

HMD Global Oy

Multi-band GSM/WCDMA/LTE phone with Bluetooth, WLAN

Model Name: TA-1159

FCC ID: 2AJOTTA-1159

with

Hardware Version: 89626_1_12

Software Version: 00WW_0_130

Issued Date: 2019-02-25

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

©Copyright. All rights reserved by CTTL.

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I19Z60140-EMC04	Rev.0	1 st edition	2019-02-25

CONTENTS

1.	TEST LABORATORY	. 4
1.1.	TESTING LOCATION	. 4
1.2.	TESTING ENVIRONMENT	. 4
1.3.	PROJECT DATA	. 4
1.4.	SIGNATURE	. 4
2.	CLIENT INFORMATION	. 5
2.1.	APPLICANT INFORMATION	. 5
2.2.	MANUFACTURER INFORMATION	. 5
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	. 6
3.1.	ABOUT EUT	. 6
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	. 6
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	. 6
3.4.	EUT SET-UPS	. 7
4.	REFERENCE DOCUMENTS	. 8
4.1.	REFERENCE DOCUMENTS FOR TESTING	. 8
5.	LABORATORY ENVIRONMENT	. 9
6.	SUMMARY OF TEST RESULTS	10
7.	TEST EQUIPMENTS UTILIZED	11
	IEX A: MEASUREMENT RESULTS	12
	IEX B: PERSONS INVOLVED IN THIS TESTING	24

1. Test Laboratory

1.1. Testing Location

CTTL (BDA)

Address:

No.18A, Kangding Street, Beijing Economic-Technology Development Area, Beijing, P. R. China 100176

1.2. <u>Testing Environment</u>

Normal Temperature:	15-35°C
Relative Humidity:	20-75%

1.3. Project data

Testing Start Date:	2019-01-21
Testing End Date:	2019-02-22

1.4. Signature

Li Yan (Prepared this test report)

张 铴

Zhang Ying (Reviewed this test report)

21 12. 8.2

Liu Baodian Deputy Director of the laboratory (Approved this test report)

2. <u>Client Information</u>

2.1. Applicant Information

Company Name:	HMD Global Oy
Address:	Bertel Jungin aukio 9,02600 Espoo, Finland
City:	/
Postal Code:	/
Country:	/
Contact:	Rosario Casillo
Email:	Rosario.Casillo@hmdglobal.com
Telephone:	/

2.2. Manufacturer Information

Company Name:	HMD Global Oy
Address:	Bertel Jungin aukio 9,02600 Espoo, Finland
City:	/
Postal Code:	/
Country:	/
Contact:	Rosario Casillo
Email:	Rosario.Casillo@hmdglobal.com
Telephone:	/

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description	Multi-band GSM/WCDMA/LTE phone with Bluetooth, WLAN
Model Name	TA-1159
FCC ID	2AJOTTA-1159
Extreme vol. Limits	3.6VDC to 4.40VDC (nominal: 3.9VDC)

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of CTTL, Telecommunication Technology Labs, CAICT.

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version
EUT2	/	89626_1_12	00WW_0_130

*EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test AE ID* Description SN Remarks AE1 Battery / 1 AE2 Battery / / AE3 Charger / 1 AE4 Charger / AE5 Charger / USB Cable AE6 / 1 AE7 **USB** Cable 1 1 AE8 Headset 1 1

AE1

Model	WT240
Manufacturer	Jiade Energy Technology(Zhuhai) Co.,Ltd.
Capacitance	3920mAh
Nominal voltage	3.85V
AE2	
Model	WT240
Manufacturer	Dongguan DRN New Energy Co.,Ltd
Capacitance	3920mAh
Nominal voltage	3.85V
AE3	
Model	CH-21U
Manufacturer	Shenzhen Tianyin Electronics Co.,Ltd
Length of cable	1
AE4	
Model	CH-21E
Manufacturer	Yutong electronics(Huizhou) co., Itd

Length of cable	/
Model	CH-21X
Manufacturer	Yutong electronics(Huizhou) co., ltd
Length of cable	/
AE6	
Model	CB-35A
Manufacturer	Leagtech Electronics Co.,Ltd
Length of cable	/
AE7	
Model	CB-35A
Manufacturer	Shenzhen BRL Technology Co.,Ltd.
Length of cable	/
AE8	
Model	/
Manufacturer	/
Length of cable	/

Note: The USB cables are shielded.

3.4. EUT set-ups

EUT set-up No.	Combination of EUT and AE	Remarks
Set.1	EUT2+ AE1 + AE3+ AE6/ AE7+AE8	Charger + FM
Set.2	EUT2+ AE1 + AE6/ AE7	USB mode+MP3+GNSS
Set.3	EUT2+ AE1 + AE4+ AE6/ AE7	Charger
Set.4	EUT2+ AE1 + AE5+ AE6/ AE7	Charger

Note: TA-1159 is a variant model based on TA-1156, According to the declaration of changes provided by the applicant and FCC KDB publication 484596 D01; all results are cited from the initial model. The report number for initial model is I19Z60072-EMC04.

4. <u>Reference Documents</u>

4.1. Reference Documents for testing

The following documents list	sted in this section are referred for testing.	
Reference	Title	Version
FCC Part 15, Subpart B	Radio frequency devices - Unintentional Radiators	2016
ANSI C63.4	American National Standard for	2014
	Methods of Measurement of Radio-	
	Noise Emissions from Low-Voltage	
	Electrical and Electronic Equipment	
	in the Range of 9 kHz to 40 GHz	

Note: The test methods have no deviation with standards.

5. LABORATORY ENVIRONMENT

Semi-anechoic chamber SAC-1 (23 meters×17 meters×10 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 15 %, Max. = 75 %
Shielding effectiveness	0.014MHz - 1MHz, >60dB;
	1MHz - 1000MHz, >90dB.
Electrical insulation	> 2 MΩ
Ground system resistance	< 4Ω
Normalised site attenuation (NSA)	< ± 4 dB, 3m/10m distance,
	from 30 to 1000 MHz
Site voltage standing-wave ratio (S _{VSWR})	Between 0 and 6 dB, from 1GHz to 18GHz
Uniformity of field strength	Between 0 and 6 dB, from 80 to 3000 MHz

Semi-anechoic chamber SAC-2 (10 meters × 6.7 meters × 6.1 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C		
Relative humidity	Min. = 15 %, Max. = 75 %		
Shielding offectiveness	0.014MHz - 1MHz, >60dB;		
Shielding effectiveness	1MHz - 1000MHz, >90dB.		
Electrical insulation	> 2 MΩ		
Ground system resistance	<4 Ω		
Normalised site attenuation (NSA)	$< \pm$ 4 dB, 3m distance, from 30 to 1000 MHz		
Site voltage standing-wave ratio (S _{VSWR})	Between 0 and 6 dB, from 1GHz to 18GHz		
Uniformity of field strength	Between 0 and 6 dB, from 80 to 3000 MHz		
Shielded room did not exceed following limit	s along the EMC testing:		
Temperature	Min. = 15 °C, Max. = 35 °C		
Relative humidity	Min. = 20 %, Max. = 75 %		
Shielding effectiveness	0.014MHz-1MHz, >60dB;		
	1MHz-1000MHz, >90dB.		
Electrical insulation	> 2 MΩ		
Ground system resistance	<4 Ω		

6. SUMMARY OF TEST RESULTS

Abbreviations used in this clause:		
Р		Pass
Vardiat Caluma	NA	Not applicable
Verdict Column	F	Fail
	BR	Re-use test data from basic model report.

Items	Test Name	Clause in FCC rules	Section in this report	Verdict	Test Location
1	Radiated Emission	15.109(a)	A.1	BR	CTTL(BDA)
2	Conducted Emission	15.107(a)	A.2	BR	CTTL(BDA)

7. Test Equipments Utilized

			SERIES		CAL DUE	CALIBRATI
NO.	Description	TYPE	NUMBER	MANUFACTURE	DATE	ON
			NOMBER			INTERVAL
1	Test Receiver	ESU26	100376	R&S	2019-11-27	1 year
2	Test Receiver	ESCI	100766	R&S	2019-04-16	1 year
	Universal Radio					
3	Communication	CMW500	159408	R&S	2019-03-15	1 year
	Tester					
4	LISN	ESH3-Z5	825562/028	R&S	2019-08-22	1 year
5	EMI Antenna	VULB9163	9163-482	Schwarzbeck	2019-09-21	1 year
6	EMI Antenna	3117	00139065	ETS-Lindgren	2019-11-15	1 year
7	Signal Generator	SMF100A	101295	R&S	2019-11-27	1 year
8	Printer	P1606dn	VNC3L52122	HP	N/A	N/A
9	Keyboard	KU-1601	2048361	Lenovo	N/A	N/A
10	Mouse	EMS-537A	8021S3MC	Lenovo	N/A	N/A

Test Item	Test Software and Version	Software Vendor
Radiated Continuous Emission	EMC32 V9.01	R&S
Conducted Emission	EMC32 V8.52.0	R&S

ANNEX A: MEASUREMENT RESULTS

A.1 Radiated Emission Reference FCC: CFR Part 15.109(a).

A.1.1 Method of measurement

The field strength of radiated emissions from the unintentional radiator (USB mode of MS and charging mode of MS) at distances of 3 meters(for 30MHz-1GHz) and 3 meters (for above 1GHz) is tested. Tested in accordance with the procedures of ANSI C63.4 – 2014, section 8.3. The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3/10 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

A.1.2 EUT Operating Mode

The MS is operating in the USB mode and charging mode. During the test MS is connected to a PC via a USB cable in the case of USB mode and is connected to a charger in the case of charging mode. During the charging mode the FM application is started up. During the USB mode The EUT is keeping on playing MP3 and the GNSS application is started up. The model of the PC is Lenovo M4000e-17, and the serial number of the PC is M706RMW2. The software is used to let the PC keep on copying data to MS, reading and erasing the data after copy action was finished. Note: I/O information: Printer – USB, Mouse – PS/2, Keyboard – USB.

A.1.3 Measurement Limit

Frequency range	Field strength limit (μV/m)						
(MHz)	lz) Quasi-peak Average		Peak				
30-88	100						
88-216	150						
216-960	200						
960-1000	500						
>1000		500	5000				

Note: the above limit is for 3 meters test distance. 10 meters' limit is got by converting.

A.1.4 Test Condition

Frequency range (MHz)	RBW/VBW	Sweep Time (s)	Detector
30-1000	120kHz (IF Bandwidth)		Peak/Quasi-peak
Above 1000	1MHz/1MHz	15	Peak, Average

A.1.5 Measurement Results

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss". It includes the antenna factor of receive antenna and the path loss.

The measurement results are obtained as described below:

 $Result = P_{Mea} + A_{Rpl} = P_{Mea} + G_A + G_{PL}$

Where

G_A: Antenna factor of receive antenna

G_{PL}: Path Loss

P_{Mea}: Measurement result on receiver.

Measurement uncertainty (worst case): 30MHz-1GHz: 5.40dB, 1GHz-18GHz: 4.32dB, k=2.

Measurement results for Set.1:

Frequency (MHz)	Measurement Result (dBµV/m)	Cable loss (dB)	Antenna Factor (dB/m)	Receiver Reading (dBµV)	Limit (dBµV/m)	Margin (dB)	Antenna Pol. (H/V)
16998.000	39.5	-25.6	41.4	23.67	54.0	14.5	Н
17103.000	39.3	-25.5	41.3	23.40	54.0	14.7	V
17083.500	39.2	-25.5	41.3	23.40	54.0	14.8	V
17089.500	39.2	-25.5	41.3	23.38	54.0	14.8	V
17013.750	39.2	-25.6	41.4	23.41	54.0	14.8	V
17076.750	39.2	-25.5	41.3	23.39	54.0	14.8	V

Charging Mode+ FM /Average detector

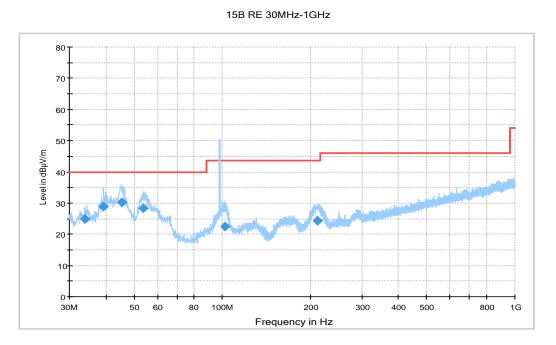
Charging Mode+ FM/Peak detector

Fraguancy	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
Frequency (MHz)	Result	loss	Factor	Reading		-	Pol.
	(dBµV/m)	(dB)	(dB/m)	(dBµV)	(dBµV/m)	(dB)	(H/V)
17993.250	51.8	-25.1	40.8	36.08	74.0	22.2	V
17335.500	51.5	-25.7	41.2	36.00	74.0	22.5	Н
17078.250	51.4	-25.5	41.3	35.60	74.0	22.6	Н
17104.500	51.4	-25.5	41.3	35.51	74.0	22.6	Н
17066.250	51.2	-25.5	41.3	35.38	74.0	22.8	Н
17108.250	51.1	-25.5	41.3	35.21	74.0	22.9	Н

Measurement results for Set.2:

USB Mode +MP3+GNSS /Average detector

Frequency (MHz)	Measurement Result (dBµV/m)	Cable loss (dB)	Antenna Factor (dB/m)	Receiver Reading (dBµV)	Limit (dBµV/m)	Margin (dB)	Antenna Pol. (H/V)
17095.500	39.5	-25.5	41.3	23.64	54.0	14.5	V
17115.000	39.5	-25.5	41.3	23.60	54.0	14.5	V
17094.000	39.4	-25.5	41.3	23.56	54.0	14.6	Н
17087.250	39.4	-25.5	41.3	23.54	54.0	14.6	V
17086.500	39.4	-25.5	41.3	23.54	54.0	14.6	V
17102.250	39.4	-25.5	41.3	23.53	54.0	14.6	V


USB Mode +MP3+GNSS /Peak detector

Frequency (MHz)	Measurement Result (dBµV/m)	Cable loss (dB)	Antenna Factor (dB/m)	Receiver Reading (dBµV)	Limit (dBµV/m)	Margin (dB)	Antenna Pol. (H/V)
3593.250	57.6	-34.2	33.5	58.26	74.0	16.4	Н
3597.750	55.3	-34.1	33.5	55.91	74.0	18.7	Н
3590.250	54.1	-34.2	33.5	54.82	74.0	19.9	Н
3599.250	53.7	-34.1	33.5	54.34	74.0	20.3	Н
3595.500	53.6	-34.2	33.5	54.26	74.0	20.4	Н
3597.000	53.1	-34.1	33.5	53.69	74.0	20.9	Н

Note: The measurement results of Set.1, Set.2showed here are worst cases of the combinations of different USB cables.

Charging Mode + FM, Set.1

Figure A.1 Radiated Emission from 30MHz to 1GHz

Note: the spike (98MHz) over the limit is coming from FM signal source.

Final Result 1

Frequency	QuasiPeak	Height	Polarization	Azimuth	Corr.	Margin	Limit
(MHz)	(dBµV/m)	(cm)		(deg)	(dB)	(dB)	(dBµV/m)
33.783000	24.9	100.0	V	135.0	-0.6	15.1	40.0
39.215000	28.9	110.0	V	-24.0	0.7	11.1	40.0
45.423000	30.2	100.0	V	135.0	0.8	9.8	40.0
53.862000	28.5	100.0	V	-24.0	0.4	11.5	40.0
102.45900	22.3	125.0	V	156.0	-1.3	21.2	43.5
211.29300	24.3	100.0	V	-1.0	-1.1	19.2	43.5

©Copyright. All rights reserved by CTTL.

15B RE - 1GHz-3GHz

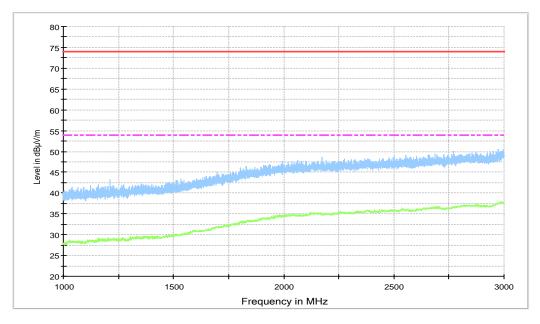
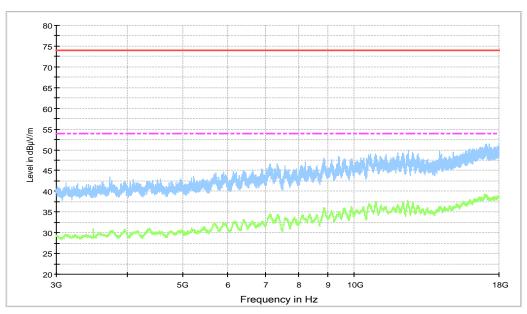
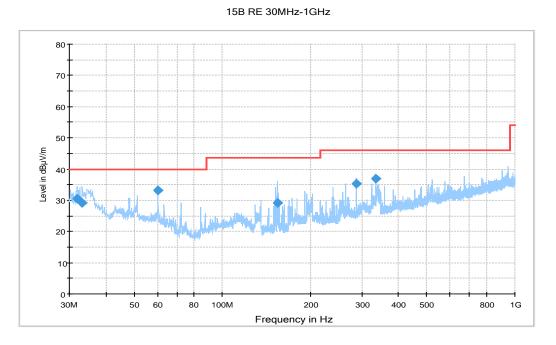



Figure A.2 Radiated Emission from 1GHz to 3GHz



15b RE - 3GHz-18GHz

USB Mode +MP3+GNSS, Set.2

Figure A.4 Radiated Emission from 30MHz to 1GHz

Final Result 1

Frequency	QuasiPeak	Height	Polarization	Azimuth	Corr.	Margin	Limit
(MHz)	$(dB\mu V/m)$	(cm)		(deg)	(dB)	(dB)	(dBµV/m)
31.940000	30.4	100.0	V	104.0	-1.1	9.6	40.0
33.201000	29.3	100.0	V	96.0	-0.7	10.7	40.0
60.264000	33.1	100.0	V	110.0	-0.2	6.9	40.0
153.86900	29.1	125.0	Н	10.0	-4.4	14.4	43.5
287.72900	35.2	100.0	Н	279.0	1.1	10.8	46.0
335.64700	36.9	100.0	Н	178.0	2.7	9.1	46.0

15B RE - 1GHz-3GHz

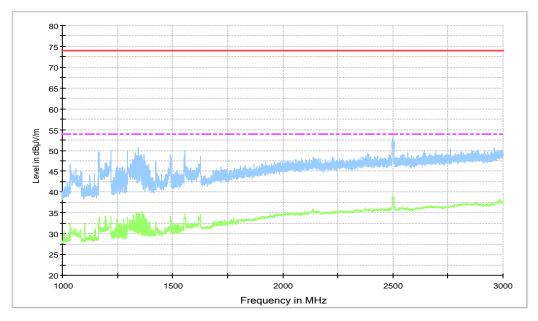
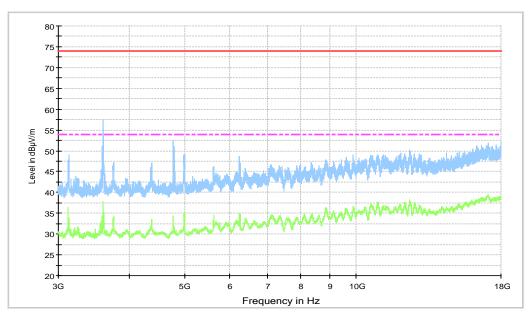



Figure A.5 Radiated Emission from 1GHz to 3GHz

15b RE - 3GHz-18GHz

Figure A.6 Radiated Emission from 3GHz to 18GHz

A.2 Conducted Emission

Reference FCC: CFR Part 15.107(a).

A.2.1 Method of measurement

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits. Tested in accordance with the procedures of ANSI C63.4 – 2014, section 7.3.

A.2.2 EUT Operating Mode

The MS is operating in the USB mode and charging mode. During the test MS is connected to a PC via a USB cable in the case of USB mode and is connected to a charger in the case of charging mode. During the charging mode the FM application is started up. During the USB mode The EUT is keeping on playing MP3 and the GNSS application is started up. The model of the PC is Lenovo M4000e-17, and the serial number of the PC is M706RMW2. The software is used to let the PC keep on copying data to MS, reading and erasing the data after copy action was finished. Note: I/O information: Printer – USB, Mouse – PS/2, Keyboard – USB.

A.2.3 Measurement Limit

Frequency of emission (MHz)	Conducted limit (dBµV)						
	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					
*Decreases with the logarithm of the frequency							

A.2.4 Test Condition in charging mode

Voltage (V)	Frequency (Hz)
120	60

RBW/IF bandwidth	Sweep Time(s)
9kHz	1

Einel Desult 4

18.267000

33.3

10000.0

A.2.5 Measurement Results Measurement uncertainty: U= 3.10 dB, k=2. Charging Mode +FM, Set.1

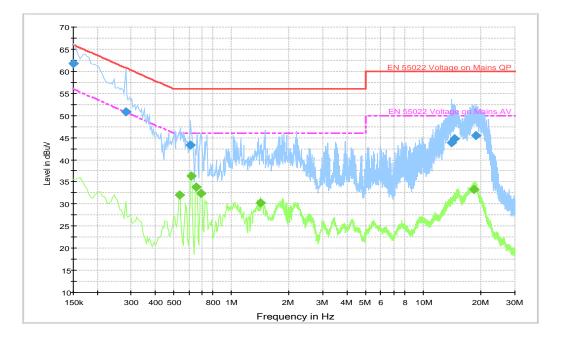


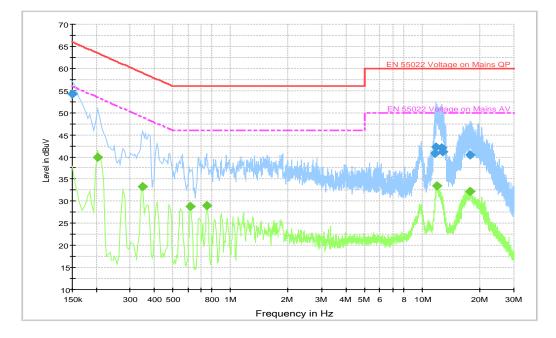
Figure A.7 Conducted Emission

Final Re	sult 1							
Frequency	QuasiPea	k Meas. Time	Bandwidth	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)
0.150000	61.8	10000.0	9.000	GND	N	10.3	4.2	66.0
0.280500	50.9	10000.0	9.000	GND	L1	10.3	9.9	60.8
0.613500	43.3	10000.0	9.000	GND	N	10.4	12.7	56.0
14.046000	43.8	10000.0	9.000	GND	N	11.0	16.2	60.0
14.577000	44.8	10000.0	9.000	GND	L1	11.1	15.2	60.0
18.685500	45.5	10000.0	9.000	GND	Ν	11.2	14.5	60.0
Final Re	sult 2							
Frequency	Average	Meas. Time	Bandwidth	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)
0.537000	32.0	10000.0	9.000	GND	L1	10.	14.0	46.0
0.618000	36.3	10000.0	9.000	GND	L1	10.	9.7	46.0
0.654000	33.8	10000.0	9.000	GND	L1	10.	12.2	46.0
0.694500	32.4	10000.0	9.000	GND	L1	10.	13.6	46.0
1.410000	30.3	10000.0	9.000	GND	L1	10.	15.7	46.0

9.000

GND Note: The measurement results showed here are worst cases of the combinations of different USB cables.

N


11.2

16.7

50.0

.USB Mode +MP3+GNSS, Set.2

Figure A.8 Conducted Emission

Final Re	sult 1		-					
Frequency	QuasiPeak	Meas. Time	Bandwidth	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)
0.150000	54.2	10000.0	9.000	GND	L1	10.2	11.8	66.0
11.571000	40.7	10000.0	9.000	GND	Ν	10.8	19.3	60.0
11.755500	42.3	10000.0	9.000	GND	L1	10.9	17.7	60.0
12.583500	42.0	10000.0	9.000	GND	Ν	10.9	18.0	60.0
12.835500	41.2	10000.0	9.000	GND	Ν	10.9	18.8	60.0
17.736000	40.5	10000.0	9.000	GND	L1	11.3	19.5	60.0
Final Re	sult 2							

Frequency	Average	Meas. Time	Bandwidth	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)
0.204000	39.8	10000.0	9.000	GND	N	10.	13.6	53.4
0.348000	33.3	10000.0	9.000	GND	Ν	10.	15.7	49.0
0.618000	28.8	10000.0	9.000	GND	Ν	10.	17.2	46.0
0.757500	28.9	10000.0	9.000	GND	Ν	10.	17.1	46.0
11.940000	33.4	10000.0	9.000	GND	Ν	10.	16.6	50.0
17.664000	32.2	10000.0	9.000	GND	L1	11.3	17.8	50.0

Note: The measurement results showed here are worst cases of the combinations of different USB cables.

Charging Mode, Set.3

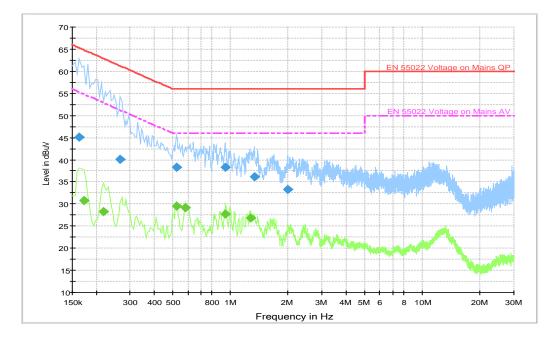
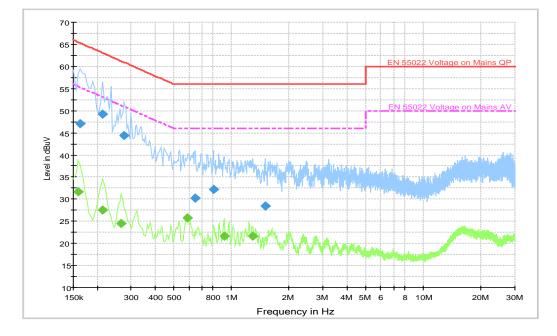


Figure A.9 Conducted Emission

Final Re	esult 1							
Frequency	QuasiPeak	Meas. Time	Bandwidth	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)
0.163500	45.2	10000.0	9.000	GND	L1	10.3	20.1	65.3
0.267000	40.0	10000.0	9.000	GND	Ν	10.3	21.2	61.2
0.523500	38.4	10000.0	9.000	GND	Ν	10.3	17.6	56.0
0.937500	38.3	10000.0	9.000	GND	L1	10.4	17.7	56.0
1.329000	36.1	10000.0	9.000	GND	L1	10.4	19.9	56.0
1.995000	33.3	10000.0	9.000	GND	Ν	10.4	22.7	56.0
Einal D	Scult 2							


Final Result 2

Frequency	Average	Meas. Time	Bandwidth	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)
0.172500	30.7	10000.0	9.000	GND	L1	10.	24.2	54.8
0.217500	28.2	10000.0	9.000	GND	L1	10.	24.7	52.9
0.523500	29.4	10000.0	9.000	GND	Ν	10.	16.6	46.0
0.582000	29.1	10000.0	9.000	GND	Ν	10.	16.9	46.0
0.942000	27.8	10000.0	9.000	GND	L1	10.	18.2	46.0
1.275000	26.8	10000.0	9.000	GND	L1	10.	19.2	46.0

Note: The measurement results showed here are worst cases of the combinations of different USB cables.

Charging Mode, Set.4

Figure A.10 Conducted Emission

QuasiPeak	Meas. Time	Bandwidth	PE	Line	Corr.	Margin	Limit
(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)
47.1	10000.0	9.000	GND	L1	10.3	18.2	65.3
49.3	10000.0	9.000	GND	Ν	10.3	13.8	63.1
44.4	10000.0	9.000	GND	Ν	10.3	16.5	60.9
30.3	10000.0	9.000	GND	Ν	10.3	25.7	56.0
32.2	10000.0	9.000	GND	Ν	10.4	23.8	56.0
28.5	10000.0	9.000	GND	L1	10.4	27.5	56.0
	(dBµV) 47.1 49.3 44.4 30.3 32.2	(dBµV) (ms) 47.1 10000.0 49.3 10000.0 44.4 10000.0 30.3 10000.0 32.2 10000.0 28.5 10000.0	(dBµV) (ms) (kHz) 47.1 10000.0 9.000 49.3 10000.0 9.000 44.4 10000.0 9.000 30.3 10000.0 9.000 32.2 10000.0 9.000 28.5 10000.0 9.000	(dBµV)(ms)(kHz)47.110000.09.000GND49.310000.09.000GND44.410000.09.000GND30.310000.09.000GND32.210000.09.000GND28.510000.09.000GND	(dBµV)(ms)(kHz)Image: Constraint of the second sec	(dBµV)(ms)(kHz)(dB)47.110000.09.000GNDL110.349.310000.09.000GNDN10.344.410000.09.000GNDN10.330.310000.09.000GNDN10.332.210000.09.000GNDN10.428.510000.09.000GNDL110.4	(dBµV) (ms) (kHz) (dB) (dB) (dB) 47.1 10000.0 9.000 GND L1 10.3 18.2 49.3 10000.0 9.000 GND N 10.3 13.8 44.4 10000.0 9.000 GND N 10.3 16.5 30.3 10000.0 9.000 GND N 10.3 25.7 32.2 10000.0 9.000 GND N 10.4 23.8 28.5 10000.0 9.000 GND L1 10.4 27.5

Final Result 2

Frequency	Average	Meas. Time	Bandwidth	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)
0.159000	31.7	10000.0	9.000	GND	L1	10.	23.8	55.5
0.213000	27.6	10000.0	9.000	GND	L1	10.	25.5	53.1
0.267000	24.5	10000.0	9.000	GND	L1	10.	26.7	51.2
0.591000	25.7	10000.0	9.000	GND	Ν	10.	20.3	46.0
0.915000	21.6	10000.0	9.000	GND	Ν	10.	24.4	46.0
1.284000	21.6	10000.0	9.000	GND	L1	10.	24.4	46.0

Note: The measurement results showed here are worst cases of the combinations of different USB cables.

ANNEX B: Persons involved in this testing

Test Item	Tester
Radiated Emission	Yang Fei
Conducted Emission	Yang Fei

END OF REPORT