

FCC PART 15C TEST REPORT No. **I19Z60140-IOT01**

for

HMD Global Oy

Multi-band GSM/WCDMA/LTE phone with Bluetooth,WLAN

Model Name: TA-1159

FCC ID: 2AJOTTA-1159

with

Hardware Version: 89626_1_12

Software Version: 00WW_0_130

Issued Date: 2019-03-05

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No.52, HuayuanNorth Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512,Fax:+86(0)10-62304633-2504

Email: cttl_terminals@caict.ac.cn, website: www.caict.ac.cn

©Copyright. All rights reserved by CTTL.

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I19Z60140-IOT01	Rev.0	1st edition	2019-03-05

CONTENTS

1.	ТЕ	ST LABORATORY	5
1.	1.	TESTING LOCATION	5
1.	2.	TESTING ENVIRONMENT	5
1.	3.	Project data	5
1.	4.	SIGNATURE	5
2.	CL	IENT INFORMATION	6
2	1.	Applicant Information	6
	2.	MANUFACTURER INFORMATION	
3.		UIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	
	-		
	1.	ABOUT EUT	
	2.	INTERNAL IDENTIFICATION OF EUT	
	3.	INTERNAL IDENTIFICATION OF AE	
	4.	NORMAL ACCESSORY SETTING	
3.	5.	GENERAL DESCRIPTION	8
4.	RE	FERENCE DOCUMENTS	9
4.	1.	DOCUMENTS SUPPLIED BY APPLICANT	9
4.	2.	Reference Documents for testing	9
5.	ТЕ	ST RESULTS 1	10
5.	1.	SUMMARY OF TEST RESULTS 1	10
5.	2.	STATEMENTS1	10
5.	3.	EXPLANATION OF RE-USE OF TEST DATA 1	10
6.	ТЕ	ST FACILITIES UTILIZED	11
7.	MI	EASUREMENT UNCERTAINTY 1	12
7.	1.	PEAK OUTPUT POWER - CONDUCTED	12
7.	2.	Frequency Band Edges 1	12
7.	3.	TRANSMITTER SPURIOUS EMISSION - CONDUCTED 1	12
7.	4.	TRANSMITTER SPURIOUS EMISSION - RADIATED 1	12
7.	5.	TIME OF OCCUPANCY (DWELL TIME) 1	12
7.	6.	20DB BANDWIDTH	12
7.	7.	CARRIER FREQUENCY SEPARATION	13
7.	8.	AC POWERLINE CONDUCTED EMISSION	13
ANI	NEX	A: DETAILED TEST RESULTS 1	14
А	.1. N	IEASUREMENT METHOD 1	14
		PEAK OUTPUT POWER – CONDUCTED 1	
А	.3. F	REQUENCY BAND EDGES – CONDUCTED 1	16
		TRANSMITTER SPURIOUS EMISSION - CONDUCTED 2	
А	.5.7	RANSMITTER SPURIOUS EMISSION - RADIATED	

No. I19Z60140-IOT01 Page4 of 87

A	NNEX E: ACCREDITATION CERTIFICATE	87
	A.10. AC POWERLINE CONDUCTED EMISSION	81
	A.9. NUMBER OF HOPPING CHANNELS	77
	A.8. CARRIER FREQUENCY SEPARATION	74
	A.7. 20DB BANDWIDTH	68
	A.6. TIME OF OCCUPANCY (DWELL TIME)	58

1. Test Laboratory

1.1. Testing Location

Conducted testing Location: CTTL(huayuan North Road) Address: No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China100191

Radiated testing Location: CTTL(BDA)

Address:No.18A, Kangding Street, Beijing Economic-TechnologyDevelopment Area, Beijing, P. R. China 100176

1.2. Testing Environment

Normal Temperature:	15-35 ℃
Relative Humidity:	20-75%

1.3. Project data

Testing Start Date:	2019-01-17
Testing End Date:	2019-02-22

1.4. Signature

F

Wu Le (Prepared this test report)

Sun Zhenyu (Reviewed this test report)

Li Zhuofang (Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name:	HMD Global Oy
Address /Post:	Bertel Jungin aukio 9,02600 Espoo, Finland
City:	/
Postal Code:	/
Country:	Finland
Telephone:	/
Fax:	/

2.2. Manufacturer Information

Company Name:	HMD Global Oy
Address /Post:	Bertel Jungin aukio 9,02600 Espoo, Finland
City:	/
Postal Code:	/
Country:	Finland
Telephone:	/
Fax:	/

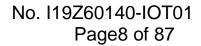
3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description	Multi-band GSM/WCDMA/LTE phone with Bluetooth,WLAN
Model Name	TA-1159
FCC ID	2AJOTTA-1159
Frequency Band	ISM 2400MHz~2483.5MHz
Type of Modulation	GFSK/π/4 DQPSK/8DPSK
Number of Channels	79
Power Supply	3.9V DC by Battery

3.2. Internal Identification of EUT

EUT ID*	SN or IMEI	HW Version	SW Version
EUT1	/	89626_1_12	00WW_0_130
EUT2	/	89626_1_12	00WW_0_130


*EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE ID*	Description		
AE1	Battery	/	/
AE2	Battery	/	/
AE3	Charger	/	/
AE4	Charger	/	/
AE5	Charger	/	/
AE6	USB Cable	/	/
AE7	USB Cable	/	/

AE1

Model	WT240
Manufacturer	Jiade Energy Technology(Zhuhai) Co.,Ltd.
Capacitance	3920mAh
Nominal voltage	3.85V
AE2	
Model	WT240
Manufacturer	Dongguan DRN New Energy Co.,Ltd
Capacitance	3920mAh
Nominal voltage	3.85V
AE3	
Model	CH-21U

Manufacturer	Shenzhen Tianyin Electronics Co.,Ltd
Length of cable	/
AE4	
Model	CH-21E
Manufacturer	Yutong electronics(Huizhou) co., ltd
Length of cable	/
AE5	
Model	CH-21X
Manufacturer	Yutong electronics(Huizhou) co., ltd
Length of cable	/
AE6	
Model	CB-35A
Manufacturer	Leagtech Electronics Co.,Ltd
Length of cable	/
AE7	
Model	CB-35A
Manufacturer	Shenzhen BRL Technology Co.,Ltd.
Length of cable	/
*AE ID: is used to identify the test	sample in the lab internally

*AE ID: is used to identify the test sample in the lab internally.

3.4. Normal Accessory setting

Fully charged battery should be used during the test.

3.5. General Description

The Equipment Under Test (EUT) is a model of Multi-band GSM/WCDMA/LTE phone with Bluetooth,WLAN with integrated antenna. It consists of normal options: lithium battery, charger. Manual and specifications of the EUT were provided to fulfill the test. Samples undergoing test were selected by the Client.

4. <u>Reference Documents</u>

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

5	5	
Reference	Title	Version
	FCC CFR 47, Part 15, Subpart C:	
	15.205 Restricted bands of operation;	
FCC Part15	15.209 Radiated emission limits, general requirements;	2016
	15.247 Operation within the bands 902–928MHz,	
	2400–2483.5 MHz, and 5725–5850 MHz.	
ANSI C63.10	American National Standard of Procedures for	luno 2012
ANSI 003.10	Compliance Testing of Unlicensed Wireless Devices	June,2013

5. Test Results

5.1. Summary of Test Results

Abbreviations used in this clause:

- P Pass, The EUT complies with the essential requirements in the standard.
- F Fail, The EUT does not comply with the essential requirements in the standard
- NA Not Applicable, The test was not applicable
- NP Not Performed, The test was not performed by CTTL
- **R** Re-use test data from basic model report.

SUMMARY OF MEASUREMENT RESULTS	Sub-clause	Verdict
Peak Output Power - Conducted	15.247 (b)(1)	R
Frequency Band Edges	15.247 (d)	R
Transmitter Spurious Emission - Conducted	15.247 (d)	R
Transmitter Spurious Emission - Radiated	15.247, 15.205, 15.209	Р
Time of Occupancy (Dwell Time)	15.247 (a) (1)(iii)	R
20dB Bandwidth	15.247 (a)(1)	R
Carrier Frequency Separation	15.247 (a)(1)	R
Number of hopping channels	15.247 (a)(b)(iii)	R
AC Powerline Conducted Emission	15.107, 15.207	R

Please refer to **ANNEX A** for detail.

The measurement is made according to ANSI C63.10.

5.2. Statements

CTTL has evaluated the test cases requested by the applicant /manufacturer as listed in section 5.1 of this report for the EUT specified in section 3 according to the standards or reference documents listed in section 4.2

5.3. Explanation of re-use of test data

This model is a variant product which model name is TA-1156(FCC ID:2AJOTTA-1156), according to the declaration of changes provided by the applicant and FCC KDB publication 484596D01, all the test results are derived from test report No. I19Z60072-IOT03. For detail differences between two models please refer the Declaration of Changes document.

6. Test Facilities Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Period	Calibration Due date
1	Vector Signal Analyzer	FSQ26	200136	Rohde & Schwarz	1 year	2019-11-21
2	Bluetooth Tester	CBT32	100649	Rohde & Schwarz	1 year	2019-10-28
3	LISN	ESH3-Z5	825562/0 28	Rohde & Schwarz	1 year	2019-08-22
4	Test Receiver	ESCI	100766	Rohde & Schwarz	1 year	2019-04-16
5	Base Station Simulator	CMW500	159408	R&S	1 year	2019-03-15
6	Shielding Room	S81	/	ETS-Lindgren	/	/

Radiated emission test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Period	Calibration Due date
1	Test Receiver	ESU26	100376	Rohde & Schwarz	1 year	2019-11-27
2	BiLog Antenna	VULB9163	9163-482	Schwarzbeck	1 year	2019-09-21
3	Dual-Ridge Waveguide Horn Antenna	3117	00139065	ETS-Lindgren	1 year	2019-11-15
4	Dual-Ridge Waveguide Horn Antenna	3116	2663	ETS-Lindgren	3 years	2020-05-31
5	Vector Signal Analyzer	FSV40	101047	Rohde & Schwarz	1 year	2019-07-21
6	Base Station Simulator	CMW500	159408	R&S	1 year	2019-03-15

7. <u>Measurement Uncertainty</u>

7.1. Peak Output Power - Conducted

Measurement Uncertainty:

Measurement Uncertainty (k=2)	0.66dB
-------------------------------	--------

7.2. Frequency Band Edges

Measurement Uncertainty:

7.3. Transmitter Spurious Emission - Conducted

Measurement Uncertainty:

Frequency Range	Uncertainty (k=2)
30 MHz ~ 8 GHz	1.22dB
8 GHz ~ 12.75 GHz	1.51dB
12.7GHz ~ 26 GHz	1.51dB

7.4. Transmitter Spurious Emission - Radiated

Measurement Uncertainty:

Frequency Range	Uncertainty (k=2)
< 1 GHz	5.40dB
> 1 GHz	4.32dB

7.5. Time of Occupancy (Dwell Time)

Measurement Uncertainty:

Measurement Uncertainty (k=2)	0.88ms
-------------------------------	--------

7.6. 20dB Bandwidth

Measurement Uncertainty:

Measurement Uncertainty (k=2)	61.936Hz
-------------------------------	----------

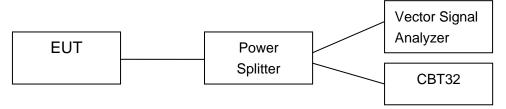
7.7. Carrier Frequency Separation

Measurement Uncertainty:

Measurement Uncertainty (k=2)	61.936Hz
-------------------------------	----------

7.8. AC Powerline Conducted Emission

Measurement Uncertainty:

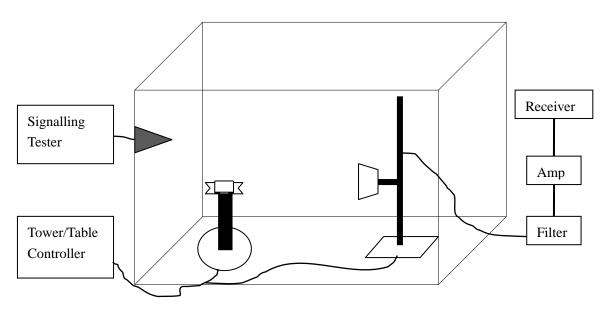

ANNEX A: Detailed Test Results

A.1. Measurement Method

A.1.1. Conducted Measurements

The measurement is made according to ANSI C63.10.

- 1). Connect the EUT to the test system correctly.
- 2). Set the EUT to the required work mode (Transmitter, receiver or transmitter & receiver).
- 3). Set the EUT to the required channel.
- 4). Set the EUT hopping mode (hopping or hopping off).
- 5). Set the spectrum analyzer to start measurement.
- 6). Record the values. Vector Signal Analyzer


A.1.2. Radiated Emission Measurements

The measurement is made according to ANSI C63.10

The radiated emission test is performed in semi-anechoic chamber. The distance from the EUT to the reference point of measurement antenna is 3m. The test is carried out on both vertical and horizontal polarization and only maximization result of both polarizations is kept. During the test, the turntable is rotated 360° and the measurement antenna is moved from 1m to 4m to get the maximization result.

In the case of radiated emission, the used settings are as follows,

Sweep frequency from 30 MHz to 1GHz, RBW = 100 kHz, VBW = 300 kHz; Sweep frequency from 1 GHz to 26GHz, RBW = 1MHz, VBW = 1MHz;

©Copyright. All rights reserved by CTTL.

A.2. Peak Output Power – Conducted

Method of Measurement: See ANSI C63.10-clause 7.8.5

a) Use the following spectrum analyzer settings:

- Span: 6MHz
- RBW: 3MHz
- VBW: 3MHz
- Sweep time: 2.5ms
- Detector function: peak
- Trace: max hold
- b) Allow trace to stabilize.
- c) Use the marker-to-peak function to set the marker to the peak of the emission.
- d) The indicated level is the peak output power.

Measurement Limit:

Standard	Limit (dBm)	
FCC Part 15.247(b)(1)	< 30	

Measurement Results:

For GFSK

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz	Conclusion
Peak Conducted Output Power (dBm)	2.95	4.60	3.10	Р

For $\pi/4$ DQPSK

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz	Conclusion
Peak Conducted Output Power (dBm)	3.63	5.31	3.92	Р

For 8DPSK

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz	Conclusion
Peak Conducted Output Power (dBm)	2.75	5.63	3.10	Р

Conclusion: PASS

A.3. Frequency Band Edges – Conducted

Method of Measurement: See ANSI C63.10-clause 7.8.6

Connect the spectrum analyzer to the EUT using an appropriate RF cable connected to the EUT output. Configure the spectrum analyzer settings as described below (be sure to enter all losses between the unlicensed wireless device output and the spectrum analyzer).

- Span: 10 MHz
- Resolution Bandwidth: 100 kHz
- Video Bandwidth: 300 kHz
- Sweep Time:Auto
- Detector: Peak
- Trace: max hold

Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel.

Observe the stored trace and measure the amplitude delta between the peak of the fundamental and the peak of the band-edge emission. This is not an absolute field strength measurement; it is only a relative measurement to determine the amount by which the emission drops at the band edge relative to the highest fundamental emission level.

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d)	< -20

Measurement Result:

For GFSK

Channel	Hopping	Band Edge Power (dBc)		Conclusion
0	Hopping OFF Fig.1		-54.15	Р
0	Hopping ON	Fig.2	-59.28	Р
70	Hopping OFF	Fig.3	-62.94	Р
78	Hopping ON	Fig.4	-62.68	Р

For π/4 DQPSK

Channel	Hopping	Band Edge Power (dBc)		Conclusion
0	Hopping OFF	Fig.5	-57.86	Р
0 Ho	Hopping ON	Fig.6	-61.17	Р
70	Hopping OFF	Fig.7	-59.87	Р
78	Hopping ON	Fig.8	-59.77	Р

For 8DPSK

Channel	Hopping	Band Edge Power (dBc)		Conclusion
0	Hopping OFF	Fig.9	-62.27	Р
0	Hopping ON	Fig.10	-61.72	Р

79	Hopping OFF	Fig.11	-61.04	Р
10	Hopping ON	Fig.12	-61.11	Р

Conclusion: PASS

Test graphs as below

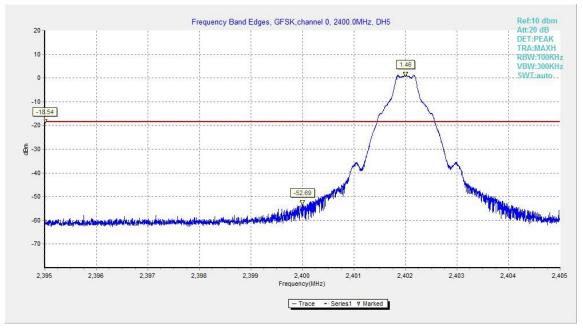


Fig.1. Frequency Band Edges: GFSK, Channel 0, Hopping Off

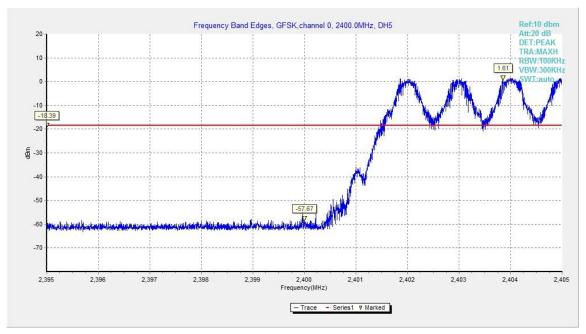


Fig.2. Frequency Band Edges: GFSK, Channel 0, Hopping On

No. I19Z60140-IOT01 Page18 of 87

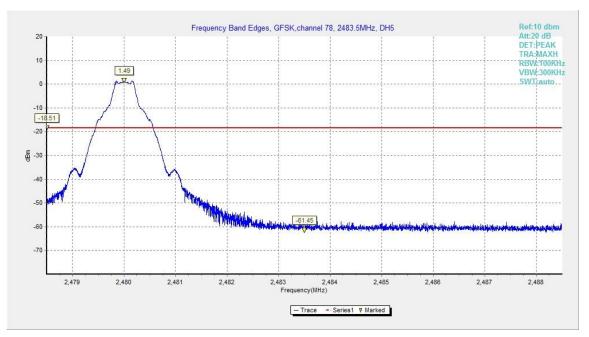


Fig.3. Frequency Band Edges: GFSK, Channel 78, Hopping Off

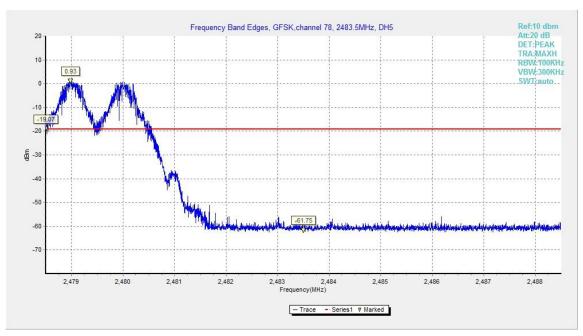


Fig.4. Frequency Band Edges: GFSK, Channel 78, Hopping On

No. I19Z60140-IOT01 Page19 of 87

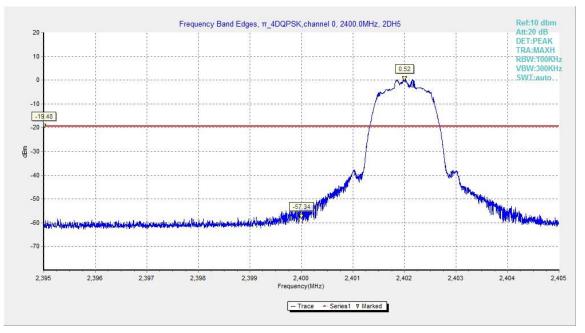


Fig.5. Frequency Band Edges: π/4 DQPSK, Channel 0, Hopping Off

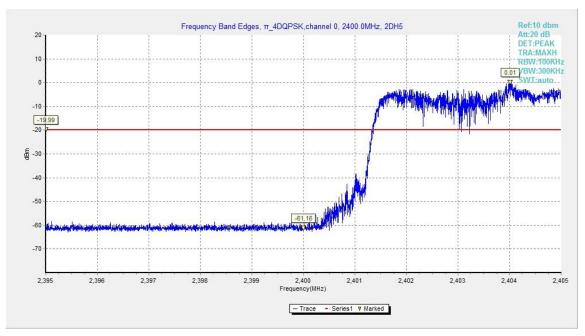


Fig.6. Frequency Band Edges: $\pi/4$ DQPSK, Channel 0, Hopping On

No. I19Z60140-IOT01 Page20 of 87

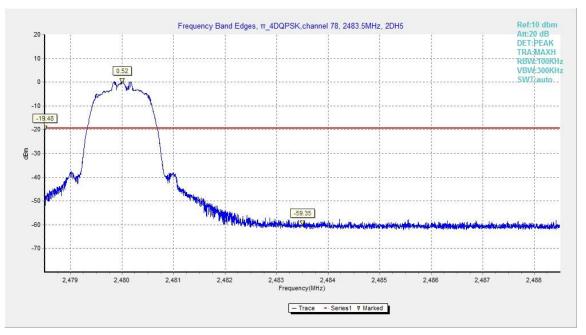


Fig.7. Frequency Band Edges: π/4 DQPSK, Channel 78, Hopping Off

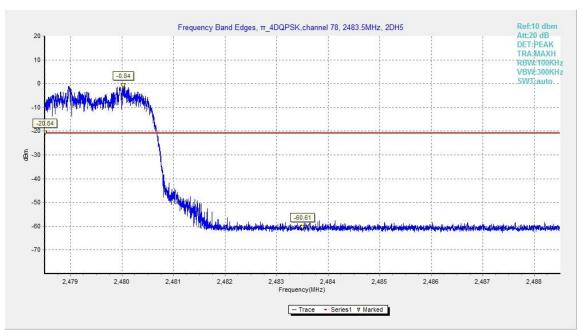


Fig.8. Frequency Band Edges: π/4 DQPSK, Channel 78, Hopping On

No. I19Z60140-IOT01 Page21 of 87

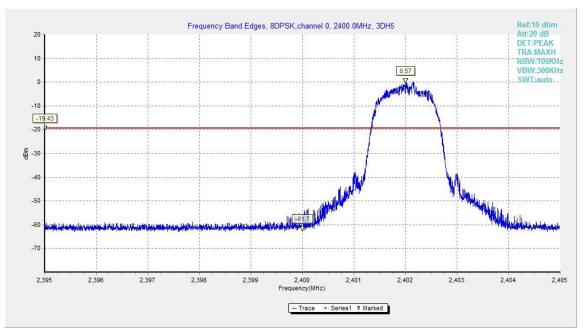


Fig.9. Frequency Band Edges: 8DPSK, Channel 0, Hopping Off

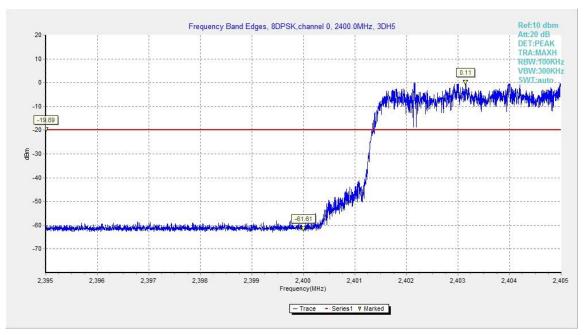


Fig.10. Frequency Band Edges: 8DPSK, Channel 0, Hopping On

No. I19Z60140-IOT01 Page22 of 87

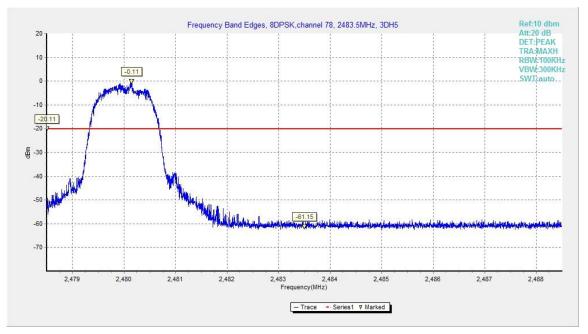


Fig.11. Frequency Band Edges: 8DPSK, Channel 78, Hopping Off

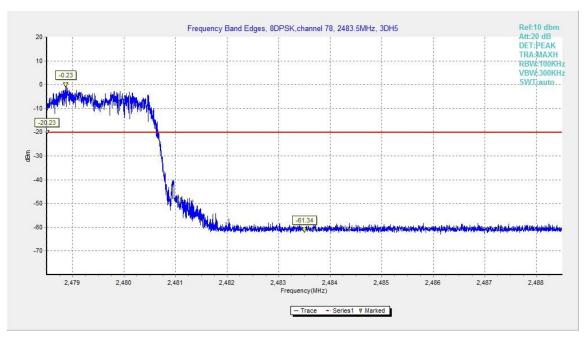


Fig.12. Frequency Band Edges: 8DPSK, Channel 78, Hopping On

A.4. Transmitter Spurious Emission - Conducted

Method of Measurement: See ANSI C63.10-clause 7.8.8

Measurement Procedure – Reference Level

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW = 300 kHz.
- 3. Set the span to 5-30 % greater than the EBW.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

8. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW. Next, determine the power in 100 kHz band segments outside of the authorized frequency band using the following measurement:

Measurement Procedure - Unwanted Emissions

- 1. Set RBW = 100 kHz.
- 2. Set VBW = 300 kHz.
- 3. Set span to encompass the spectrum to be examined.
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.

7. Allow the trace to stabilize (this may take some time, depending on the extent of the span).

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified above.

Measurement Limit:

Standard	Limit	
	20dB below peak output power in 100 kHz	
FCC 47 CFR Part 15.247 (d)	bandwidth	

Measurement Results:

For GFSK

Channel	Frequency Range	Test Results	Conclusion
Ch 0	Center Frequency	Fig.13	Р

2402 MHz	30 MHz ~ 1 GHz	Fig.14	Р
	1 GHz ~ 3 GHz	Fig.15	Р
	3 GHz ~ 10 GHz	Fig.16	Р
	10 GHz ~ 26 GHz	Fig.17	Р
	Center Frequency	Fig.18	Р
	30 MHz ~ 1 GHz	Fig.19	Р
Ch 39 2441 MHz	1 GHz ~ 3 GHz	Fig.20	Р
	3 GHz ~ 10 GHz	Fig.21	Р
	10 GHz ~ 26 GHz	Fig.22	Р
	Center Frequency	Fig.23	Р
	30 MHz ~ 1 GHz	Fig.24	Р
Ch 78 2480 MHz	1 GHz ~ 3 GHz	Fig.25	Р
2400 1011 12	3 GHz ~ 10 GHz	Fig.26	Р
	10 GHz ~ 26 GHz	Fig.27	Р
or π/4 DQPSK			
Channel	Frequency Range	Test Results	Conclusion
	Center Frequency	Fig.28	Р
Ch 0	30 MHz ~ 1 GHz	Fig.29	Р
2402 MHz	1 GHz ~ 3 GHz	Fig.30	Р
210210112	3 GHz ~ 10 GHz	Fig.31	Р
	10 GHz ~ 26 GHz	Fig.32	Р
	Center Frequency	Fig.33	Р
	30 MHz ~ 1 GHz	Fig.34	Р
Ch 39 2441 MHz	1 GHz ~ 3 GHz	Fig.35	Р
	3 GHz ~ 10 GHz	Fig.36	Р
	10 GHz ~ 26 GHz	Fig.37	Р
	Center Frequency	Fig.38	Р
	30 MHz ~ 1 GHz	Fig.39	Р
Ch 78 2480 MHz	1 GHz ~ 3 GHz	Fig.40	Р
	3 GHz ~ 10 GHz	Fig.41	Р
	10 GHz ~ 26 GHz	Fig.42	Р
For 8DPSK	· ·		
Channel	Frequency Range	Test Results	Conclusion

Channel	Frequency Range	Test Results	Conclusion
Ch 0 2402 MHz	Center Frequency	Fig.43	Р
	30 MHz ~ 1 GHz	Fig.44	Р
	1 GHz ~ 3 GHz	Fig.45	Р
	3 GHz ~ 10 GHz	Fig.46	Р
	10 GHz ~ 26 GHz	Fig.47	Р

Ch 39 2441 MHz	Center Frequency	Fig.48	Р
	30 MHz ~ 1 GHz	Fig.49	Р
	1 GHz ~ 3 GHz	Fig.50	Р
	3 GHz ~ 10 GHz	Fig.51	Р
	10 GHz ~ 26 GHz	Fig.52	Р
Ch 78 2480 MHz	Center Frequency	Fig.53	Р
	30 MHz ~ 1 GHz	Fig.54	Р
	1 GHz ~ 3 GHz	Fig.55	Р
	3 GHz ~ 10 GHz	Fig.56	Р
	10 GHz ~ 26 GHz	Fig.57	Р

Conclusion: PASS

Test graphs as below

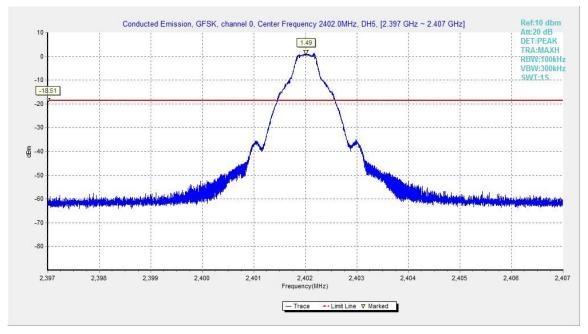


Fig.13. Conducted spurious emission: GFSK, Channel 0,2402MHz

No. I19Z60140-IOT01 Page26 of 87

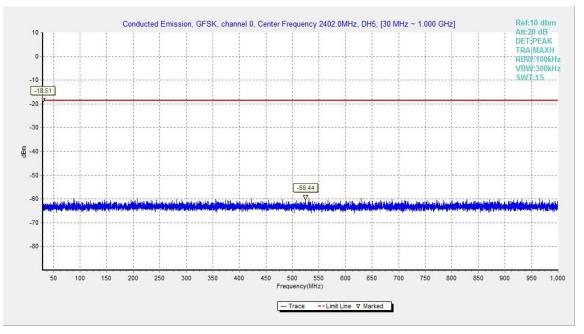


Fig.14. Conducted spurious emission: GFSK, Channel 0, 30MHz - 1GHz

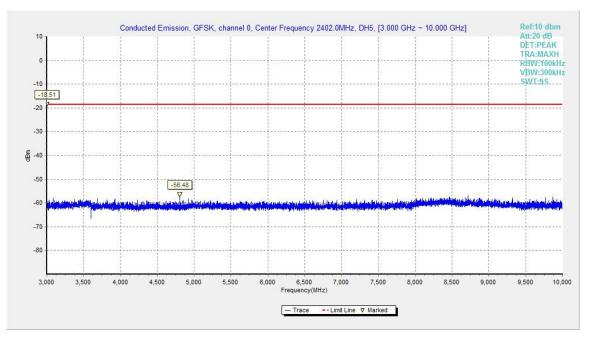



Fig.15. Conducted spurious emission: GFSK, Channel 0, 1GHz - 3GHz

No. I19Z60140-IOT01 Page27 of 87

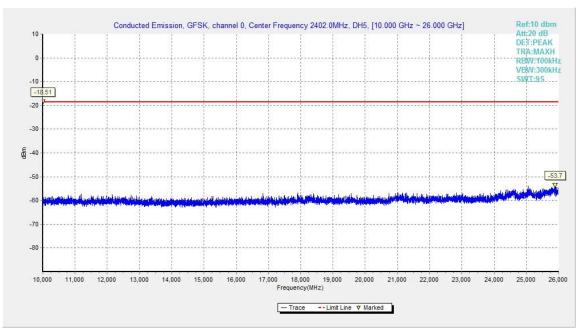


Fig.17. Conducted spurious emission: GFSK, Channel 0,10GHz - 26GHz

No. I19Z60140-IOT01 Page28 of 87

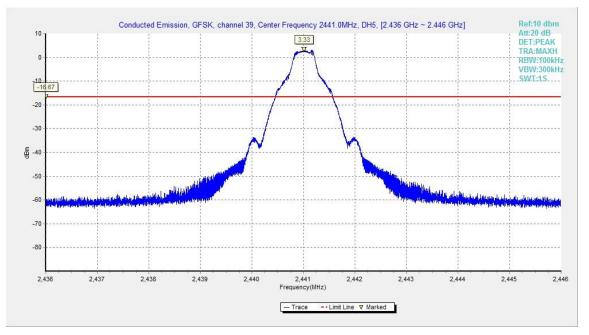


Fig.18. Conducted spurious emission: GFSK, Channel 39, 2441MHz

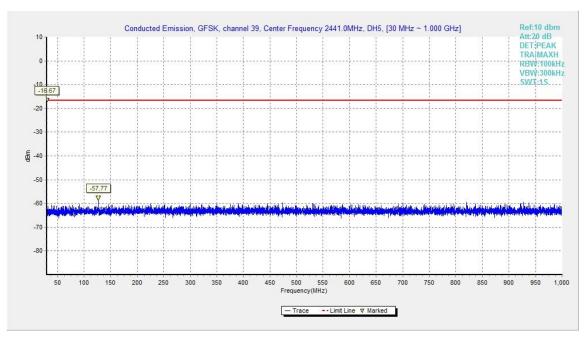


Fig.19. Conducted spurious emission: GFSK, Channel 39, 30MHz - 1GHz

No. I19Z60140-IOT01 Page29 of 87

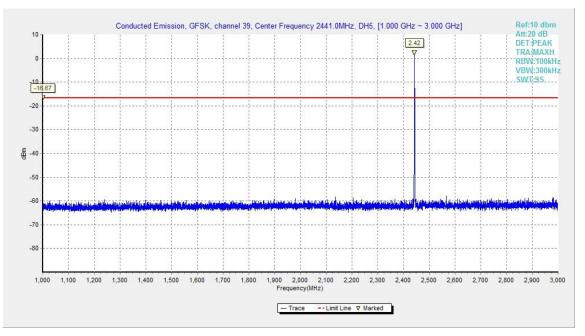


Fig.20. Conducted spurious emission: GFSK, Channel 39, 1GHz - 3GHz

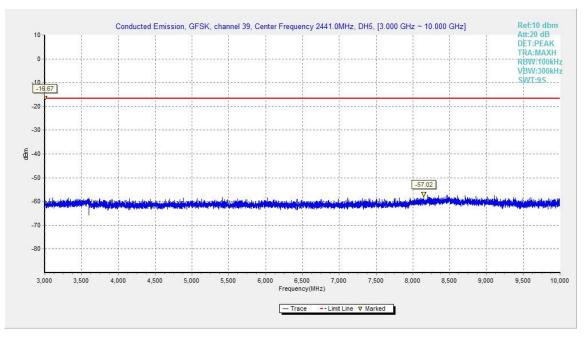


Fig.21. Conducted spurious emission: GFSK, Channel 39, 3GHz – 10GHz

No. I19Z60140-IOT01 Page30 of 87

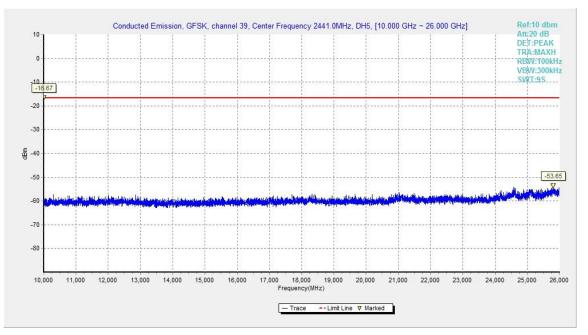


Fig.22. Conducted spurious emission: GFSK, Channel 39, 10GHz - 26GHz

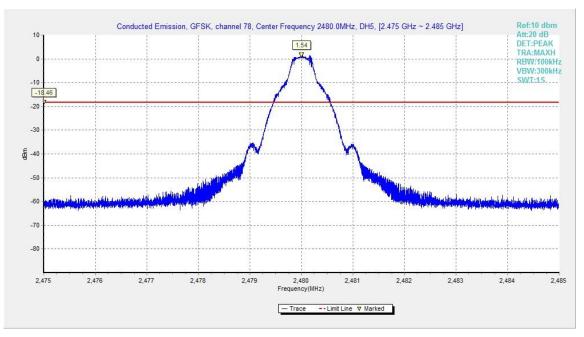


Fig.23. Conducted spurious emission: GFSK, Channel 78, 2480MHz

No. I19Z60140-IOT01 Page31 of 87

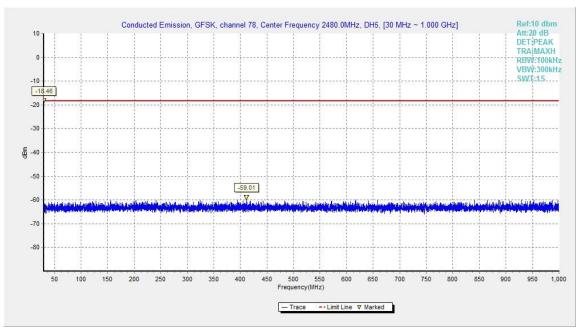


Fig.24. Conducted spurious emission: GFSK, Channel 78, 30MHz - 1GHz

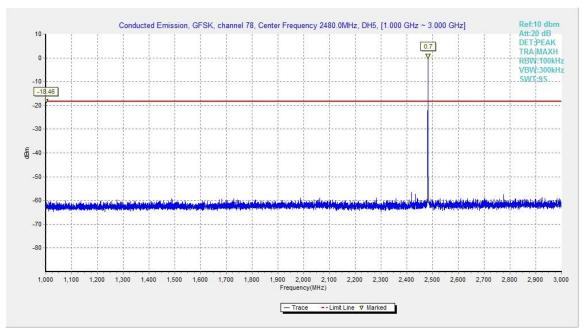


Fig.25. Conducted spurious emission: GFSK, Channel 78, 1GHz - 3GHz

No. I19Z60140-IOT01 Page32 of 87

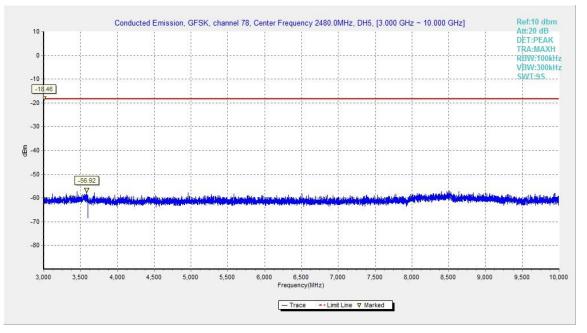


Fig.26. Conducted spurious emission: GFSK, Channel 78, 3GHz - 10GHz

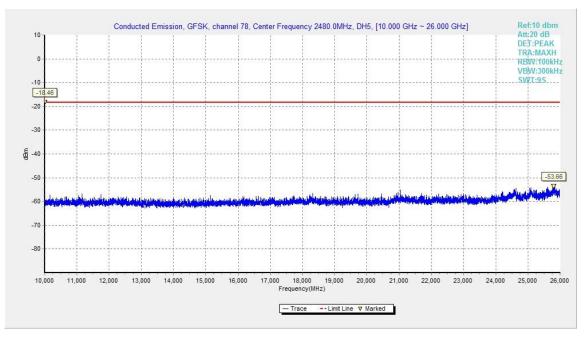


Fig.27. Conducted spurious emission: GFSK, Channel 78, 10GHz - 26GHz

No. I19Z60140-IOT01 Page33 of 87

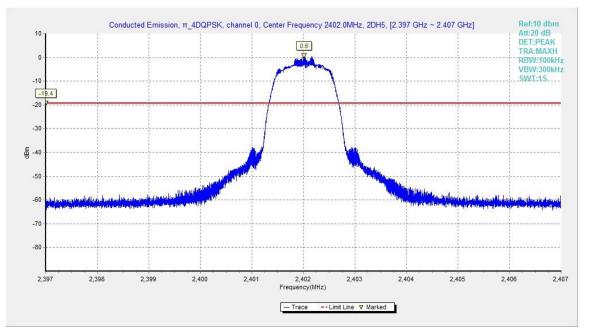


Fig.28. Conducted spurious emission: $\pi/4$ DQPSK, Channel 0,2402MHz

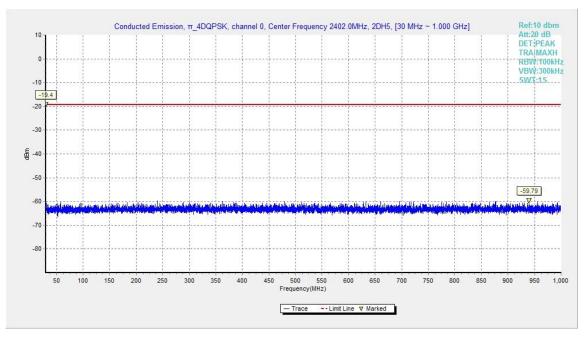


Fig.29. Conducted spurious emission: $\pi/4$ DQPSK, Channel 0, 30MHz - 1GHz

No. I19Z60140-IOT01 Page34 of 87

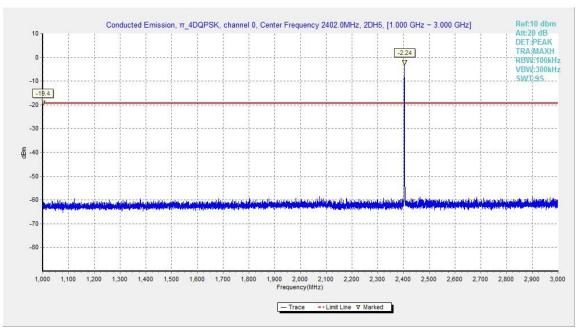


Fig.30. Conducted spurious emission: $\pi/4$ DQPSK, Channel 0, 1GHz - 3GHz

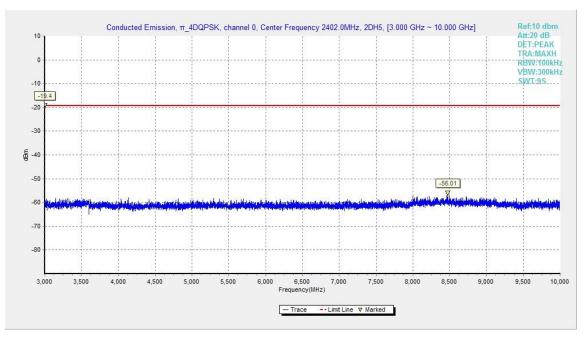


Fig.31. Conducted spurious emission: $\pi/4$ DQPSK, Channel 0, 3GHz - 10GHz

No. I19Z60140-IOT01 Page35 of 87

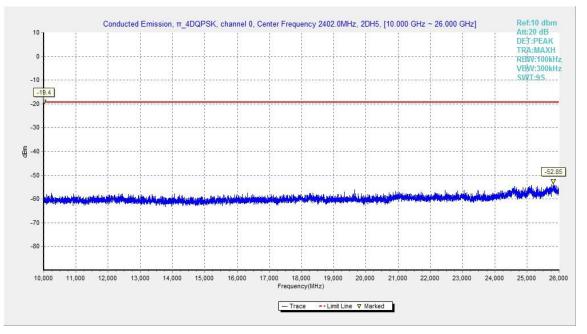


Fig.32. Conducted spurious emission: $\pi/4$ DQPSK, Channel 0,10GHz - 26GHz

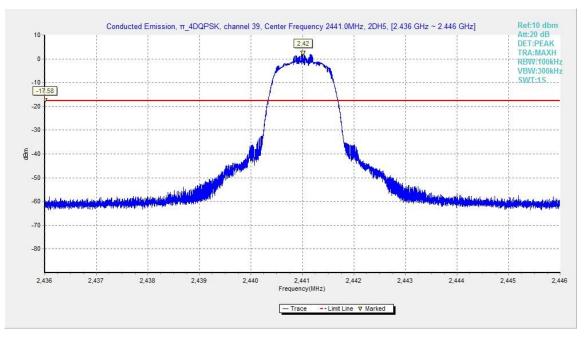


Fig.33. Conducted spurious emission: $\pi/4$ DQPSK, Channel 39, 2441MHz

No. I19Z60140-IOT01 Page36 of 87

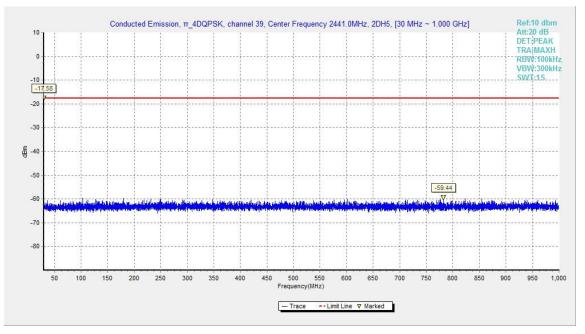


Fig.34. Conducted spurious emission: $\pi/4$ DQPSK, Channel 39, 30MHz - 1GHz

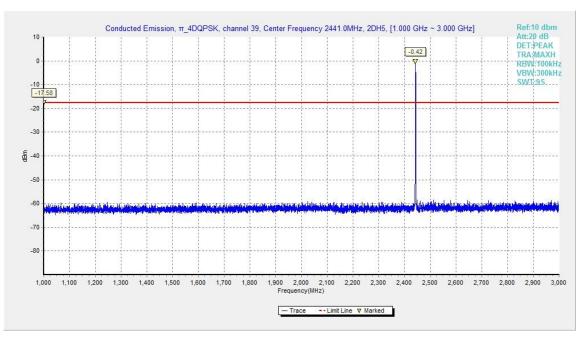


Fig.35. Conducted spurious emission: $\pi/4$ DQPSK, Channel 39, 1GHz - 3GHz

No. I19Z60140-IOT01 Page37 of 87

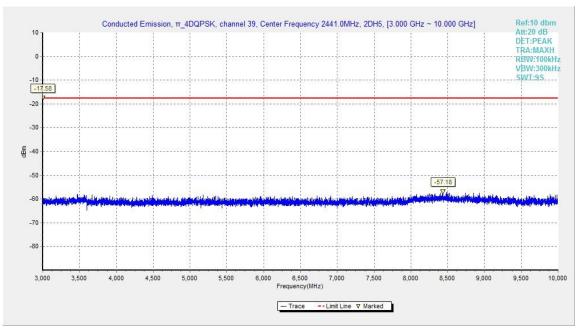


Fig.36. Conducted spurious emission: $\pi/4$ DQPSK, Channel 39, 3GHz - 10GHz

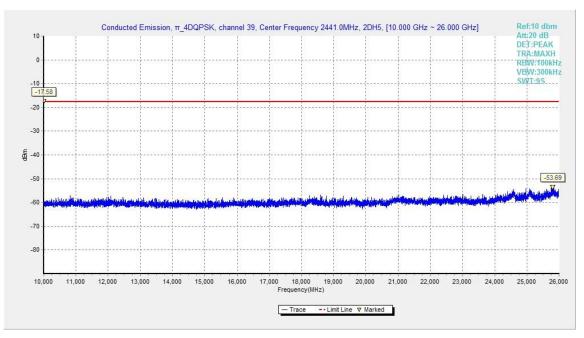


Fig.37. Conducted spurious emission: $\pi/4$ DQPSK, Channel 39, 10GHz – 26GHz

No. I19Z60140-IOT01 Page38 of 87

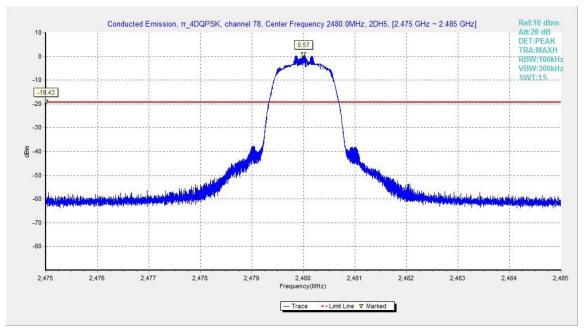


Fig.38. Conducted spurious emission: $\pi/4$ DQPSK, Channel 78, 2480MHz

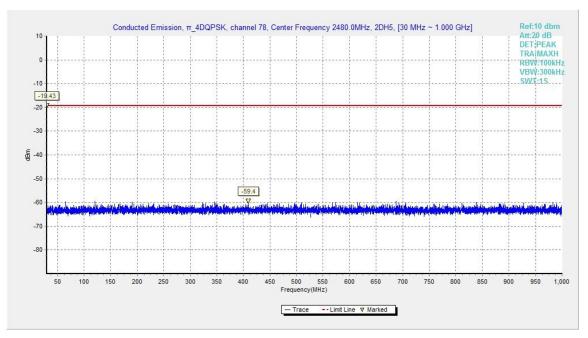


Fig.39. Conducted spurious emission: $\pi/4$ DQPSK, Channel 78, 30MHz - 1GHz

No. I19Z60140-IOT01 Page39 of 87

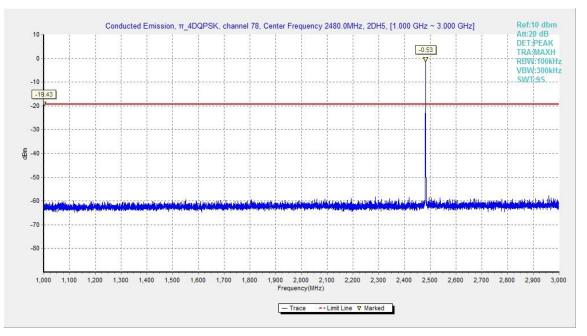


Fig.40. Conducted spurious emission: $\pi/4$ DQPSK, Channel 78, 1GHz - 3GHz

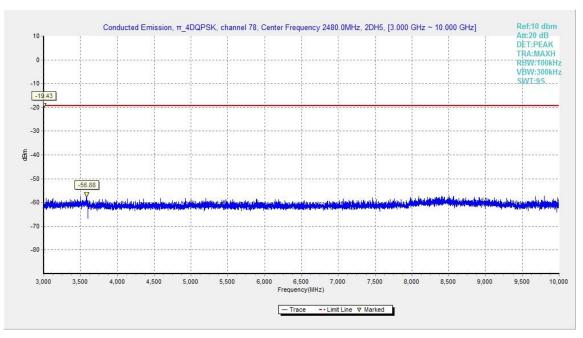


Fig.41. Conducted spurious emission: $\pi/4$ DQPSK, Channel 78, 3GHz - 10GHz

No. I19Z60140-IOT01 Page40 of 87

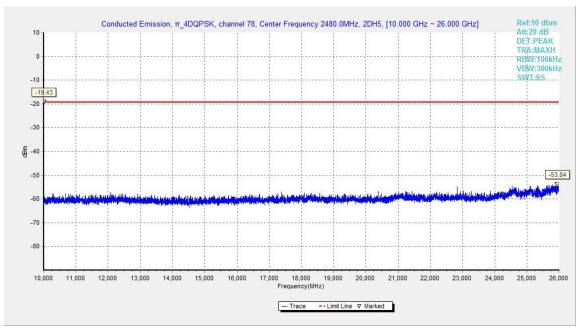


Fig.42. Conducted spurious emission: $\pi/4$ DQPSK, Channel 78, 10GHz - 26GHz

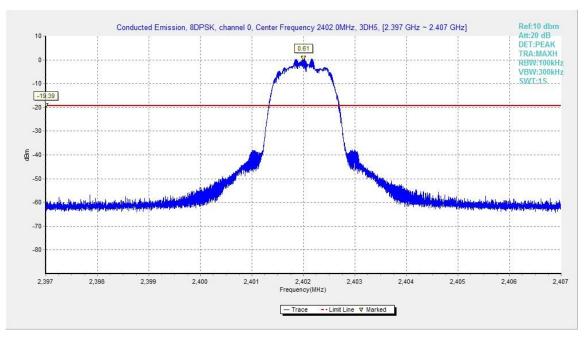


Fig.43. Conducted spurious emission: 8DPSK, Channel 0,2402MHz

No. I19Z60140-IOT01 Page41 of 87

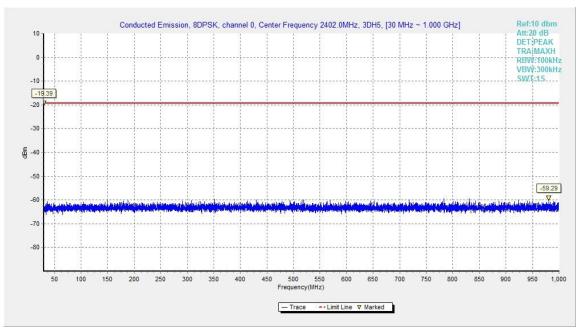


Fig.44. Conducted spurious emission: 8DPSK, Channel 0, 30MHz - 1GHz

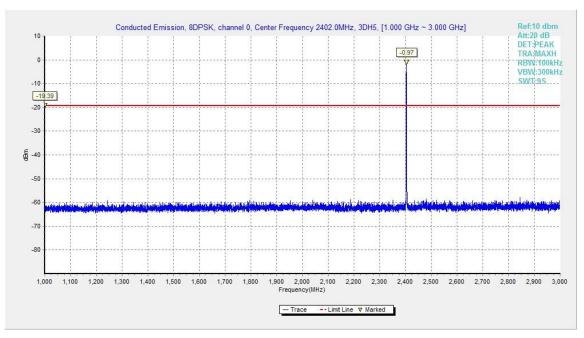


Fig.45. Conducted spurious emission: 8DPSK, Channel 0, 1GHz - 3GHz

No. I19Z60140-IOT01 Page42 of 87

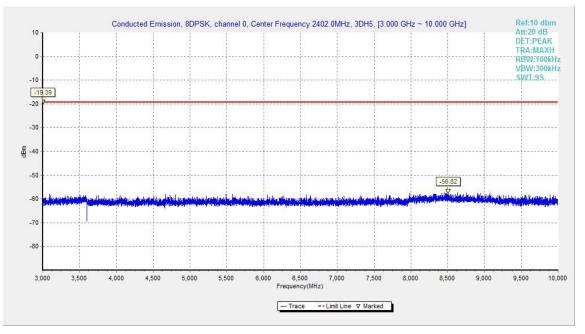


Fig.46. Conducted spurious emission: 8DPSK, Channel 0, 3GHz - 10GHz

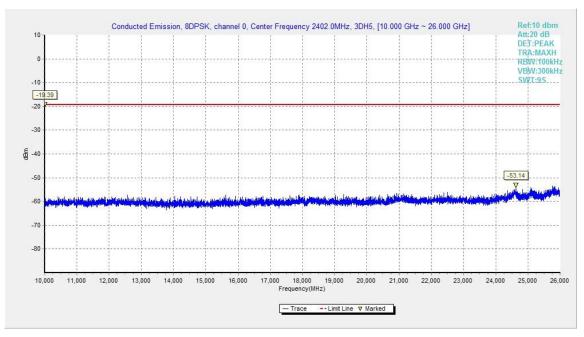


Fig.47. Conducted spurious emission: 8DPSK, Channel 0,10GHz - 26GHz

No. I19Z60140-IOT01 Page43 of 87

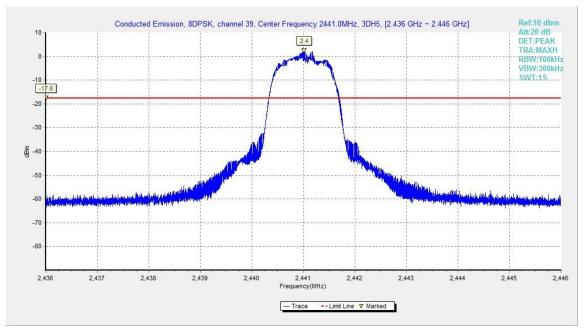


Fig.48. Conducted spurious emission: 8DPSK, Channel 39, 2441MHz

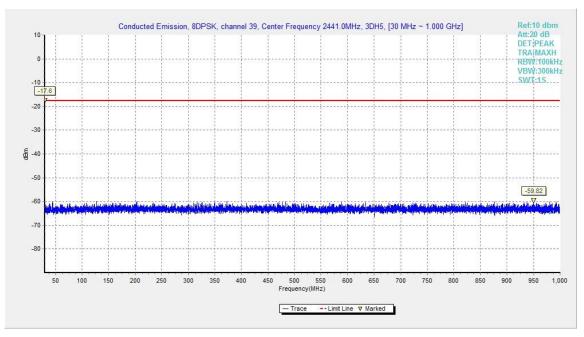


Fig.49. Conducted spurious emission: 8DPSK, Channel 39, 30MHz - 1GHz

No. I19Z60140-IOT01 Page44 of 87

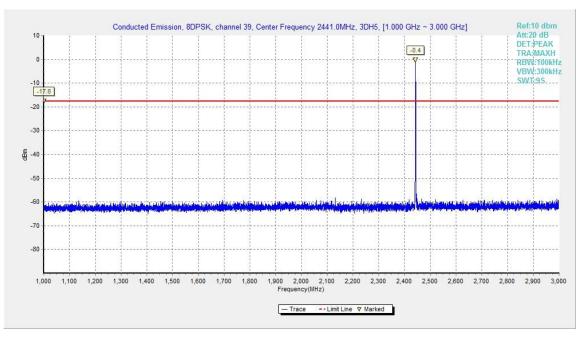


Fig.50. Conducted spurious emission: 8DPSK, Channel 39, 1GHz - 3GHz

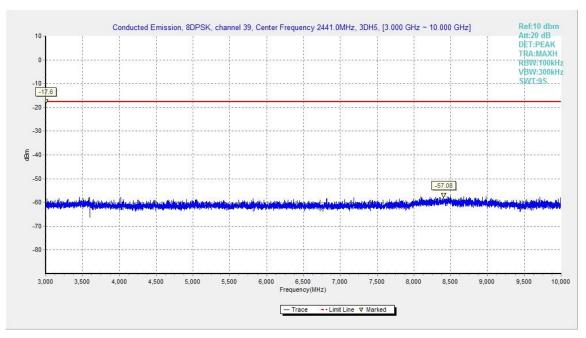


Fig.51. Conducted spurious emission: 8DPSK, Channel 39, 3GHz - 10GHz

No. I19Z60140-IOT01 Page45 of 87

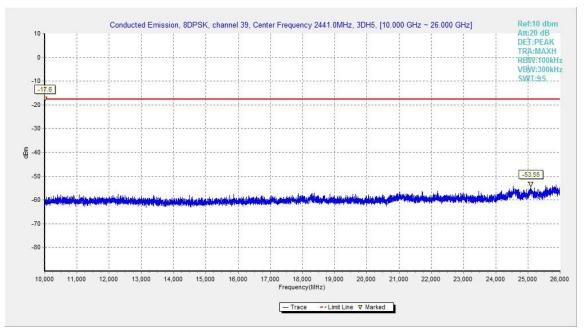


Fig.52. Conducted spurious emission: 8DPSK, Channel 39, 10GHz - 26GHz

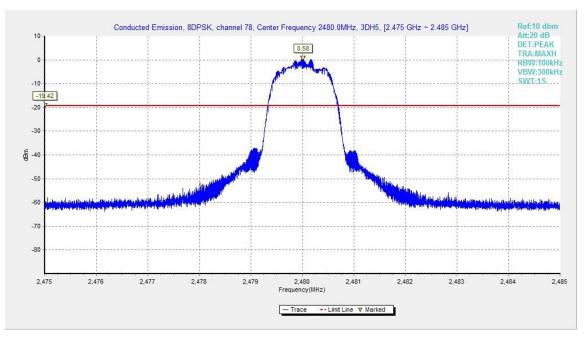


Fig.53. Conducted spurious emission: 8DPSK, Channel 78, 2480MHz

No. I19Z60140-IOT01 Page46 of 87

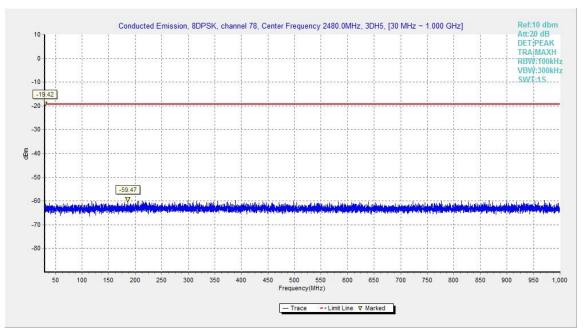


Fig.54. Conducted spurious emission: 8DPSK, Channel 78, 30MHz - 1GHz

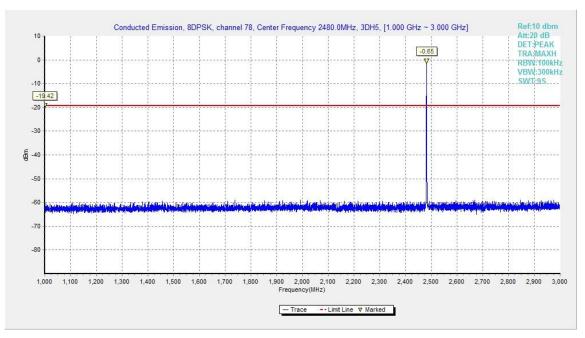


Fig.55. Conducted spurious emission: 8DPSK, Channel 78, 1GHz - 3GHz

No. I19Z60140-IOT01 Page47 of 87

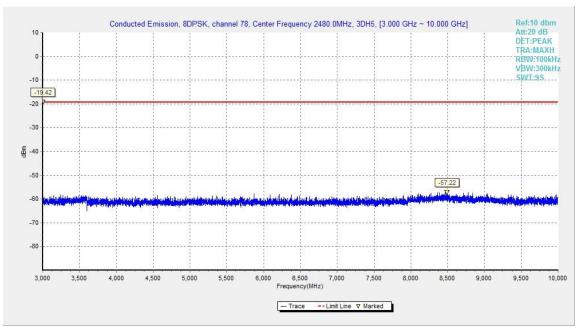


Fig.56. Conducted spurious emission: 8DPSK, Channel 78, 3GHz - 10GHz

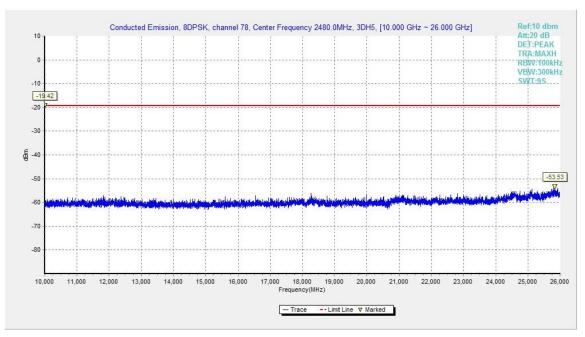


Fig.57. Conducted spurious emission: 8DPSK, Channel 78, 10GHz - 26GHz

A.5. Transmitter Spurious Emission - Radiated

Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247, 15.205, 15.209	20dB below peak output power	

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

The measurement is made according to ANSI C63.10

Limit in restricted band:

Frequency of emission	Field strength(uV/m)	Field strength(dBuV/m)
(MHz)		
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

Test Condition

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission	RBW/VBW	Sweep Time(s)
(MHz)		
30-1000	100KHz/300KHz	5
1000-4000	1MHz/1MHz	15
4000-18000	1MHz/1MHz	40
18000-26500	1MHz/1MHz	20

Measurement Results:

Result=P_{Mea}+ARPL

For GFSK

Channel	Frequency Range	Test Results	Conclusion
Power	2.38GHz~2.4GHzL	Fig.58	Р
Power	2.45GHz~2.5GHzH	Fig.59	Р

Forπ/4 DQPSK

Channel	Frequency Range	Test Results	Conclusion
Power	2.38GHz~2.4GHzL	Fig.60	Р
Power	2.45GHz~2.5GHzH	Fig.61	Р
		.	P

For 8DPSK

Channel	Frequency Range	Test Results	Conclusion
Power	2.38GHz~2.4GHzL	Fig.62	Р
Power	2.45GHz~2.5GHzH	Fig.63	Р