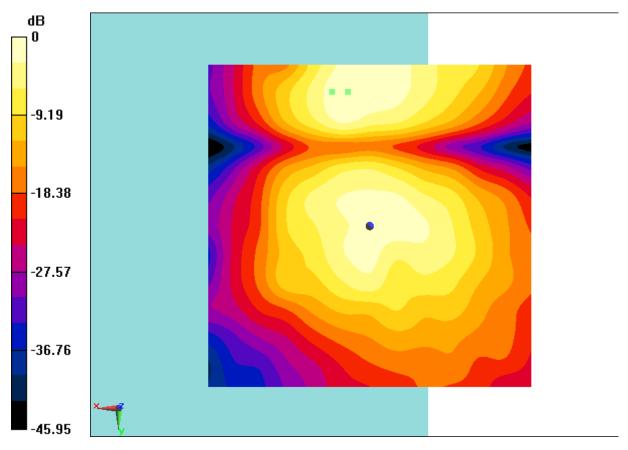
Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm


Cursor:

ABM1/ABM2 = 34.53 dBABM1 comp = -13.73 dBA/m

BWC Factor = 0.16 dB

Location: 3.3, -20.8, 3.7 mm

0 dB = 0.2154 A/m = -13.33 dBA/m

Fig B.25 T-Coil WiFi-2. 4G

T-Coil WiFi-2.4G 11n Perpendicular

Date: 2019-3-24

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.5°C

Communication System: WiFi-2.4G; Frequency: 2437 MHz; Duty Cycle: 1:1

Probe: AM1DV2 - 1064;

T-Coil/General Scans 11n 20M ch6/z (axial) 4.2mm 50 x 50 MCS1/ABM

Interpolated Signal(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = -7.51 dBA/mBWC Factor = 0.16 dB

Location: 8.3, -12.1, 3.7 mm

T-Coil/General Scans 11n 20M ch6/z (axial) 4.2mm 50 x 50 MCS1/ABM

Interpolated SNR(x, y, z) (121x121x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 100

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 34.50 dB

ABM1 comp = -8.11 dBA/m BWC Factor = 0.16 dB

Location: 8.3, -14.6, 3.7 mm

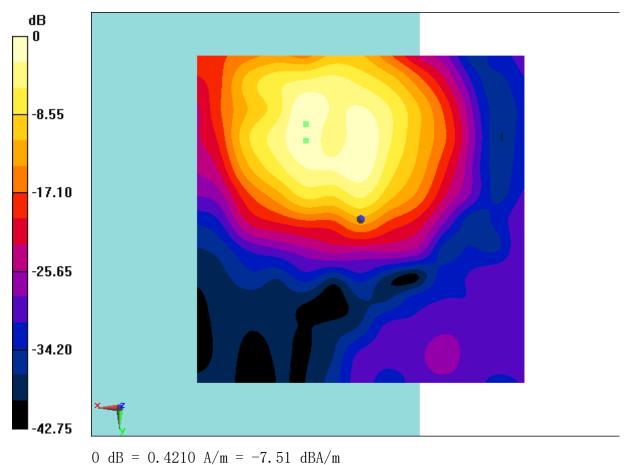


Fig B.26 T-Coil WiFi-2.4G

ANNEX C FREQUENCY REPONSE CURVES

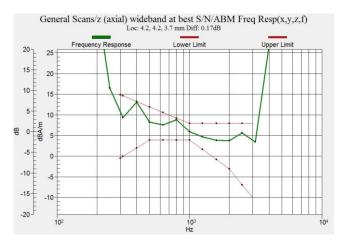


Figure C.1 Frequency Response of GSM 850

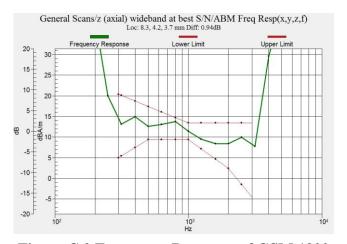


Figure C.2 Frequency Response of GSM 1900

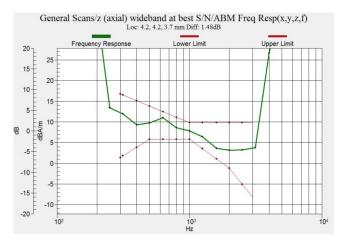


Figure C.3 Frequency Response of WCDMA 850

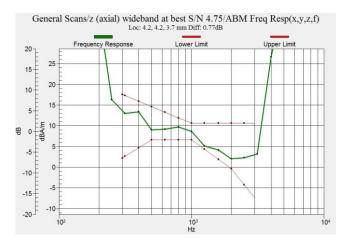


Figure C.4 Frequency Response of WCDMA 1900

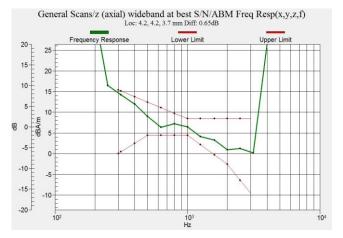


Figure C.5 Frequency Response of WCDMA 1700

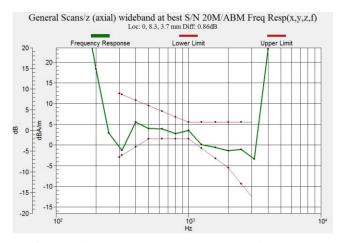


Figure C.6 Frequency Response of LTE B2

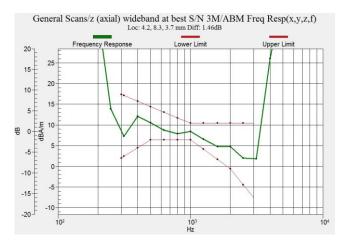


Figure C.7 Frequency Response of LTE B5

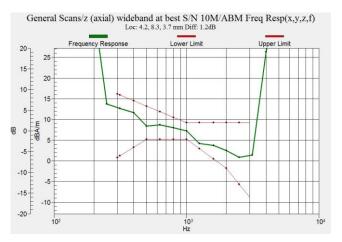


Figure C.8 Frequency Response of LTE B13

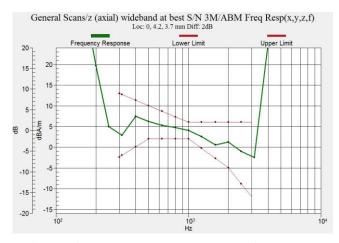


Figure C.9 Frequency Response of LTE B66

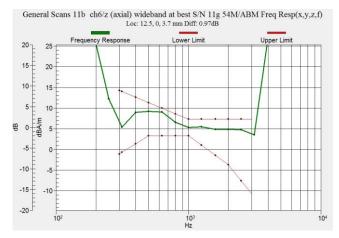


Figure C.10 Frequency Response of WiFi-2.4G

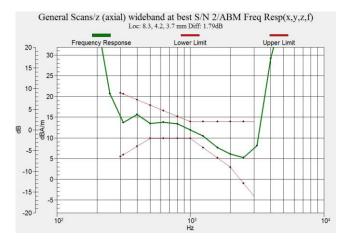


Figure C.11 Frequency Response of EDGE850 - OTT VoIP

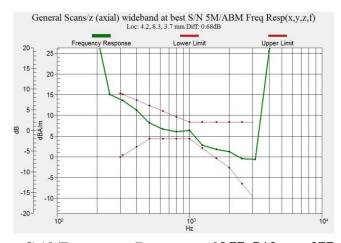


Figure C.12 Frequency Response of LTE B13 - OTT VoIP

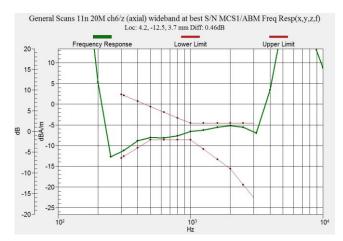


Figure C.13 Frequency Response of WiFi-2.4G - OTT VoIP

Client

ANNEX D PROBE CALIBRATION CERTIFICATE

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

CTTL (Auden)

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Certificate No: AM1DV2-1064_Jul18

C

S

CALIBRATION CERTIFICATE

Object AM1DV2 - SN: 1064

Calibration procedure(s) QA CAL-24.v4

Calibration procedure for AM1D magnetic field probes and TMFS in the

audio range

Calibration date: July 17, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	31-Aug-17 (No. 21092)	Aug-18
Reference Probe AM1DV2	SN: 1008	03-Jan-18 (No. AM1DV2-1008_Jan18)	Jan-19
DAE4	SN: 781	17-Jan-18 (No. DAE4-781_Jan18)	Jan-19

Secondary Standards	ID#	Check Date (in house)	Scheduled Check
AMCC	SN: 1050	01-Oct-13 (in house check Oct-17)	Oct-19
AMMI Audio Measuring Instrument	SN: 1062	26-Sep-12 (in house check Oct-17)	Oct-19

Name Function Signatur

Calibrated by: Leif Klysner Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: July 17, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: AM1DV2-1064_Jul18

Page 1 of 3

[References

- [1] ANSI-C63.19-2007 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.
- [2] ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.
- [3] DASY5 manual, Chapter: Hearing Aid Compatibility (HAC) T-Coil Extension

Description of the AM1D probe

The AM1D Audio Magnetic Field Probe is a fully shielded magnetic field probe for the frequency range from 100 Hz to 20 kHz. The pickup coil is compliant with the dimensional requirements of [1+2]. The probe includes a symmetric low noise amplifier for the signal available at the shielded 3 pin connector at the side. Power is supplied via the same connector (phantom power supply) and monitored via the LED near the connector. The 7 pin connector at the end of the probe does not carry any signals, but determines the angle of the sensor when mounted on the DAE. The probe supports mechanical detection of the surface.

The single sensor in the probe is arranged in a tilt angle allowing measurement of 3 orthogonal field components when rotating the probe by 120° around its axis. It is aligned with the perpendicular component of the field, if the probe axis is tilted nominally 35.3° above the measurement plane, using the connector rotation and sensor angle stated below. The probe is fully RF shielded when operated with the matching signal cable (shielded) and allows measurement of audio magnetic fields in the close vicinity of RF emitting wireless devices according to [1+2] without additional shielding.

Handling of the item

The probe is manufactured from stainless steel. In order to maintain the performance and calibration of the probe, it must not be opened. The probe is designed for operation in air and shall not be exposed to humidity or liquids. For proper operation of the surface detection and emergency stop functions in a DASY system, the probe must be operated with the special probe cup provided (larger diameter).

Methods Applied and Interpretation of Parameters

- Coordinate System: The AM1D probe is mounted in the DASY system for operation with a HAC
 Test Arch phantom with AMCC Helmholtz calibration coil according to [3], with the tip pointing to
 "southwest" orientation.
- Functional Test: The functional test preceding calibration includes test of Noise level
 - RF immunity (1kHz AM modulated signal). The shield of the probe cable must be well connected. Frequency response verification from 100 Hz to 10 kHz.
- Connector Rotation: The connector at the end of the probe does not carry any signals and is used for fixation to the DAE only. The probe is operated in the center of the AMCC Helmholtz coil using a 1 kHz magnetic field signal. Its angle is determined from the two minima at nominally +120° and 120° rotation, so the sensor in the tip of the probe is aligned to the vertical plane in z-direction, corresponding to the field maximum in the AMCC Helmholtz calibration coil.
- Sensor Angle: The sensor tilting in the vertical plane from the ideal vertical direction is determined
 from the two minima at nominally +120° and -120°. DASY system uses this angle to align the
 sensor for radial measurements to the x and y axis in the horizontal plane.

Sensitivity: With the probe sensor aligned to the z-field in the AMCC, the output of the probe is compared to the magnetic field in the AMCC at 1 kHz. The field in the AMCC Helmholtz coil is given by the geometry and the current through the coil, which is monitored on the precision shunt resistor of the coil.

Cortificato	No.	AM1DV2-1064	4 Indao

AM1D probe identification and configuration data

Item	AM1DV2 Audio Magnetic 1D Field Probe	V-8:
Type No	SP AM1 001 AF	
Serial No	1064	

Overall length	296 mm	2000
Tip diameter	6.0 mm (at the tip)	, , , , , , , , , , , , , , , , , , ,
Sensor offset	3.0 mm (centre of sensor from tip)	
Internal Amplifier	40 dB	200

Manufacturer / Origin	Schmid & Partner Engineering AG, Zurich, Switzerland

Calibration data

Connector rotation angle	(in DASY system)	101.8°	+/- 3.6 ° (k=2)
Sensor angle	(in DASY system)	0.52 °	+/- 0.5 ° (k=2)
Sensitivity at 1 kHz	(in DASY system)	0.0657 V / (A/m)	+/- 2.2 % (k=2)

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: AM1DV2-1064_Jul18

Page 3 of 3

ANNEX E DAE CALIBRATION CERTIFICATE

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

CTTL - BJ (Auden)

Certificate No: DAE4-1555 Aug18

Accreditation No.: SCS 0108

ALIBRATION	CERTIFICATE		
Object	DAE4 - SD 000 D	04 BN - SN: 1555	
alibration procedure(s) QA CAL-06.v29 Calibration procedure for the data acquired alibration date: August 20, 2018		dure for the data acquisition elec	etronics (DAE)
Calibration date:	August 20, 2018		
The measurements and the unce	ertainties with confidence pro	onal standards, which realize the physical unobability are given on the following pages ary facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate.
Calibration Equipment used (M&	TE critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards	1	Cal Date (Certificate No.) 31-Aug-17 (No:21092)	Scheduled Calibration Aug-18
Primary Standards Keithley Multimeter Type 2001	ID # SN: 0810278	31-Aug-17 (No:21092)	Aug-18
Primary Standards Keithley Multimeter Type 2001 Secondary Standards	ID # SN: 0810278		
Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SN: 0810278 ID # SE UWS 053 AA 1001	31-Aug-17 (No:21092) Check Date (in house)	Aug-18 Scheduled Check
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	31-Aug-17 (No:21092) Check Date (in house) 04-Jan-18 (in house check) 04-Jan-18 (in house check)	Aug-18 Scheduled Check In house check: Jan-19 In house check: Jan-19
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	31-Aug-17 (No:21092) Check Date (in house) 04-Jan-18 (in house check) 04-Jan-18 (in house check)	Aug-18 Scheduled Check In house check: Jan-19 In house check: Jan-19 Signature
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	31-Aug-17 (No:21092) Check Date (in house) 04-Jan-18 (in house check) 04-Jan-18 (in house check)	Aug-18 Scheduled Check In house check: Jan-19 In house check: Jan-19 Signature
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	31-Aug-17 (No:21092) Check Date (in house) 04-Jan-18 (in house check) 04-Jan-18 (in house check)	Aug-18 Scheduled Check In house check: Jan-19 In house check: Jan-19

Certificate No: DAE4-1555_Aug18

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

• DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.

- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1555_Aug18 Page 2 of 5

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = full range = -100...+300 mV full range = -1......+3mV $6.1\mu V$, Low Range: 1LSB = 61nV, DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.540 ± 0.02% (k=2)	404.077 ± 0.02% (k=2)	405.023 ± 0.02% (k=2)
Low Range	3.92909 ± 1.50% (k=2)	3.94558 ± 1.50% (k=2)	3.97891 ± 1.50% (k=2)

Connector Angle

A200 A	170,000,000
Connector Angle to be used in DASY system	104.0 ° ± 1 °

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	199994.32	-1.11	-0.00
Channel X + Input	20004.21	2.27	0.01
Channel X - Input	-19994.21	6.72	-0.03
Channel Y + Input	199991.01	-4.74	-0.00
Channel Y + Input	19999.15	-2.66	-0.01
Channel Y - Input	-19999.37	1.70	-0.01
Channel Z + Input	199997.50	1.46	0.00
Channel Z + Input	19998.75	-3.06	-0.02
Channel Z - Input	-20003.08	-1.96	0.01

Low Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	2001.23	-0.12	-0.01
Channel X	+ Input	201.73	0.03	0.02
Channel X	- Input	-197.79	0.32	-0.16
Channel Y	+ Input	2001.22	0.00	0.00
Channel Y	+ Input	201.15	-0.62	-0.31
Channel Y	- Input	-198.47	-0.28	0.14
Channel Z	+ Input	2001.41	0.23	0.01
Channel Z	+ Input	200.99	-0.67	-0.33
Channel Z	- Input	-199.42	-1.11	0.56

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-10.02	-11.33
	- 200	12.53	10.76
Channel Y	200	10.66	10.40
	- 200	-12.33	-12.29
Channel Z	200	-2.18	-2.52
	- 200	0.20	-0.09

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	-0.85	-2.68
Channel Y	200	8.65	-	0.04
Channel Z	200	6.10	6.93	-

Certificate No: DAE4-1555_Aug18

4. AD-Converter Values with inputs shorted
DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15635	14959
Channel Y	15850	16040
Channel Z	16635	16604

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.40	-0.72	1.60	0.48
Channel Y	0.06	-0.99	1.84	0.46
Channel Z	-0.76	-2.17	0.18	0.48

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

The photos of HAC test are presented in the additional document:

Appendix to test report no. I19Z60257-SEM02/03

The photos of HAC test