

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.4 Ω - 7.4 jΩ
Return Loss	- 21.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.1 Ω - 4.9 jΩ				
Return Loss	- 21.8 dB				

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns
I THE ADDRESS THE PROPERTY AND ADDRESS	1927 C

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 30, 2007

DASY5 Validation Report for Head TSL

Date: 26.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1012

Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2.02 S/m; ϵ_r = 37.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.7, 7.7, 7.7) @ 2600 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 118.3 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.33 W/kg Maximum value of SAR (measured) = 23.7 W/kg

0 dB = 23.7 W/kg = 13.75 dBW/kg

Certificate No: D2600V2-1012_Jul18

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2600V2-1012_Jul18

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 26.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1012

 $\begin{array}{l} \mbox{Communication System: UID 0 - CW; Frequency: 2600 MHz } \\ \mbox{Medium parameters used: } f = 2600 \mbox{ MHz; } \sigma = 2.2 \mbox{ S/m; } \epsilon_r = 51.5; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section} \\ \mbox{Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)} \\ \end{array}$

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.81, 7.81, 7.81) @ 2600 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.5 V/m; Power Drift = -0.07 dBPeak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.17 W/kg Maximum value of SAR (measured) = 22.6 W/kg

0 dB = 22.6 W/kg = 13.54 dBW/kg

Impedance Measurement Plot for Body TSL

Page 8 of 8

ANNEX I Sensor Triggering Data Summary

1, Maximum transmit power reduce process follow below strategy when mobile connect network.

Headset	P-sensor	SAR sensor	TX Power reduce
Insert	Near	Near	Yes
Insert	Near	Far	No
Insert	Far	Near	Yes
Insert	Far	Far	No
Pull out	Near	Near	No
Pull out	Near	Far	No
Pull out	Far	Near	Yes
Pull out	Far	Far	No

2, Distance definition

P-sensor Detect	Near	Far		
Distance Detected	<3cm	>=5cm		

SAR Sensor Detect	Near	Far
rear	<=16mm	>16mm
front	<=12mm	>12mm
bottom	<=16mm	>16mm
top	Not Detect	Not Detect
right	Not Detect	Not Detect
left	Not Detect	Not Detect

3, Reduction and Bands

		Conduct power
Band	Requirement	reduction
DCS	2、3、4 Slots	3.5dB
PCS	2、3、4 Slots	3dB
WB1		2dB
LTE B1		2.5dB
LTE B3		2dB
LTE B7		2dB

No.I18Z62335-SEM02 Page 157 of 159

According to the above description, this device was tested by the manufacturer to determine the SAR sensor triggering distances for the rear and bottom edge of the device. The measured power state within \pm 5mm of the triggering points (or until touching the phantom) is included for rear and each applicable edge.

To ensure all production units are compliant it is necessary to test SAR at a distance 1mm less than the smallest distance from the device and SAR phantom with the device at maximum output power without power reduction.

We tested the power and got the different proximity sensor triggering distances for rear and bottom edge. But the manufacturer has declared 16mm is the most conservative triggering distance for main antenna. So base on the most conservative triggering distance of 16mm, additional SAR measurements were required at 15mm from the highest SAR position between rear and bottom edge of main antenna.

Rear

Moving device toward the phantom:

The power state											
Distance [mm]	21	20	19	18	17	16	15	14	13	12	11
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

Moving device away from the phantom:

The power state											
Distance [mm]	11	12	13	14	15	16	17	18	19	20	21
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Bottom Edge

Moving device toward the phantom:

The power state											
Distance [mm]	21	20	19	18	17	16	15	14	13	12	11
Main antenna	Low										

Moving device away from the phantom:

The power state											
Distance [mm]	11	12	13	14	15	16	17	18	19	20	21
Main antenna	Low										

No.I18Z62335-SEM02 Page 158 of 159

The influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is $\pm 45^{\circ}$ or more from the vertical position at 0°.

The bottom edge evaluation for main antenna

Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the $\pm 45^{\circ}$ range at the smallest sensor triggering test distance declared by manufacturer.

ANNEX J Accreditation Certificate

