

Date: 2018-5-16

Electronics: DAE4 Sn786 Medium: Head 2450 MHz

Medium parameters used: f = 2450 MHz;  $\sigma = 1.842 \text{ S/m}$ ;  $\varepsilon_r = 38.743$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.0°C Liquid Temperature: 21.6°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (7.42, 7.42, 7.42);

System Validation /Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 90.544 V/m; Power Drift = 0.08 dB

SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.13 W/kg

Maximum value of SAR (interpolated) = 15.2 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.544 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 25.5 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.18 W/kg Maximum value of SAR (measured) = 15.6 W/kg

-4.42
-8.83
-13.25
-17.67
-22.08

0 dB = 15.6 W/kg = 11.93 dB W/kg

Fig.B.9. Validation 2450MHz 250mW



Date: 2018-5-16

Electronics: DAE4 Sn786 Medium: Body 2450 MHz

Medium parameters used: f = 2450 MHz;  $\sigma = 1.928 \text{ S/m}$ ;  $\varepsilon_r = 53.526$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.0°C Liquid Temperature: 21.6°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

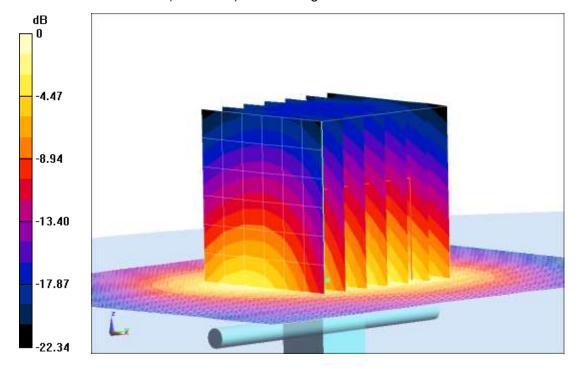
Probe: EX3DV4 - SN3633 ConvF (7.47, 7.47, 7.47);

System Validation/Area Scan (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 86.785 V/m; Power Drift = -0.02 dB

SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.07 W/kg

Maximum value of SAR (interpolated) = 14.8 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.785 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 23.9 W/kg

SAR(1 g) = 12.7 W/kg; SAR(10 g) = 6.02 W/kg

Maximum value of SAR (measured) = 14.4 W/kg



0 dB = 14.4 W/kg = 11.58 dB W/kg

Fig.B.10. Validation 2450MHz 250mW



Date: 2018-5-5

Electronics: DAE4 Sn786 Medium: Head 2550 MHz

Medium parameters used: f = 2550 MHz;  $\sigma = 1.971 \text{ S/m}$ ;  $\varepsilon_r = 38.36$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.0°C Liquid Temperature: 21.6°C Communication System: CW Frequency: 2550 MHz Duty Cycle: 1:1

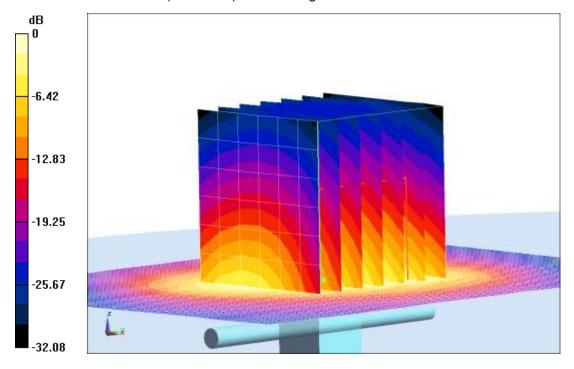
Probe: EX3DV4 - SN3633 ConvF (7.28, 7.28, 7.28);

System Validation/Area Scan (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 93.242 V/m; Power Drift = 0.02 dB

SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.55 W/kg

Maximum value of SAR (interpolated) = 16.1 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.242 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 28.8 W/kg

SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.58 W/kg

Maximum value of SAR (measured) = 16.6 W/kg



0 dB = 16.6 W/kg = 12.20 dB W/kg

Fig.B.11. Validation 2550MHz 250mW



Date: 2018-5-5

Electronics: DAE4 Sn786 Medium: Body 2550 MHz

Medium parameters used: f = 2550 MHz;  $\sigma = 2.052 \text{ S/m}$ ;  $\varepsilon_r = 53.214$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.0°C Liquid Temperature: 21.6°C Communication System: CW Frequency: 2550 MHz Duty Cycle: 1:1

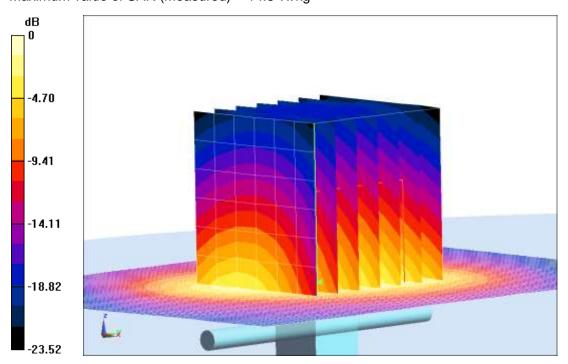
Probe: EX3DV4 - SN3633 ConvF (7.31, 7.31, 7.31);

System Validation/Area Scan (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 86.296 V/m; Power Drift = -0.08 dB

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.25 W/kg

Maximum value of SAR (interpolated) = 15.0 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.296 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 26.0 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.20 W/kg

Maximum value of SAR (measured) = 14.8 W/kg



0 dB = 14.8 W/kg = 11.70 dB W/kg

Fig.B.12. Validation 2550MHz 250mW



Date: 2018-5-18

Electronics: DAE4 Sn786 Medium: Head 5300 MHz

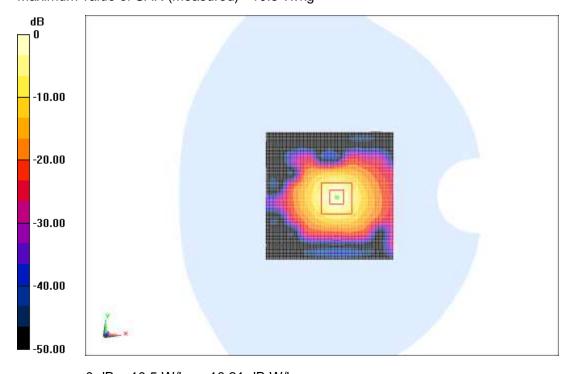
Medium parameters used: f = 5300 MHz;  $\sigma = 4.847 \text{ S/m}$ ;  $\varepsilon_r = 35.382$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 5300 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (5.61, 5.61, 5.61);

System Validation /Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 58.774 V/m; Power Drift = 0.05 dB


SAR(1 g) = 8.50 W/kg; SAR(10 g) = 2.39 W/kg Maximum value of SAR (interpolated) =10.2 W/kg

System Validation/Zoom Scan (8x8x8)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 58.774 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 30.3 W/kg

SAR(1 g) = 8.52 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) =10.5 W/kg



0 dB = 10.5 W/kg = 10.21 dB W/kg

Fig.B.13. validation 5300MHz 100mW



Date: 2018-5-18

Electronics: DAE4 Sn786 Medium: Body 5300 MHz

Medium parameters used: f = 5300 MHz;  $\sigma = 5.379 \text{ S/m}$ ;  $\varepsilon_r = 50.224$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 5300 MHz Duty Cycle: 1:1

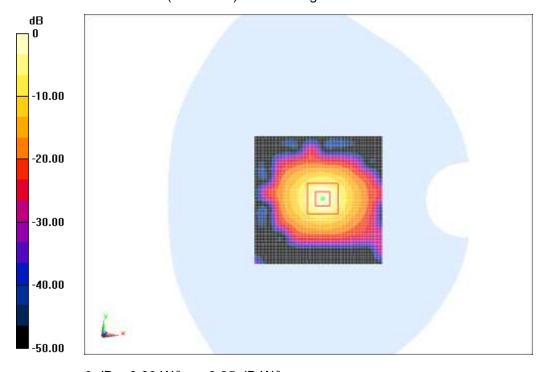
Probe: EX3DV4 - SN3633 ConvF (5.15, 5.15, 5.15);

System Validation /Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 58.178 V/m; Power Drift = -0.12 dB

SAR(1 g) = 7.47 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (interpolated) = 9.92 W/kg


System Validation/Zoom Scan (8x8x8)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 58.178 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 7.45 W/kg; SAR(10 g) = 2.11 W/kg

Maximum value of SAR (measured) = 9.88 W/kg



0 dB = 9.88 W/kg = 9.95 dB W/kg

Fig.B.14. validation 5300MHz 100mW



Date: 2018-5-18

Electronics: DAE4 Sn786 Medium: Head 5600 MHz

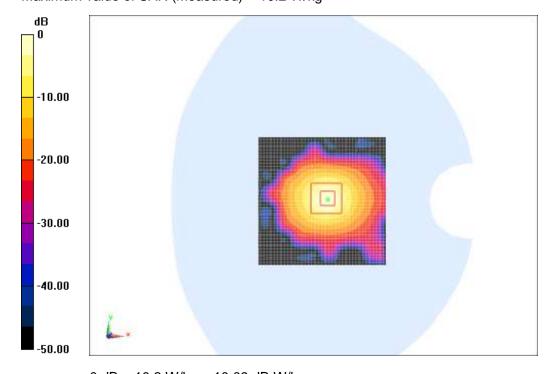
Medium parameters used: f = 5600 MHz;  $\sigma = 5.212 \text{ S/m}$ ;  $\varepsilon_r = 34.848$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 5600 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (4.86, 4.86, 4.86);

System Validation /Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 63.892 V/m; Power Drift = 0.07 dB


SAR(1 g) = 8.42 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (interpolated) =9.98 W/kg

System Validation/Zoom Scan (8x8x8)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 63.892 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 32.8 W/kg

SAR(1 g) = 8.45 W/kg; SAR(10 g) = 2.35 W/kg Maximum value of SAR (measured) = 10.2 W/kg



0 dB = 10.2 W/kg = 10.09 dB W/kg

Fig.B.15. validation 5600MHz 100mW



Date: 2018-5-18

Electronics: DAE4 Sn786 Medium: Body 5600 MHz

Medium parameters used: f = 5600 MHz;  $\sigma = 5.654 \text{ S/m}$ ;  $\varepsilon_r = 48.971$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 5600 MHz Duty Cycle: 1:1

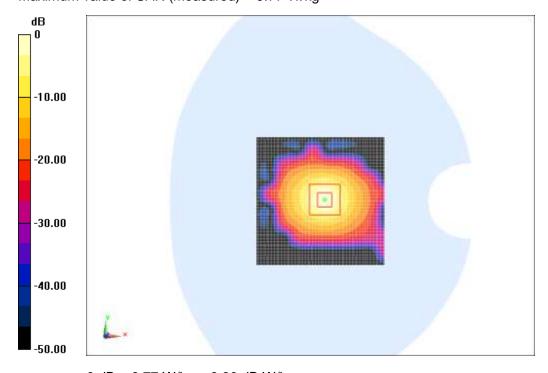
Probe: EX3DV4 - SN3633 ConvF (4.33, 4.33, 4.33);

System Validation /Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 60.464 V/m; Power Drift = -0.02 dB

SAR(1 g) = 7.74 W/kg; SAR(10 g) = 2.18 W/kg

Maximum value of SAR (interpolated) =9.84 W/kg


System Validation/Zoom Scan (8x8x8)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 60.464 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 28. 7 W/kg

SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 9.77 W/kg



0 dB = 9.77 W/kg = 9.90 dB W/kg

Fig.B.16. validation 5600MHz 100mW



Date: 2018-5-18

Electronics: DAE4 Sn786 Medium: Head 5800 MHz

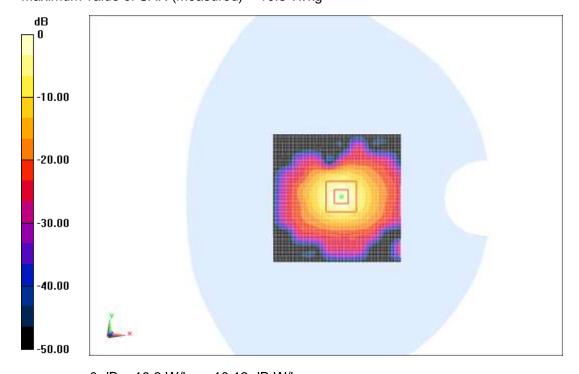
Medium parameters used: f = 5800 MHz;  $\sigma = 5.408 \text{ S/m}$ ;  $\varepsilon_r = 34.59$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 5800 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (4.81, 4.81, 4.81);

System Validation/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 60.255 V/m; Power Drift = 0.10 dB


SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.23 W/kg Maximum value of SAR (interpolated) =10.1W/kg

System Validation/Zoom Scan (8x8x8)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 60.255 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 34.2 W/kg

SAR(1 g) = 8.11 W/kg; SAR(10 g) = 2.26 W/kg Maximum value of SAR (measured) = 10.3 W/kg



0 dB = 10.3 W/kg = 10.13 dB W/kg

Fig.B.17. Validation 5800MHz 100mW



Date: 2018-5-18

Electronics: DAE4 Sn786 Medium: Body 5800 MHz

Medium parameters used: f = 5800 MHz;  $\sigma = 6.193 \text{ S/m}$ ;  $\varepsilon_r = 47.516$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 5800 MHz Duty Cycle: 1:1

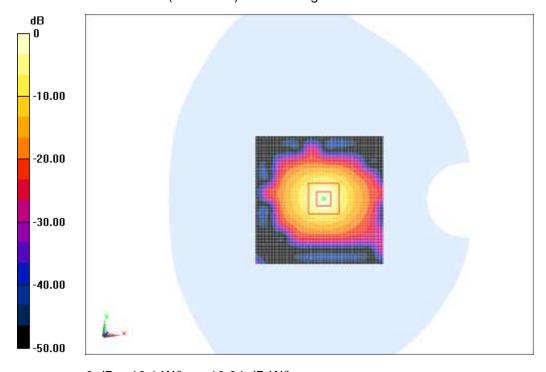
Probe: EX3DV4 - SN3633 ConvF (4.48, 4.48, 4.48);

System Validation/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 60.478 V/m; Power Drift = 0.11 dB

SAR(1 g) = 7.79 W/kg; SAR(10 g) = 2.14 W/kg

Maximum value of SAR (interpolated) =9.89 W/kg


System Validation/Zoom Scan (8x8x8)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 60.478 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 32.5 W/kg

SAR(1 g) = 7.85 W/kg; SAR(10 g) = 2.16 W/kg

Maximum value of SAR (measured) = 10.1 W/kg



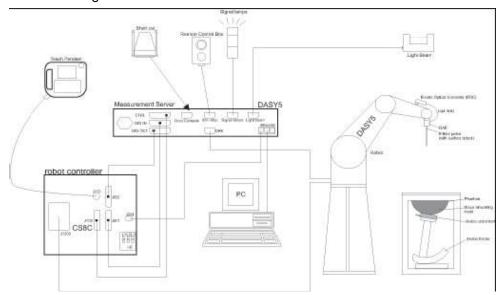
0 dB = 10.1 W/kg = 10.04 dB W/kg

Fig.B.18. Validation 5800MHz 100mW



The SAR system verification must be required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR.

Table B.1 Comparison between area scan and zoom scan for system verification


| Band (MHz) | Position | Area scan (1g) | Zoom scan (1g) | Drift (%) |
|------------|----------|----------------|----------------|-----------|
| 750        | Head     | 2.15           | 2.13           | -0.93     |
| 750        | Body     | 2.18           | 2.21           | 1.38      |
| 835        | Head     | 2.28           | 2.24           | -1.75     |
| 835        | Body     | 2.42           | 2.46           | 1.65      |
| 1800       | Head     | 9.87           | 9.92           | 0.51      |
| 1800       | Body     | 9.60           | 9.55           | -0.52     |
| 1900       | Head     | 10.3           | 10.5           | 1.94      |
| 1900       | Body     | 10.5           | 10.7           | 1.90      |
| 2450       | Head     | 13.5           | 13.6           | 0.74      |
| 2450       | Body     | 12.9           | 12.7           | -1.55     |
| 2550       | Head     | 14.4           | 14.5           | 0.69      |
| 2550       | Body     | 13.3           | 13.2           | -0.75     |



## **ANNEX C SAR Measurement Setup**

## C.1 Measurement Set-up

DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:



Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc.
   The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals
  for the digital communication to the DAE. To use optical surface detection, a special version of
  the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.



## C.2 DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection durning a software approach and looks for the maximum using 2<sup>nd</sup>ord curve fitting. The approach is stopped at reaching the maximum.

## **Probe Specifications:**

Model: ES3DV3, EX3DV4

Frequency 10MHz — 6.0GHz(EX3DV4) Range: 10MHz — 4GHz(ES3DV3)

Calibration: In head and body simulating tissue at

Frequencies from 835 up to 5800MHz

Linearity:  $\pm 0.2 \text{ dB}(30 \text{ MHz to 6 GHz}) \text{ for EX3DV4}$ 

± 0.2 dB(30 MHz to 4 GHz) for ES3DV3

Dynamic Range: 10 mW/kg — 100W/kg

Probe Length: 330 mm

**Probe Tip** 

Length: 20 mm Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9 mm for ES3DV3)
Tip-Center: 1 mm (2.0mm for ES3DV3)
Application: SAR Dosimetry Testing

Compliance tests of mobile phones

Dosimetry in strong gradient fields



Picture C.2 Near-field Probe



Picture C.3 E-field Probe

## C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed



in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm<sup>2</sup>.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 $\Delta t = \text{Exposure time (30 seconds)},$ 

C = Heat capacity of tissue (brain or muscle),

 $\Delta T$  = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 $\sigma$  = Simulated tissue conductivity,

 $\rho$  = Tissue density (kg/m<sup>3</sup>).

## **C.4 Other Test Equipment**

### C.4.1 Data Acquisition Electronics (DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.



PictureC.4: DAE



#### C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- ➤ High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)



Picture C.5 DASY 5

#### **C.4.3 Measurement Server**

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5:128MB), RAM (DASY5:128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.



Picture C.6 Server for DASY 5



#### C.4.4 Device Holder for Phantom

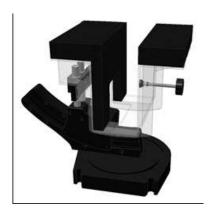
The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ±0.5mm would produce a SAR uncertainty of ±20%. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss

POM material having the following dielectric

parameters: relative permittivity  $\varepsilon$  =3 and loss tangent  $\delta$  =0.02. The amount of dielectric material


has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.



Picture C.7-1: Device Holder



Picture C.7-2: Laptop Extension Kit

#### C.4.5 Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Represent the 90<sup>th</sup> percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

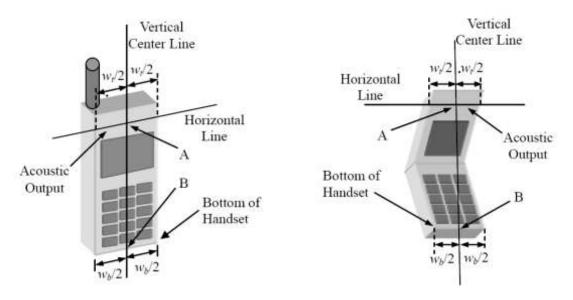


Shell Thickness:  $2 \pm 0.2 \text{ mm}$ Filling Volume: Approx. 25 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W)

Available: Special




**Picture C.8: SAM Twin Phantom** 

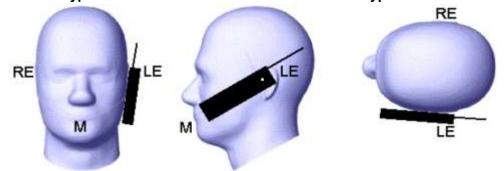


## ANNEX D Position of the wireless device in relation to the phantom

#### **D.1 General considerations**

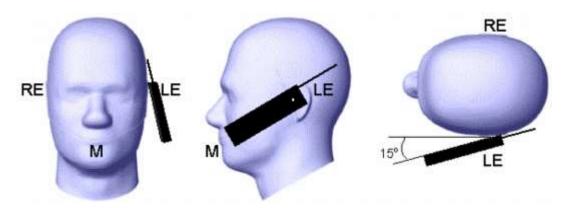
This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.




 $W_t$  Width of the handset at the level of the acoustic

 $W_b$  Width of the bottom of the handset

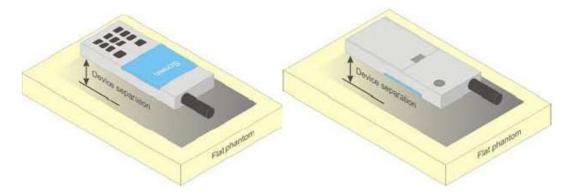
A Midpoint of the width  $w_t$  of the handset at the level of the acoustic output


B Midpoint of the width  $W_h$  of the bottom of the handset

Picture D.1-a Typical "fixed" case handset 
Picture D.1-b Typical "clam-shell" case handset



Picture D.2 Cheek position of the wireless device on the left side of SAM



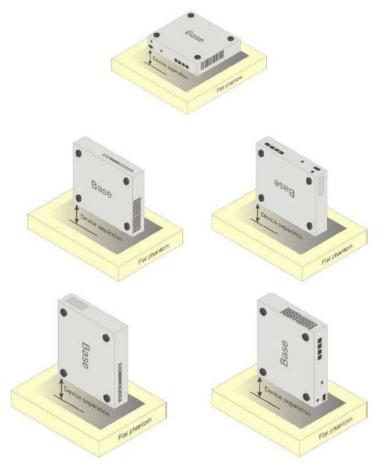



Picture D.3 Tilt position of the wireless device on the left side of SAM

## D.2 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.




Picture D.4 Test positions for body-worn devices

## D.3 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.





Picture D.5 Test positions for desktop devices

## **D.4 DUT Setup Photos**



Picture D.6



## **ANNEX E Equivalent Media Recipes**

The liquid used for the frequency range of 700-6000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

**Table E.1: Composition of the Tissue Equivalent Matter** 

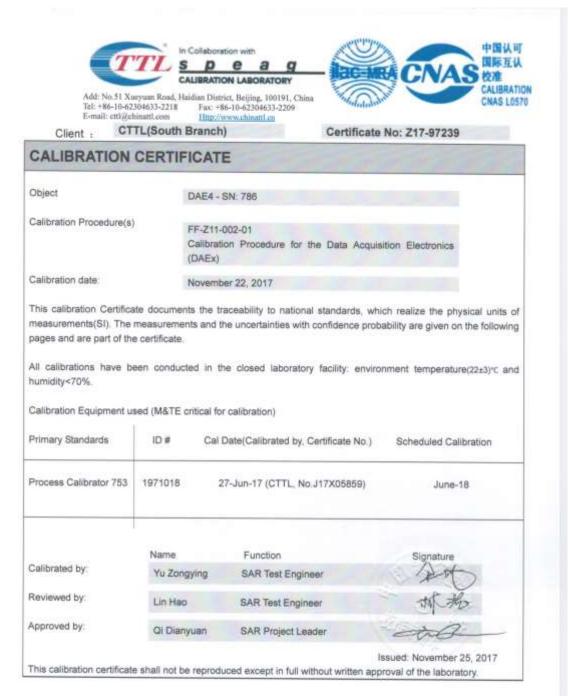
| rabio 2111 Composition of the fields Equivalent matter |                 |        |                 |        |        |        |        |        |
|--------------------------------------------------------|-----------------|--------|-----------------|--------|--------|--------|--------|--------|
| Frequency                                              | 835             | 835    | 1900            | 1900   | 2450   | 2450   | 5800   | 5800   |
| (MHz)                                                  | Head            | Body   | Head            | Body   | Head   | Body   | Head   | Body   |
| Ingredients (% by weight)                              |                 |        |                 |        |        |        |        |        |
| Water                                                  | 41.45           | 52.5   | 55.242          | 69.91  | 58.79  | 72.60  | 65.53  | 65.53  |
| Sugar                                                  | 56.0            | 45.0   | \               | \      | \      | \      | \      | \      |
| Salt                                                   | 1.45            | 1.4    | 0.306           | 0.13   | 0.06   | 0.18   | \      | \      |
| Preventol                                              | 0.1             | 0.1    | \               | \      | \      | \      | \      | \      |
| Cellulose                                              | 1.0             | 1.0    | \               | \      | \      | \      | \      | \      |
| Glycol                                                 | ,               | \      | 44.450          | 20.06  | 44.45  | 27.22  |        |        |
| Monobutyl                                              | \               | \      | 44.452          | 29.96  | 41.15  | 27.22  | \      | \      |
| Diethylenglycol                                        | ,               | ,      | \               | \      | \      | \      |        |        |
| monohexylether                                         | \               | \      | \               | \      | \      | \      | 17.24  | 17.24  |
| Triton X-100                                           | \               | \      | \               | \      | \      | \      | 17.24  | 17.24  |
| Dielectric                                             | ε=41.5          | ε=55.2 | ε=40.0          | ε=53.3 | ε=39.2 | ε=52.7 |        |        |
| Parameters                                             | $\sigma = 0.90$ | σ=0.97 | $\sigma = 1.40$ | σ=1.52 | σ=1.80 | σ=1.95 | ε=35.3 | ε=48.2 |
| Target Value                                           | 0-0.90          | 0-0.97 | 0-1.40          | 0-1.52 | 0-1.60 | 0-1.93 | σ=5.27 | σ=6.00 |

Note: There is a little adjustment respectively for 750, 1800, 2600, 5200, 5300, and 5600, based on the recipe of closest frequency in table E.1



## **ANNEX F System Validation**

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.


**Table F.1: System Validation** 

| Probe SN. | Liquid name  | Validation date | Frequency point | Status (OK or Not) |
|-----------|--------------|-----------------|-----------------|--------------------|
| 3633      | Head 750MHz  | 2018-02-06      | 750 MHz         | OK                 |
| 3633      | Head 835MHz  | 2018-02-06      | 835 MHz         | OK                 |
| 3633      | Head 1800MHz | 2018-02-06      | 1800 MHz        | OK                 |
| 3633      | Head 1900MHz | 2018-02-08      | 1900 MHz        | OK                 |
| 3633      | Head 2450MHz | 2018-02-08      | 2450 MHz        | OK                 |
| 3633      | Head 2550MHz | 2018-02-08      | 2550 MHz        | OK                 |
| 3633      | Head 5200MHz | 2018-02-07      | 5200 MHz        | OK                 |
| 3633      | Head 5300MHz | 2018-02-07      | 5300 MHz        | OK                 |
| 3633      | Head 5600MHz | 2018-02-07      | 5600 MHz        | OK                 |
| 3633      | Head 5800MHz | 2018-02-07      | 5800 MHz        | OK                 |
| 3633      | Body 750MHz  | 2018-02-06      | 750 MHz         | OK                 |
| 3633      | Body 835MHz  | 2018-02-06      | 835 MHz         | OK                 |
| 3633      | Body 1800MHz | 2018-02-06      | 1800 MHz        | OK                 |
| 3633      | Body 1900MHz | 2018-02-08      | 1900 MHz        | OK                 |
| 3633      | Body 2450MHz | 2018-02-08      | 2450 MHz        | OK                 |
| 3633      | Body 2550MHz | 2018-02-08      | 5200 MHz        | OK                 |
| 3633      | Body 5200MHz | 2018-02-07      | 5200 MHz        | OK                 |
| 3633      | Body 5300MHz | 2018-02-07      | 5300 MHz        | OK                 |
| 3633      | Body 5600MHz | 2018-02-07      | 5600 MHz        | OK                 |
| 3633      | Body 5800MHz | 2018-02-07      | 5800 MHz        | OK                 |



## **ANNEX G DAE Calibration Certificate**

**DAE4 SN: 786 Calibration Certificate** 







Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

## Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.







 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

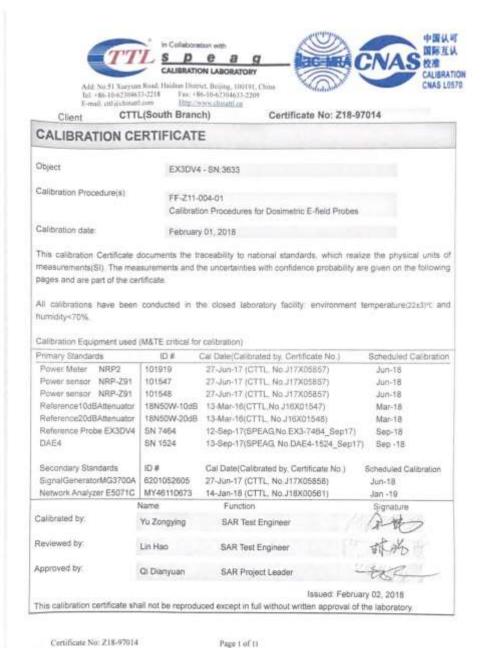
 Il-mail: cttl@chinattl.com
 Hitp://www.chinattl.cn

#### DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB =  $6.1 \mu V$ , full range = -100...+300 mVLow Range: 1LSB = 61 n V, full range = -1....+3 m VDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

| Calibration Factors | X                     | Y                     | Z                     |
|---------------------|-----------------------|-----------------------|-----------------------|
| High Range          | 404.138 ± 0.15% (k=2) | 404.330 ± 0.15% (k=2) | 404.714 ± 0.15% (k=2) |
| Low Range           | 3.97217 ± 0.7% (k=2)  | 3.97384 ± 0.7% (k=2)  | 3.95842 ± 0.7% (k=2)  |


#### Connector Angle

| Connector Angle to be used in DASY system | 229.5° ± 1 ° |
|-------------------------------------------|--------------|
|-------------------------------------------|--------------|



## **ANNEX H Probe Calibration Certificate**

Probe EX3DV4-SN: 3633 Calibration Certificate







Add: No.51 Xueyum Bond, Haidian Diorrict, Beijing, 100193, China Tet. +86-10-62504633-2218 Fax: +86-10-62304633-2209 E-mail: entitionment.com Http://www.chouttl.co

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

CF crest factor (1/duty\_cycle) of the RF signal A.B,C,D modulation dependent linearization parameters

Polarization Φ Φ rotation around probe axis

Polarization 8 8 rotation around an axis that is in the plane normal to probe axis (at measurement center), i

0=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from

- hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)". July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y.z. Assessed for E-field polarization 8=0 (f≤900MHz in TEM-cell; f>1800MHz; waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E2 -field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z\* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax.y.z: Bx,y.z: Cx,y.z;VRx,y.z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx.y.z\* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from::50MHz to::100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat. phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No. Z18-97014





# Probe EX3DV4

SN: 3633

Calibrated: February 01, 2018

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)





## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3633

## **Basic Calibration Parameters**

| V/16-                          | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------------|----------|----------|----------|-----------|
| $Norm(\mu V/(V/m)^2)^{\times}$ | 0.39     | 0.37     | 0.38     | ±10.0%    |
| DCP(mV) <sup>6</sup>           | 96.8     | 99.5     | 98.2     |           |

## **Modulation Calibration Parameters**

| UID  | Communication<br>System Name |     | A<br>dB | B<br>dB µV | С    | D<br>dB | VR<br>mV | Unc <sup>II</sup><br>(k=2) |
|------|------------------------------|-----|---------|------------|------|---------|----------|----------------------------|
| 0 CW | X                            | 0.0 | 0.0     | 1.0        | 0.00 | 145.8   | ±2.4%    |                            |
|      |                              | Y   | 0.0     | 0.0        | 1.0  |         | 145.4    |                            |
|      |                              | Z   | 0.0     | 0.0        | 1.0  |         | 145.7    |                            |

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X, Y, Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Page 5 and Page 6).
Numerical linearization parameter: uncertainty not required.
Uncertainty is determined using the max deviation from linear response applying rectangular distribution and is expressed for the square of the field value.





Add: No.51 Xocyuan Bood, Haidun District, Beijing, 100(9), China Tel: =86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ctilis chinatticom Hitti-www.chinattica

## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3633

#### Calibration Parameter Determined in Head Tissue Simulating Media

| f [MHz] <sup>C</sup> | Relative<br>Permittivity | Conductivity<br>(S/m) <sup>6</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) |
|----------------------|--------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------|
| 750                  | 41.9                     | 0.89                               | 9.33    | 9.33    | 9.33    | 0.25               | 0.80                       | ±12.1%         |
| 900                  | 41.5                     | 0.97                               | 9.25    | 9.25    | 9.25    | 0.14               | 1.27                       | ±12.1%         |
| 1450                 | 40.5                     | 1.20                               | 8.43    | 8.43    | 8.43    | 0.12               | 1.32                       | ±12.1%         |
| 1750                 | 40.1                     | 1.37                               | 8.12    | 8.12    | 8.12    | 0.22               | 1.08                       | ±12.1%         |
| 1900                 | 40.0                     | 1.40                               | 7.81    | 7.81    | 7.81    | 0.25               | 0.98                       | ±12.1%         |
| 2000                 | 40.0                     | 1.40                               | 7.82    | 7.82    | 7.82    | 0.23               | 1.01                       | ±12.1%         |
| 2300                 | 39.5                     | 1.87                               | 7.87    | 7.87    | 7.87    | 0.48               | 0.76                       | ±12.1%         |
| 2450                 | 39.2                     | 1.80                               | 7.42    | 7.42    | 7.42    | 0.49               | 0.77                       | ±12.1%         |
| 2600                 | 39.0                     | 1.96                               | 7.28    | 7.28    | 7.28    | 0.61               | 0.70                       | ±12.1%         |
| 3500                 | 37.9                     | 2.91                               | 6.82    | 6.82    | 6.82    | 0.57               | 0.87                       | ±13.3%         |
| 5250                 | 35.9                     | 4.71                               | 5.61    | 5.61    | 5.61    | 0.40               | 1.40                       | ±13.3%         |
| 5600                 | 35.5                     | 5.07                               | 4.86    | 4.86    | 4.86    | 0.40               | 1.35                       | ±13.3%         |
| 5750                 | 35.4                     | 5.22                               | 4.81    | 4.81    | 4.81    | 0.45               | 1.60                       | ±13.3%         |

<sup>&</sup>lt;sup>C</sup> Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

<sup>\*</sup> At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.





E-mail: ent/actionalt.com

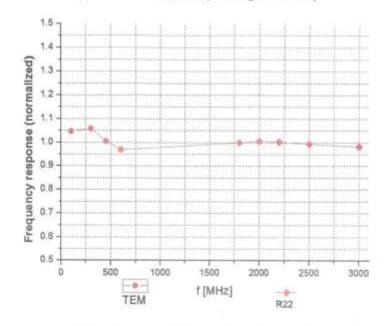
DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3633

## Calibration Parameter Determined in Body Tissue Simulating Media

Him I www.chinard.cn

| f [MHz]° | Relative<br>Permittivity* | Conductivity<br>(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha <sup>0</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) |
|----------|---------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------|
| 750      | 55.5                      | 0.96                    | 9.69    | 9.69    | 9.69    | 0.40               | 0.80                       | ±12.19         |
| 900      | 55,0                      | 1.05                    | 9.33    | 9.33    | 9.33    | 0.24               | 1.14                       | ±12.19         |
| 1450     | 54.0                      | 1.30                    | 8.47    | 8.47    | 8.47    | 0.13               | 1.30                       | ±12.19         |
| 1750     | 53.4                      | 1.49                    | 8.05    | 8.05    | 8.05    | 0.20               | 1.14                       | 生12.1%         |
| 1900     | 53.3                      | 1.52                    | 7.75    | 7.75    | 7.75    | 0.12               | 1.90                       | ±12.1%         |
| 2000     | 53.3                      | 1.52                    | 7.73    | 7.73    | 7.73    | 0.18               | 1.24                       | ±12.19         |
| 2300     | 52.9                      | 1.81                    | 7.71    | 7.71    | 7.71    | 0.55               | 0.81                       | ±12.19         |
| 2450     | 52.7                      | 1.95                    | 7.47    | 7.47    | 7.47    | 0.32               | 1.24                       | ±12.19         |
| 2600     | 52.5                      | 2.16                    | 7.31    | 7.31    | 7.31    | 0.38               | 1.01                       | ±12.19         |
| 3500     | 51.3                      | 3.31                    | 6.43    | 6.43    | 6.43    | 0.60               | 0.94                       | ±13.3%         |
| 5250     | 48.9                      | 5.36                    | 5.15    | 5.15    | 5.15    | 0.45               | 1.60                       | ±13.39         |
| 5600     | 48.5                      | 5.77                    | 4.33    | 4.33    | 4.33    | 0.50               | 1.70                       | ±13,39         |
| 5750     | 48.3                      | 5.94                    | 4.48    | 4.48    | 4.48    | 0.50               | 1.70                       | ±13.39         |

<sup>&</sup>lt;sup>6</sup> Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 54, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.


<sup>\*</sup> At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be retixed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

<sup>&</sup>lt;sup>9</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-5 GHz at any distance larger than half the probe tip diameter from the boundary.

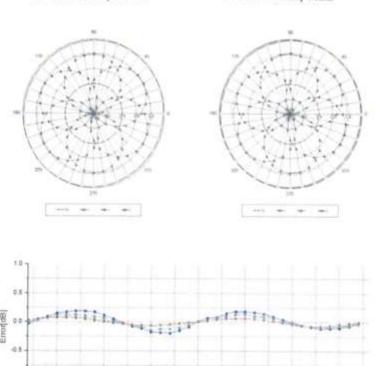




## Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ±7.4% (k=2)






## Receiving Pattern (Φ), θ=0°

## f=600 MHz, TEM

## f=1800 MHz, R22



Certificate No. Z18-97014

Page # of 11

- \* - 100MHz

Roff1 600MHz - 1800MHz

Uncertainty of Axial Isotropy Assessment: ±1.2% (k∞2)

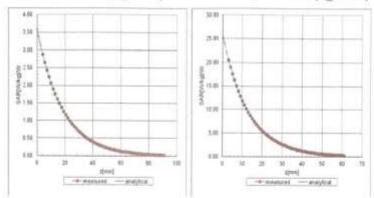


Certificate No. Z18-97014

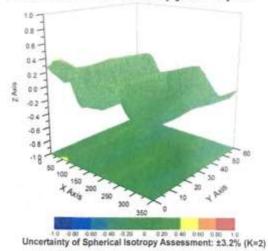


# Dynamic Range f(SAR<sub>head</sub>) (TEM cell, f = 900 MHz) Input Signal[µV] 10 SAR[mW/cm3] - not compensated Emod dB] SAR[mW/cm compensated Uncertainty of Linearity Assessment: ±0.9% (k=2)

Page 9 of 11







## Conversion Factor Assessment



f=1750 MHz, WGLS R22(H\_convF)



## Deviation from Isotropy in Liquid



Certificate No. Z18-97014

Page 10 of 11





## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3633

## Other Probe Parameters

| Sensor Arrangement                            | Triangular |  |  |
|-----------------------------------------------|------------|--|--|
| Connector Angle (*)                           | 71.8       |  |  |
| Mechanical Surface Detection Mode             | enabled    |  |  |
| Optical Surface Detection Mode                | disable    |  |  |
| Probe Overall Length                          | 337mm      |  |  |
| Probe Body Diameter                           | 10mm       |  |  |
| Tip Length                                    | 9mm        |  |  |
| Tip Diameter                                  | 2.5mm      |  |  |
| Probe Tip to Sensor X Calibration Point       | 1mm        |  |  |
| Probe Tip to Sensor Y Calibration Point       | 1mm        |  |  |
| Probe Tip to Sensor Z Calibration Point       | 1mm        |  |  |
| Recommended Measurement Distance from Surface | 1.4mm      |  |  |



# **ANNEX I Dipole Calibration Certificate**

# 750 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di tarature
S Swiss Calibration Service

Accreditation No.: SCS 0108

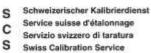
Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

THC S7 /Aug

| Object                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D750V3 - SN:116                                                                                                                                                                   | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| owjoo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DIDOTO CILITI                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |
| Calibration procedure(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | QA CAL-05.v9                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calibration proce                                                                                                                                                                 | dure for dipole validation kits abo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ve 700 MHz                                                                                                                                                   |
| Calibration date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | September 19, 2                                                                                                                                                                   | 016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                   | ional standards, which realize the physical un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                              |
| The measurements and the unce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rtainties with confidence p                                                                                                                                                       | robability are given on the following pages an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d are part of the certificate.                                                                                                                               |
| All calibrations have been conduc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ted in the closed laborato                                                                                                                                                        | ry facility: environment temperature (22 ± 3)*C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 and humidity < 70%.                                                                                                                                        |
| W 4000100010 10010 W4001 V41000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                   | ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |
| Calibration Equipment used (M&T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E critical for calibration)                                                                                                                                                       | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |
| rimary Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ID#                                                                                                                                                                               | Call Date (Certificate No.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Scheduled Calibration                                                                                                                                        |
| CONTROL OF THE PARTY OF THE PAR | ID #<br>SN: 104778                                                                                                                                                                | Cal Date (Certificate No.)<br>06-Apr-16 (No. 217-02288/02289)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Scheduled Calibration<br>Apr-17                                                                                                                              |
| Power meter NRP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                   | The state of the s |                                                                                                                                                              |
| Power meter NRP<br>Power sensor NRP-Z91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SN: 104778                                                                                                                                                                        | 06-Apr-16 (No. 217-02288/02289)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Apr-17                                                                                                                                                       |
| Power meter NRP<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SN: 104778<br>SN: 103244                                                                                                                                                          | 06-Apr-16 (No. 217-02288/02289)<br>06-Apr-16 (No. 217-02288)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Apr-17<br>Apr-17                                                                                                                                             |
| Power meter NRP<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91<br>Reference 20 dB Attenuator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SN: 104778<br>SN: 103244<br>SN: 103245                                                                                                                                            | 06-Apr-16 (No. 217-02288/02289)<br>06-Apr-16 (No. 217-02288)<br>06-Apr-16 (No. 217-02289)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Apr-17<br>Apr-17<br>Apr-17                                                                                                                                   |
| Power moter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: 5058 (20k)                                                                                                                          | 06-Apr-16 (No. 217-02288/02289)<br>06-Apr-16 (No. 217-02288)<br>06-Apr-16 (No. 217-02289)<br>05-Apr-16 (No. 217-02292)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Apr-17<br>Apr-17<br>Apr-17<br>Apr-17                                                                                                                         |
| Power moter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX30V4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327                                                                                                    | 06-Apr-16 (No. 217-02288/02289)<br>06-Apr-16 (No. 217-02288)<br>06-Apr-16 (No. 217-02289)<br>05-Apr-16 (No. 217-02292)<br>05-Apr-16 (No. 217-02295)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Apr-17<br>Apr-17<br>Apr-17<br>Apr-17<br>Apr-17                                                                                                               |
| Power moter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX30V4 DAE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 7349                                                                                        | 06-Apr-16 (No. 217-02288/02289)<br>06-Apr-16 (No. 217-02288)<br>06-Apr-16 (No. 217-02289)<br>05-Apr-16 (No. 217-02292)<br>05-Apr-16 (No. 217-02295)<br>15-Jun-16 (No. EX3-7348_Jun16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Apr-17<br>Apr-17<br>Apr-17<br>Apr-17<br>Apr-17<br>Jun-17                                                                                                     |
| Power moter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX30V4 DAE4 Secondary Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 7349<br>SN: 601                                                                             | 06-Apr-16 (No. 217-02288/02289)<br>06-Apr-16 (No. 217-02288)<br>06-Apr-16 (No. 217-02289)<br>05-Apr-16 (No. 217-02292)<br>05-Apr-16 (No. 217-02295)<br>15-Jun-16 (No. EX3-7349_Jun16)<br>30-Dec-15 (No. DAE4-601_Dec15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Apr-17<br>Apr-17<br>Apr-17<br>Apr-17<br>Apr-17<br>Jun-17<br>Dec-16                                                                                           |
| Power moter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Atternator Type-N mismatch combination Reference Probe EX30V4 DAE4 Secondary Standards Power meter EPM-442A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 7349<br>SN: 601                                                                             | 06-Apr-16 (No. 217-02288/02289)<br>06-Apr-16 (No. 217-02288)<br>06-Apr-16 (No. 217-02289)<br>05-Apr-16 (No. 217-02292)<br>05-Apr-16 (No. 217-02295)<br>15-Jun-16 (No. EX3-7348_Jun16)<br>30-Dec-15 (No. DAE4-601_Dec15)<br>Check Date (in house)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check                                                                                      |
| Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Atternator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: 5056 (20K)<br>SN: 5047.2 / 06327<br>SN: 7349<br>SN: 601                                                                             | 06-Apr-16 (No. 217-02288/02289)<br>06-Apr-16 (No. 217-02288)<br>06-Apr-16 (No. 217-02289)<br>05-Apr-16 (No. 217-02292)<br>05-Apr-16 (No. 217-02295)<br>15-Jun-16 (No. EX3-7346_Jun16)<br>30-Dec-15 (No. DAE4-601_Dec15)<br>Check Date (in house)<br>07-Oct-15 (No. 217-02222)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16                                                                      |
| Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 7349<br>SN: 601<br>ID #<br>SN: GB37480704<br>SN: US37292783                                 | 06-Apr-16 (No. 217-02288/02289)<br>06-Apr-16 (No. 217-02288)<br>06-Apr-16 (No. 217-02289)<br>05-Apr-16 (No. 217-02292)<br>05-Apr-16 (No. 217-02296)<br>15-Jun-16 (No. EX3-7349_Jun16)<br>30-Dec-15 (No. DAE4-601_Dec15)<br>Check Date (in house)<br>07-Oct-15 (No. 217-02222)<br>07-Oct-15 (No. 217-02222)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-18 In house check: Oct-18                                        |
| Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 7349<br>SN: 601<br>ID #<br>SN: GB37480704<br>SN: US37292783<br>SN: MY41092317               | 06-Apr-16 (No. 217-02288/02289)<br>06-Apr-16 (No. 217-02288)<br>06-Apr-16 (No. 217-02289)<br>05-Apr-16 (No. 217-02292)<br>05-Apr-16 (No. 217-02292)<br>15-Jun-16 (No. EX3-7349_Jun16)<br>30-Dec-15 (No. DAE4-601_Dec15)<br>Check Date (in house)<br>07-Oct-15 (No. 217-02222)<br>07-Oct-15 (No. 217-02222)<br>07-Oct-15 (No. 217-02222)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18                 |
| Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Atternator Type-N mismatch combination Reference Probe EX3DV4 DAE4  Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: 5058 (20K)<br>SN: 5047.2 / 06327<br>SN: 7349<br>SN: 601<br>ID #<br>SN: GB37480704<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972 | 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 15-Jun-15 (in house check Jun-15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 |
| Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20K) SN: 5047.2 / 06327 SN: 7349 SN: 601  ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585                  | 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02289) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 15-Jun-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 |




#### Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland







Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.



#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.8.8     |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 15 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 750 MHz ± 1 MHz        |             |
|                              |                        |             |

Head TSL parameters
The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.9         | 0.89 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 41.0 ± 6 %   | 0.91 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        | ****         |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.11 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 8.26 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.38 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 5.43 W/kg ± 16.5 % (k=2) |

# **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 55.5         | 0.96 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 54.9 ± 6 %   | 0.99 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        | ****         |                  |

### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.20 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 8.58 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm3 (10 g) of Body TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 250 mW input power | 1.44 W/kg                |
| SAR for nominal Body TSL parameters         | normalized to 1W   | 5.64 W/kg ± 16.5 % (k=2) |



### Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 54.5 Ω - 1.8 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 26.8 dB       |  |

### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 49.8 Ω - 3.5 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 29.0 dB       |  |

### General Antenna Parameters and Design

| Electrical Delay (one direction)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.032 ns |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| The state of the s | 1,000.00 |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG         |  |
|-----------------|---------------|--|
| Manufactured on | June 23, 2016 |  |



## **DASY5 Validation Report for Head TSL**

Date: 19.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

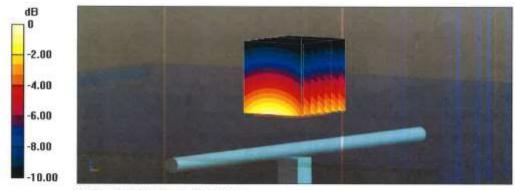
### DUT: D750V3 - SN1163; Type: D750V3; Serial: SN1163

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz;  $\sigma = 0.91 \text{ S/m}$ ;  $\varepsilon_r = 41$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

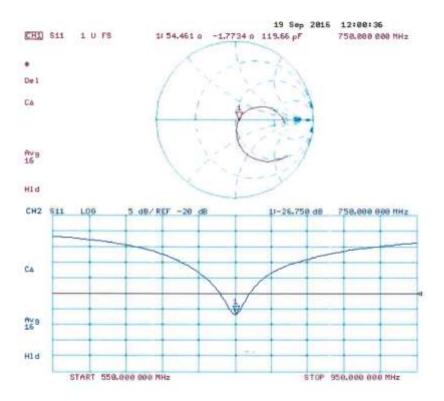
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


#### DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.07, 10.07, 10.07); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

# Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.31 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.16 W/kg SAR(1 g) = 2.11 W/kg; SAR(10 g) = 1.38 W/kg


Maximum value of SAR (measured) = 1.36 W/kg



0 dB = 2.79 W/kg = 4.46 dBW/kg



## Impedance Measurement Plot for Head TSL





#### DASY5 Validation Report for Body TSL

Date: 19.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: D750V3 - SN1163; Type: D750V3; Serial: SN1163

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz;  $\sigma = 0.99 \text{ S/m}$ ;  $\varepsilon_r = 54.9$ ;  $\rho = 1000 \text{ kg/m}^3$ 

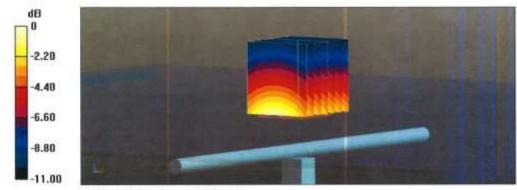
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 15.06.2016;
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

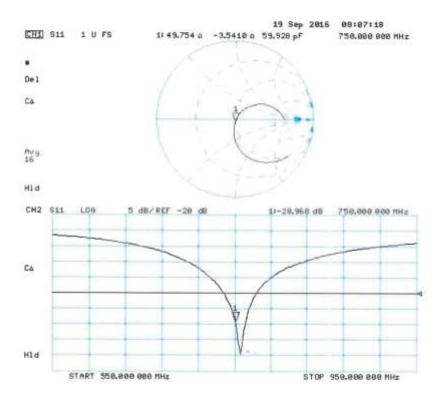
### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.12 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 3.33 W/kg

SAR(1 g) = 2.2 W/kg; SAR(10 g) = 1.44 W/kg


Maximum value of SAR (measured) = 2.94 W/kg



0 dB = 2.94 W/kg = 4.68 dBW/kg



# Impedance Measurement Plot for Body TSL





### 835 MHz Dipole Calibration Certificate



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Hittp://www.uhimani.em



Client

CTTL(South Branch)

Certificate No: Z15-97173

45 07470

### **CALIBRATION CERTIFICATE**

Object

D835V2 - SN: 4d057

Calibration Procedure(s)

FD-Z11-2-003-01

Calibration Procedures for dipole validation kits

Calibration date:

October 22, 2015

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate:

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards       | ID#        | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
|-------------------------|------------|------------------------------------------|-----------------------|
| Power Meter NRP2        | 101919     | 01-Jul-15 (CTTL, No.J15X04256)           | Jun-16                |
| Power sensor NRP-Z91    | 101547     | 01-Jul-15 (CTTL, No.J15X04256)           | Jun-16                |
| Reference Probe EX3DV4  | SN 3617    | 26-Aug-15(SPEAG,No.EX3-3617_Aug15)       | Aug -16               |
| DAE4                    | SN 777     | 26-Aug-15(SPEAG,No.DAE4-777_Aug15)       | Aug -16               |
| Secondary Standards     | ID#        | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
| Signal Generator E4438C | MY49071430 | 02-Feb-15 (CTTL, No.J15X00729)           | Feb-16                |
| Network Analyzer E5071C | MY46110673 | 03-Feb-15 (CTTL, No.J15X00728)           | Feb-16                |

|                | Name        | Function                          | Signature |
|----------------|-------------|-----------------------------------|-----------|
| Calibrated by: | Zhao Jing   | SAR Test Engineer                 | 益型        |
| Reviewed by:   | Qi Dianyuan | SAR Project Leader                | 202       |
| Approved by:   | Lu Bingsong | Deputy Director of the laboratory | 和小好办      |

Issued: October 26, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.





Add: No.51 Xueyuan Roat, Haidian District, Beljing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.com

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

#### Additional Documentation:

d) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.





Add: No.51 Xueyuan Read, Haidian District, Beljing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

#### Measurement Conditions

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | 52.8.8.1222 |
|------------------------------|--------------------------|-------------|
| Extrapolation                | Advanced Extrapolation   |             |
| Phantom                      | Triple Flat Phantom 5.1C |             |
| Distance Dipole Center - TSL | 15 mm                    | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |             |
| Frequency                    | 835 MHz ± 1 MHz          |             |

## Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.5         | 0.90 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 42.2 ± 6 %   | 0.91 mha/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              |                  |

### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 250 mW input power | 2.31 mW/g                 |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 9.22 mW /g ± 20.8 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                           |
| SAR measured                                            | 250 mW input power | 1.51 mW/g                 |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 6.03 mW /g ± 20.4 % (k=2) |

### Body TSL parameters

The following parameters and calculations were applied:

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 55.2         | 0.97 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 55.1 ± 6 %   | 0.96 mha/m ± 6 % |
| Body TSL temperature change during test | <1.0 °C         | 444          | _                |

### SAR result with Body TSL

| f Body TSL Condition              |
|-----------------------------------|
| s normalized to 1W 9.44 mW/g ± 20 |

Certificate No: Z15-97173





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn Http://www.chinattl.cn

#### Appendix

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 49.2Ω- 3.12]Ω |  |
|--------------------------------------|---------------|--|
| Return Loss                          | - 29.8dB      |  |

### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 48.1Ω- 5.38jΩ |  |
|--------------------------------------|---------------|--|
| Return Loss                          | - 24.7dB      |  |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) 1.500 ns |  |
|-------------------------------------------|--|
|-------------------------------------------|--|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|
|-----------------|-------|

Date: 10.22.2015





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

#### DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d057

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz;  $\alpha = 0.907$  S/m;  $\epsilon_r = 42.15$ ;  $\rho = 1000$  kg/m<sup>3</sup>

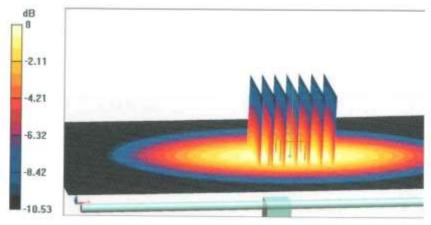
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(9.56, 9.56, 9.56); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/26/2015
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

# Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

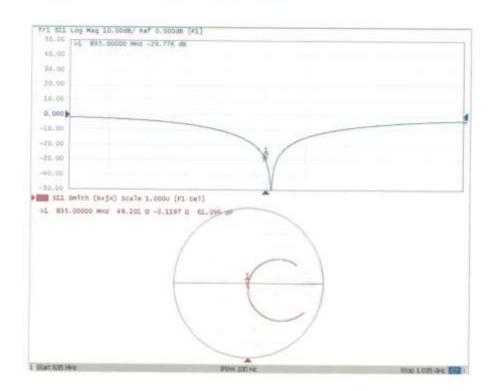
Reference Value = 57.74 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 3.47 W/kg

SAR(1 g) = 2.31 W/kg; SAR(10 g) = 1.51 W/kg

Maximum value of SAR (measured) = 2.94 W/kg




0 dB = 2.94 W/kg = 4.68 dBW/kg





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

### Impedance Measurement Plot for Head TSL



Date: 10.22.2015





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl/gchinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d057

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz;  $\sigma = 0.958$  S/m;  $\epsilon_r = 55.11$ ;  $\rho = 1000$  kg/m<sup>3</sup>

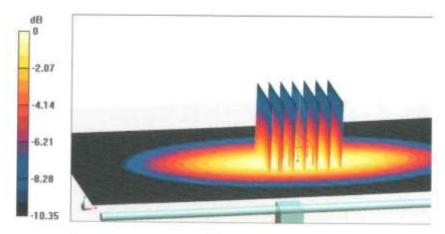
Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(9.71,9.71, 9.71); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/26/2015
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

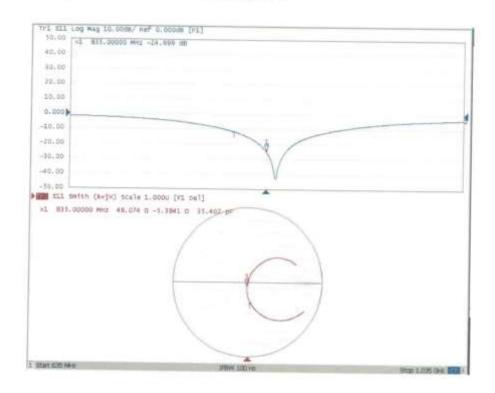
Reference Value = 56.68 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.46 W/kg

SAR(1 g) = 2.34 W/kg; SAR(10 g) = 1.54 W/kg

Maximum value of SAR (measured) = 2.95 W/kg




0 dB = 2.95 W/kg = 4.70 dBW/kg





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.com

# Impedance Measurement Plot for Body TSL





### 1800 MHz Dipole Calibration Certificate



Add: No.51 Xueyuan Roud, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2979 Fax: +86-10-62304633-2504 E-mail: ottl@chinattl.com Hitp://www.chinattl.com



Client

CTTL(South Branch)

Certificate No:

Z15-97178

# **CALIBRATION CERTIFICATE**

Object

D1800V2 - SN: 2d147

Calibration Procedure(s)

FD-Z11-2-003-01

Calibration Procedures for dipole validation kits

Calibration date:

November 3, 2015

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards       | ID#        | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
|-------------------------|------------|------------------------------------------|-----------------------|
| Power Meter NRP2        | 101919     | 01-Jul-15 (CTTL, No.J15X04256)           | Jun-16                |
| Power sensor NRP-Z91    | 101547     | 01-Jul-15 (CTTL, No.J15X04256)           | Jun-16                |
| Reference Probe EX3DV4  | SN 3617    | 26-Aug-15(SPEAG,No.EX3-3817_Aug15)       | Aug -16               |
| DAE4                    | SN 777     | 26-Aug-15(SPEAG,No.DAE4-777_Aug15)       | Aug -16               |
| Secondary Standards     | ID#        | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
| Signal Generator E4438C | MY49071430 | 02-Feb-15 (CTTL, No.J15X00729)           | Feb-16                |
| Network Analyzer E5071C | MY46110673 | 03-Feb-15 (CTTL, No.J15X00728)           | Feb-16                |

| Name        | Function                          | Signature                                                   |
|-------------|-----------------------------------|-------------------------------------------------------------|
| Zhao Jing   | SAR Test Engineer                 | 杜                                                           |
| Qi Dianyuan | SAR Project Leader                | -62                                                         |
| Lu Bingsong | Deputy Director of the laboratory | The writer                                                  |
|             | Zhao Jing<br>Qi Dianyuan          | Zhao Jing SAR Test Engineer  Qi Dianyuan SAR Project Leader |

Issued: November 8, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2594 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

#### Additional Documentation:

d) DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fac: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.com

### Measurement Conditions

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | 52.8.8.1222 |
|------------------------------|--------------------------|-------------|
| Extrapolation                | Advanced Extrapolation   |             |
| Phantom                      | Triple Flat Phantom 5.1C |             |
| Distance Dipole Center - TSL | 10 mm                    | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |             |
| Frequency                    | 1600 MHz ± 1 MHz         |             |

### Head TSL parameters

he following parameters and calculations were applied

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.0         | 1.40 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 38.9 ± 6 %   | 1.39 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              | -                |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 250 mW input power | 9.70 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 38.8 mW /g ± 20.8 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                           |
| SAR measured                                            | 250 mW input power | 5.14 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 20.6 mW /g ± 20.4 % (k=2) |

### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 53.3         | 1.52 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 54.2 ± 6 %   | 1.51 mho/m ± 6 % |
| Body TSL temperature change during test | <1.0 °C         | P===0        |                  |

### SAR result with Body TSL

| SAR averaged over 1 cm3 (1 g) of Body TSL               | Condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 250 mW input power | 9.83 mW / g               |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 39.6 mW/g ± 20.8 % (k=2)  |
| SAR averaged over 10 cm <sup>1</sup> (10 g) of Body TSL | Condition          |                           |
| SAR measured                                            | 250 mW input power | 5.24 mW / g               |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.1 mW /g ± 20.4 % (k=2) |

Certificate No: Z15-97178

Page 3 of 8





Add: No.51 Xueyuan Road, Haidian District, Beljing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

#### Appendix

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 47.6Ω- 3.68jΩ |  |
|--------------------------------------|---------------|--|
| Return Loss                          | - 26.9dB      |  |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 44.4Ω- 6.17jΩ |  |
|--------------------------------------|---------------|--|
| Return Loss                          | - 21.1dB      |  |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.321 ns |  |
|----------------------------------|----------|--|
|----------------------------------|----------|--|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG |  |
|-----------------|-------|--|
|-----------------|-------|--|

Date: 11.03,2015





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.com

# DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d147 Communication System: UID 0, CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1800 MHz;  $\sigma = 1.388 \text{ S/m}$ ;  $\epsilon = 38.94$ ;  $\rho = 1000 \text{ kg/m}$ 

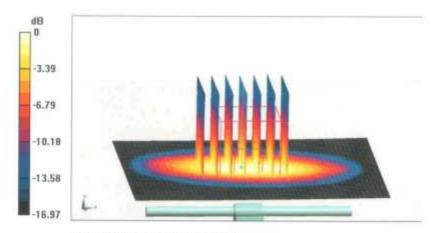
Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(8.13, 8.13, 8.13); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/26/2015
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

#### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

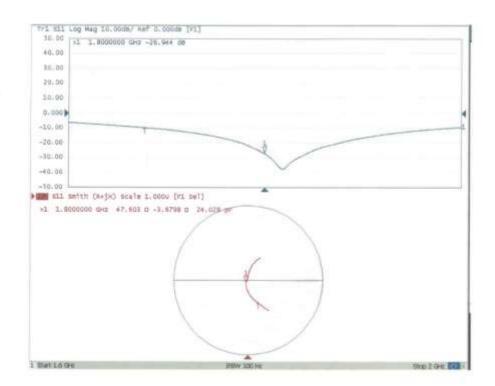
Reference Value = 100.6 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 17.7W/kg

SAR(1 g) = 9.7 W/kg; SAR(10 g) = 5.14 W/kg

Maximum value of SAR (measured) = 13.9 W/kg




0 dB = 13.9 W/kg = 11.43 dBW/kg





Add: No.51 Xueyuan Rond, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctt@chinattf.com Http://www.chinattf.cn

### Impedance Measurement Plot for Head TSL







Add: No.51 Xunyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctll@chinattl.com Http://www.chinattl.cn

### DASY5 Validation Report for Body TSL

Date: 11.03.2015

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d147
Communication System: UID 0, CW; Frequency: 1800 MHz; Duty Cycle: 1:1
Medium parameters used: f = 1800 MHz; σ = 1.512 S/m; ε<sub>ε</sub> = 54.19; ρ = 1000 kg/m<sup>3</sup>

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.88, 7.88, 7.88); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/26/2015
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

## System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

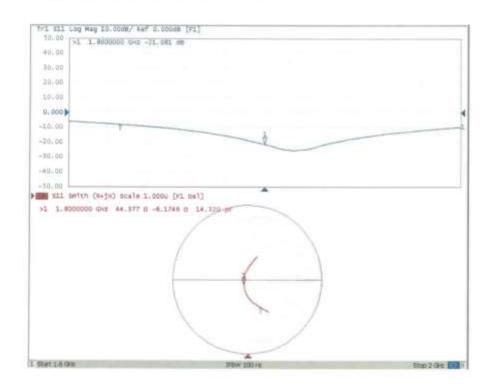
Reference Value = 96.79 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 9.83 W/kg; SAR(10 g) = 5.24 W/kg

Maximum value of SAR (measured) = 13.9 W/kg




0 dB = 13.9 W/kg = 11.43 dBW/kg





Add: No.51 Xueyuss Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctt@chinattLoom Hittp://www.chinattl.cn

### Impedance Measurement Plot for Body TSL





### 1900 MHz Dipole Calibration Certificate



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctti@chinatt.com Http://www.chinattl.com



Client

CTTL(South Branch)

Certificate No:

Z15-97179

### **CALIBRATION CERTIFICATE**

Object

D1900V2 - SN: 5d088

Calibration Procedure(s)

FD-Z11-2-003-01

Calibration Procedures for dipole validation kits

Calibration date:

November 4, 2015

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards       | ID#        | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
|-------------------------|------------|------------------------------------------|-----------------------|
| Power Meter NRP2        | 101919     | 01-Jul-15 (CTTL, No.J15X04256)           | Jun-16                |
| Power sensor NRP-Z91    | 101547     | 01-Jul-15 (CTTL, No.J15X04256)           | Jun-16                |
| Reference Probe EX3DV4  | SN 3617    | 26-Aug-15(SPEAG,No.EX3-3617_Aug15)       | Aug -16               |
| DAE4                    | SN 777     | 26-Aug-15(SPEAG,No.DAE4-777_Aug15)       | Aug -16               |
| Secondary Standards     | ID#        | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
| Signal Generator E4438C | MY49071430 | 02-Feb-15 (CTTL, No.J15X00729)           | Feb-16                |
| Network Analyzer E5071C | MY46110673 | 03-Feb-15 (CTTL, No.J15X00728)           | Feb-16                |
|                         |            |                                          |                       |

|                | Name        | Function                          | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------|-------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calibrated by: | Zhao Jing   | SAR Test Engineer                 | 数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Reviewed by:   | Qi Dianyuan | SAR Project Leader                | SOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Approved by:   | Lu Bingsong | Deputy Director of the laboratory | 声奶虾                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                |             |                                   | and the second s |

Issued: November 8, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z15-97179

Page 1 of 8





Add: No.51 Xueyuza Road, Haidian District, Beljing, 100191, China Teli +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

### Additional Documentation:

d) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: \*86-10-62304633-2079 Fax: \*86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

### Measurement Conditions

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | 52.8.8.1222 |
|------------------------------|--------------------------|-------------|
| extrapolation                | Advanced Extrapolation   |             |
| Phantom                      | Triple Flat Phantom 5.1C |             |
| Distance Dipole Center - TSL | 10 mm                    | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |             |
| Frequency                    | 1900 MHz ± 1 MHz         |             |

#### Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.0         | 1.40 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 40.6 ± 6 %   | 1.39 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm3 (1 g) of Head TSL               | Condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 250 mW input power | 10.1 mW/g                 |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 40.8 mW /g ± 20.8 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                           |
| SAR measured                                            | 250 mW input power | 5.22 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 21.0 mW /g ± 20.4 % (k=2) |

### Body TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 53.3         | 1.52 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 54.1 ± 6 %   | 1.54 mha/m ± 6 % |
| Body TSL temperature change during test | <1.0 °C         | ***          | _                |

# SAR result with Body TSL

| t result with body ToL                                  |                    |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL   | Condition          |                           |
| SAR measured                                            | 250 mW input power | 10.3 mW/g                 |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 41.1 mW /g ± 20.8 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | Condition          |                           |
| SAR measured                                            | 250 mW input power | 5.33 mW / g               |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.3 mW /g ± 20.4 % (k=2) |
|                                                         |                    |                           |

Certificate No: Z15-97179

Page 3 of 8





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

#### Appendix

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 52.7Ω+ 7.33jΩ |  |
|--------------------------------------|---------------|--|
| Return Loss                          | - 22,4dB      |  |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 50.9Ω+ 5.36jΩ |  |
|--------------------------------------|---------------|--|
| Return Loss                          | - 25.4dB      |  |

### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.303 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### Additional EUT Data

Date: 11.04.2015





Add: No.51 Xueyuun Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fux: +86-10-62304633-2504 E-mail: cttl@chimattl.com Http://www.chinasttl.cn

# DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d088

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz;  $\sigma = 1.385$  S/m;  $\epsilon r = 40.56$ ;  $\rho = 1000$  kg/m3

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(8.07, 8.07, 8.07); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/26/2015
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

## System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

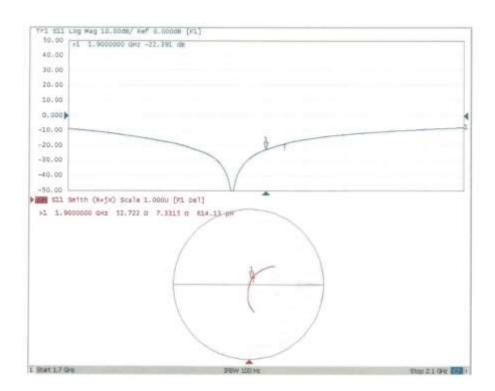

dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.6 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 18.9W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.22 W/kg

Maximum value of SAR (measured) = 14.5 W/kg




0 dB = 14.5 W/kg = 11.61 dBW/kg



Add: No.51 Xuryuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fux: +86-10-62304633-2504 E-mail: ott@chinattl.com Hitp://www.chinattl.cn

### Impedance Measurement Plot for Head TSL



Date: 11.04.2015





#### DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d088

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz;  $\sigma = 1.536$  S/m;  $\epsilon_r = 54.05$ ;  $\rho = 1000$  kg/m<sup>3</sup>

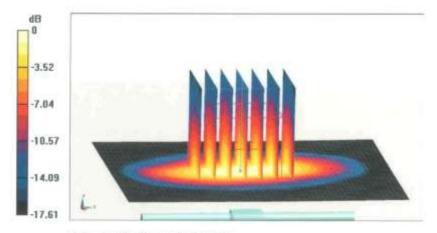
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.74, 7.74, 7.74); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/26/2015
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

#### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.09 V/m; Power Drift = -0.01 dB

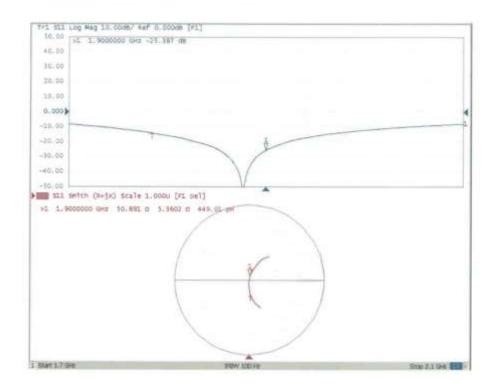
Peak SAR (extrapolated) = 18.9 W/kg

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.33 W/kg

Maximum value of SAR (measured) = 14.9 W/kg



0 dB = 14.9 W/kg = 11.73 dBW/kg


Certificate No: Z15-97179





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: \*86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

### Impedance Measurement Plot for Body TSL





### 2450 MHz Dipole Calibration Certificate



Add: No.51 Xueyuan Road, Haidinn District, Beijing, 100191, China Tel: +ll6-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Hugu/www.chinattl.cm



Client CTTL(South Branch) Certificate No: Z15-97180

## **CALIBRATION CERTIFICATE**

Object D2450V2 - SN: 873

Calibration Procedure(s) FD-Z11-2-003-01

Calibration Procedures for dipole validation kits

Calibration date: October 30, 2015

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(Si). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| rimary Standards        | ID#        | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
|-------------------------|------------|------------------------------------------|-----------------------|
| Power Meter NRP2        | 101919     | 01-Jul-15 (CTTL, No.J15X04256)           | Jun-16                |
| Power sensor NRP-Z91    | 101547     | 01-Jul-15 (CTTL, No.J15X04258)           | Jun-16                |
| Reference Probe EX3DV4  | SN 3617    | 26-Aug-15(SPEAG,No.EX3-3617_Aug15)       | Aug-16                |
| DAE4                    | SN 777     | 26-Aug-15(SPEAG,No.DAE4-777_Aug15)       | Aug-16                |
| Secondary Standards     | ID#        | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
| Signal Generator E4438C | MY49071430 | 02-Feb-15 (CTTL, No.J15X00729)           | Feb-16                |
| Network Analyzer E5071C | MY46110673 | 03-Feb-15 (CTTL_No.J15X00728)            | Feb-16                |

|                | Name        | Function                          | Signature |
|----------------|-------------|-----------------------------------|-----------|
| Calibrated by: | Zhao Jing   | SAR Test Engineer                 | 杜         |
| Reviewed by:   | Qi Dianyuan | SAR Project Leader                | EB        |
| Approved by:   | Lu Bingsong | Deputy Director of the laboratory | The wife  |

Issued: November 6, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, Chima Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: utll@chinattl.com Http://www.chinattl.cn

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

#### Additional Documentation:

d) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.





In Collaboration with

S D e a g

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

### Measurement Conditions

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | 52.8.8.1222 |
|------------------------------|--------------------------|-------------|
| Extrapolation                | Advanced Extrapolation   |             |
| Phantom                      | Triple Flat Phantom 5.10 |             |
| Distance Dipole Center - TSL | 10 mm                    | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |             |
| Frequency                    | 2450 MHz ± 1 MHz         |             |

### Head TSL parameters

The following parameters and calculations were applied

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 40.1 ± 6 %   | 1.82 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         | -            |                  |

### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 250 mW input power | 13.1 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 52.5 mW /g ± 20.8 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                           |
| SAR measured                                            | 250 mW input power | 6.01 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 24.1 mW /g ± 20.4 % (k=2) |

# **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.7         | 1.95 mha/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 53.1 ± 6 %   | 1.94 mho/m ± 6 % |
| Body TSL temperature change during test | <1.0 °C         |              | -                |

#### SAR result with Body TSL

| Condition          |                                                                           |
|--------------------|---------------------------------------------------------------------------|
| 250 mW input power | 13.0 mW / g                                                               |
| normalized to 1W   | 52.3 mW /g ± 20.8 % (k=2)                                                 |
| Condition          |                                                                           |
| 250 mW input power | 6.07 mW / g                                                               |
| normalized to 1W   | 24.4 mW /g ± 20.4 % (k=2)                                                 |
|                    | 250 mW input power<br>normalized to 1W<br>Condition<br>250 mW input power |

Certificate No: Z15-97180

Page 3 of 8





Add: No.51 Xueyuun Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

#### Appendix

### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 53.4Ω+ 3.42jΩ |  |
|--------------------------------------|---------------|--|
| Return Loss                          | - 26.6dB      |  |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 50.5Ω+ 6.53jΩ |  |
|--------------------------------------|---------------|--|
| Return Loss                          | - 23.7dB      |  |

### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.265 ns   |
|----------------------------------|------------|
|                                  | 1135001155 |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|
|-----------------|-------|

Date: 10.38.2015





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 873

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.816 S/m; εr = 40.14; ρ = 1000 kg/m3

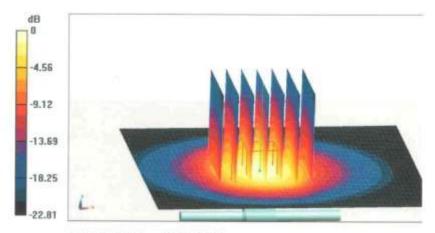
Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.24, 7.24, 7.24); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/26/2015
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

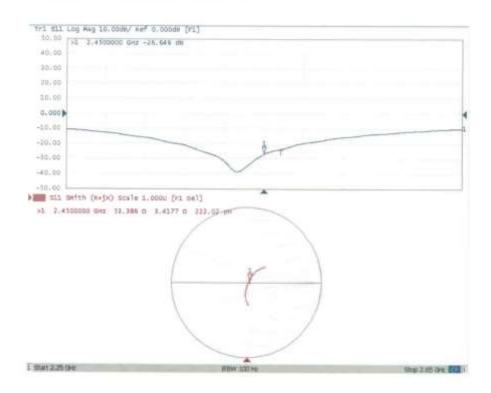
Reference Value = 106.1 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 27.3 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.01 W/kg

Maximum value of SAR (measured) = 20.1 W/kg




0 dB = 20.1 W/kg = 13.03 dBW/kg





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Hhtp://www.chinattl.cn

#### Impedance Measurement Plot for Head TSL



Date: 10,30,2015





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 873

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz;  $\sigma = 1.936$  S/m;  $\epsilon_r = 53.11$ ;  $\rho = 1000$  kg/m<sup>3</sup>

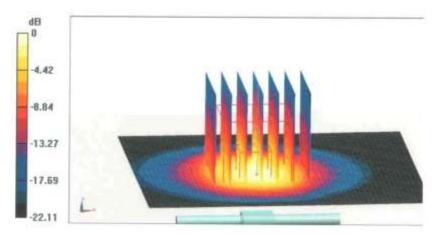
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007).

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.35, 7.35, 7.35); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/26/2015
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

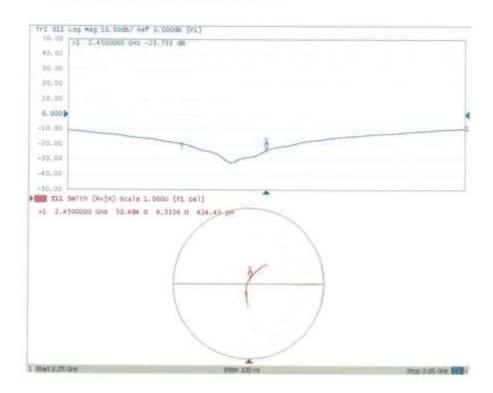
Reference Value = 100.0 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 26.3 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.07 W/kg

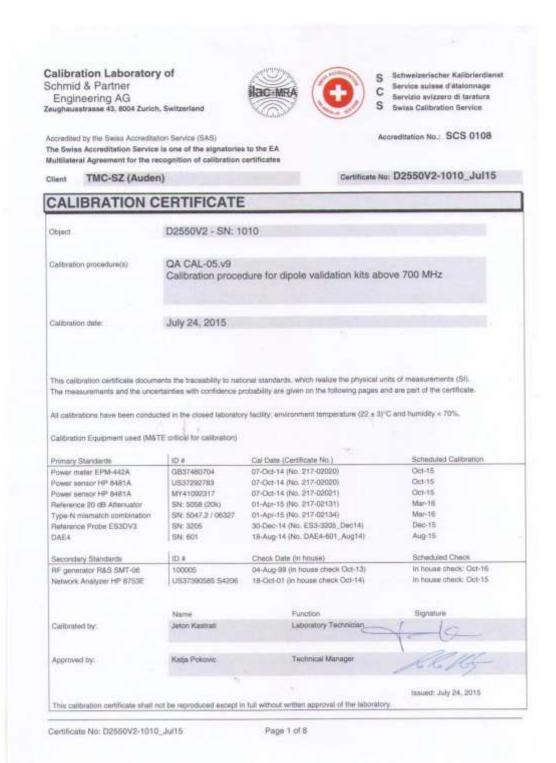
Maximum value of SAR (measured) = 19.5 W/kg




0 dB = 19.5 W/kg = 12.90 dBW/kg






Add: No.51 Xueyuan Road, Haldian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

#### Impedance Measurement Plot for Body TSL





## 2550 MHz Dipole Calibration Certificate





Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeoghausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service aulase d'étalonnage
Servizio avizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF tissue simulating liquid

. .

sensitivity in TSL / NORM x,y,z not applicable or not measured

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

 IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.



#### Measurement Conditions

DASV system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.8.8     |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 2550 MHz ± 1 MHz       |             |
|                              |                        |             |

#### Head TSL parameters

The following parameters and calculations were applied

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.1         | 1.91 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.5 ± 6 %   | 1.99 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        | 757          | 777              |

#### SAR result with Head TSL

| SAR averaged over 1 cm3 (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 250 mW input power | 14.7 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 57.2 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>2</sup> (10 g) of Head TSL | opndition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.67 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 26.2 W/kg ± 16.5 % (k=2) |

## **Body TSL parameters**

The following parameters and calculations were applied

| ne following parameters and calculations were appli | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters                         | 22.0 °C         | 52.6         | 2.09 mho/m       |
| Measured Body TSL parameters                        | (22.0 ± 0.2) °C | 52.1 ± 6 %   | 2.15 mho/m ± 6 % |
| Body TSL temperature change during test             | < 0.5 °C        | -            |                  |

## SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 13.9 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 54.8 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.32 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 25.1 W/kg ± 16.5 % (k=2) |



## Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 52.8 t2 - 2.0 jt2 |  |
|--------------------------------------|-------------------|--|
| Return Loss                          | - 29.5 dB         |  |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 50.0 Ω - 1.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 36.6 dB       |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1,152 ns  |
|----------------------------------|-----------|
| Cipclinds polity (one silaction) | 71706.700 |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG           |
|-----------------|-----------------|
| Manufactured on | August 03, 2012 |



## DASY5 Validation Report for Head TSL

Date: 24.07,2015

Test Laboratory: SPEAG, Zurich, Switzerland

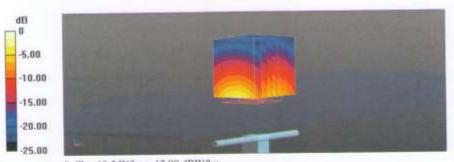
DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN: 1010

Communication System: UID 0 - CW; Frequency: 2550 MHz

Medium parameters used: f = 2550 MHz;  $\sigma = 1.99 \text{ S/m}$ ;  $\epsilon_c = 37.5$ ;  $\rho = 1000 \text{ kg/m}^3$ 

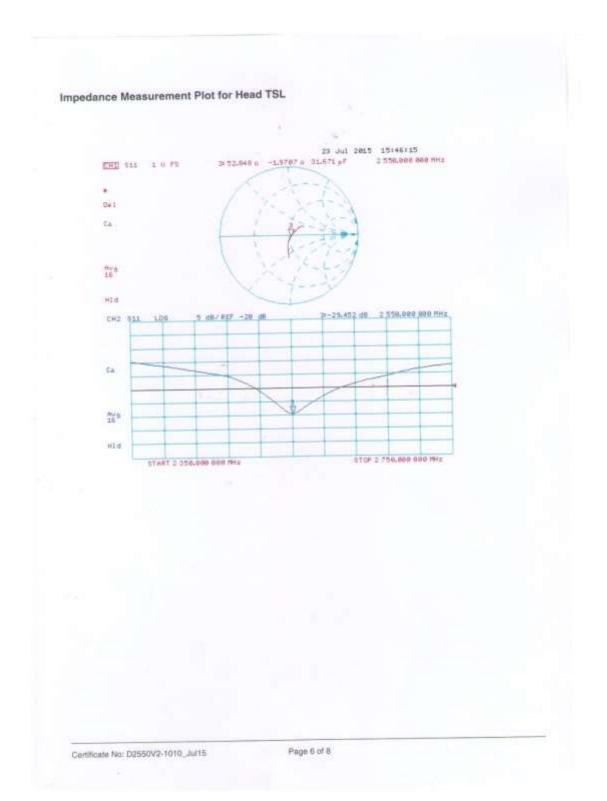
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


#### DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

# Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.6 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 30.5 W/kg SAR(1 g) = 14.7 W/kg; SAR(10 g) = 6.67 W/kg

SAR(1 g) = 14.7 W/kg; SAR(10 g) = 6.67 W/kgMaximum value of SAR (measured) = 19.5 W/kg



0 dB = 19.5 W/kg = 12.90 dBW/kg







## **DASY5 Validation Report for Body TSL**

Date: 24.07.2015

Test Laboratory: SPEAG, Zurich, Switzerland

# DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN: 1010

Communication System: UID 0 - CW; Frequency: 2550 MHz

Medium parameters used: f = 2550 MHz;  $\sigma = 2.15$  S/m;  $\epsilon_r = 52.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

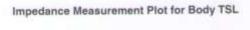
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

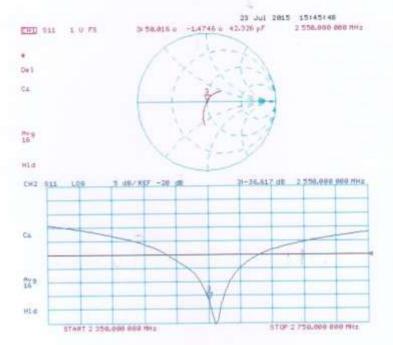
#### DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.2, 4.2, 4.2); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

# Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.75 V/m; Power Drift = 0.00 dB


Peak SAR (extrapolated) = 28.7 W/kgSAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.32 W/kg


Maximum value of SAR (measured) = 18.5 W/kg



0 dB = 18.5 W/kg = 12.67 dBW/kg









## **5G Dipole Calibration Certificate**

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swisa Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

MC-SZ (Auden)

Certificate No: D5GHzV2-1238 Sep16

| Object                                                                                                                                                                                                                                                                                                               | D5GHzV2 - SN:1                                                                                                                                                          | 238                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calibration procedure(s)                                                                                                                                                                                                                                                                                             | QA CAL-22.v2<br>Calibration proce                                                                                                                                       | dure for dipole validation kits bet                                                                                                                                                                                                                                                                                                                                                                                    | ween 3-6 GHz                                                                                                                                                         |
| Calibration date:                                                                                                                                                                                                                                                                                                    | September 21, 2                                                                                                                                                         | 016                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                         | ional standards, which realize the physical un<br>robability are given on the following pages an                                                                                                                                                                                                                                                                                                                       | 전 : [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2                                                                                                                   |
| All calibrations have been condu                                                                                                                                                                                                                                                                                     | cted in the closed laborato                                                                                                                                             | ry facility; environment temperature (22 $\pm$ 3)*C                                                                                                                                                                                                                                                                                                                                                                    | C and humidity < 70%.                                                                                                                                                |
| Calibration Equipment used /MR                                                                                                                                                                                                                                                                                       | TE critical for calibration)                                                                                                                                            | 4.                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                      |
| Calibration Equipment used (Ma                                                                                                                                                                                                                                                                                       |                                                                                                                                                                         | 77.1                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                      | ID#                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                        | Scheduled Calibration                                                                                                                                                |
| Primary Standards                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                         | Cal Date (Certificate No.)<br>06-Apr-16 (No. 217-02288/02289)                                                                                                                                                                                                                                                                                                                                                          | Scheduled Calibration Apr-17                                                                                                                                         |
| Primary Standards<br>Power meter NRP                                                                                                                                                                                                                                                                                 | ID.#                                                                                                                                                                    | Cal Date (Certificate No.)                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| Primary Standards<br>Power meter NRP<br>Power sensor NRP-Z91                                                                                                                                                                                                                                                         | ID #<br>SN: 104778                                                                                                                                                      | Cal Date (Certificate No.)<br>06-Apr-16 (No. 217-02288/02289)                                                                                                                                                                                                                                                                                                                                                          | Apr-17                                                                                                                                                               |
| Primary Standards<br>Power meter NRP<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91                                                                                                                                                                                                                                 | ID #<br>SN: 104778<br>SN: 103244                                                                                                                                        | Cal Date (Certificate No.)<br>06-Apr-16 (No. 217-02288/02289)<br>06-Apr-16 (No. 217-02288)                                                                                                                                                                                                                                                                                                                             | Apr-17<br>Apr-17                                                                                                                                                     |
| Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination                                                                                                                                                                                   | ID #<br>SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327                                                                                  | Cal Date (Certificate No.)<br>06-Apr-16 (No. 217-02288/02289)<br>06-Apr-16 (No. 217-02288)<br>06-Apr-16 (No. 217-02289)<br>05-Apr-16 (No. 217-02292)<br>05-Apr-16 (No. 217-02295)                                                                                                                                                                                                                                      | Apr-17<br>Apr-17<br>Apr-17<br>Apr-17<br>Apr-17                                                                                                                       |
| Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4                                                                                                                                                            | ID #<br>SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 3503                                                                      | Cal Date (Certificate No.)  06-Apr-16 (No. 217-02288/02289)  06-Apr-16 (No. 217-02288)  06-Apr-16 (No. 217-02289)  05-Apr-16 (No. 217-02292)  05-Apr-16 (No. 217-02295)  30-Jun-16 (No. EX3-3503 Jun-16)                                                                                                                                                                                                               | Apr-17<br>Apr-17<br>Apr-17<br>Apr-17<br>Apr-17<br>Jun-17                                                                                                             |
| Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4                                                                                                                                                            | ID #<br>SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327                                                                                  | Cal Date (Certificate No.)<br>06-Apr-16 (No. 217-02288/02289)<br>06-Apr-16 (No. 217-02288)<br>06-Apr-16 (No. 217-02289)<br>05-Apr-16 (No. 217-02292)<br>05-Apr-16 (No. 217-02295)                                                                                                                                                                                                                                      | Apr-17<br>Apr-17<br>Apr-17<br>Apr-17<br>Apr-17                                                                                                                       |
| Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4                                                                                                                                                       | ID #<br>SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 3503                                                                      | Cal Date (Certificate No.)  06-Apr-16 (No. 217-02288/02289)  06-Apr-16 (No. 217-02288)  06-Apr-16 (No. 217-02289)  05-Apr-16 (No. 217-02292)  05-Apr-16 (No. 217-02295)  30-Jun-16 (No. EX3-3503 Jun-16)                                                                                                                                                                                                               | Apr-17<br>Apr-17<br>Apr-17<br>Apr-17<br>Apr-17<br>Jun-17                                                                                                             |
| Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards                                                                                                                                   | ID #<br>SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 3503<br>SN: 601                                                           | Cal Date (Certificate No.)  06-Apr-16 (No. 217-02288/02289)  06-Apr-16 (No. 217-02288)  06-Apr-16 (No. 217-02289)  05-Apr-16 (No. 217-02292)  05-Apr-16 (No. 217-02295)  30-Jun-16 (No. EX3-3503 Jun-16)  30-Dec-15 (No. DAE4-601_Dec15)  Check Date (in house)  07-Oct-15 (No. 217-02222)                                                                                                                             | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16                                                                       |
| Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A                                                                                        | ID #  SN: 104778 SN: 103244 SN: 103245 SN: 5068 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601  ID #  SN: GB37480704 SN: US37292783                                          | Cal Date (Certificate No.)  06-Apr-16 (No. 217-02288/02289)  06-Apr-16 (No. 217-02288)  06-Apr-16 (No. 217-02289)  05-Apr-16 (No. 217-02292)  05-Apr-16 (No. 217-02295)  30-Jun-16 (No. EX3-3503 Jun-16)  30-Dec-15 (No. DAE4-601_Dec-15)  Check Date (In house)  07-Oct-15 (No. 217-02222)  07-Oct-15 (No. 217-02222)                                                                                                 | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16                                                       |
| Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A                                                                  | ID #  SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20K) SN: 5047.2 / 06327 SN: 3503 SN: 601  ID #  SN: GB37480704 SN: US37292783 SN: MY41092317                           | Cal Date (Certificate No.)  06-Apr-16 (No. 217-02288/02289)  06-Apr-16 (No. 217-02288)  06-Apr-16 (No. 217-02289)  05-Apr-16 (No. 217-02292)  05-Apr-16 (No. 217-02295)  30-Jun-16 (No. EX3-3503 Jun-16)  30-Dec-15 (No. DAE4-601_Dec-15)  Check Date (in house)  07-Oct-15 (No. 217-02222)  07-Oct-15 (No. 217-02222)                                                                                                 | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16                                |
| Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06                                          | ID #  SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601  ID #  SN: GB37480704 SN: US37292783 SN: MY41082317 SN: 100972                | Cal Date (Certificate No.)  06-Apr-16 (No. 217-02288/02289)  06-Apr-16 (No. 217-02288)  06-Apr-16 (No. 217-02289)  05-Apr-16 (No. 217-02292)  05-Apr-16 (No. 217-02295)  30-Jun-16 (No. EX3-3503 Jun-16)  30-Dec-15 (No. DAE4-601_Dec-15)  Check Date (in house)  07-Oct-15 (No. 217-02222)  07-Oct-15 (No. 217-02222)  15-Jun-15 (in house check Jun-15)                                                              | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16         |
| Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06                                          | ID #  SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20K) SN: 5047.2 / 06327 SN: 3503 SN: 601  ID #  SN: GB37480704 SN: US37292783 SN: MY41092317                           | Cal Date (Certificate No.)  06-Apr-16 (No. 217-02288/02289)  06-Apr-16 (No. 217-02288)  06-Apr-16 (No. 217-02289)  05-Apr-16 (No. 217-02292)  05-Apr-16 (No. 217-02295)  30-Jun-16 (No. EX3-3503 Jun-16)  30-Dec-15 (No. DAE4-601_Dec-15)  Check Date (in house)  07-Oct-15 (No. 217-02222)  07-Oct-15 (No. 217-02222)                                                                                                 | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16                                |
| Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06                                          | ID #  SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601  ID #  SN: GB37480704 SN: US37292783 SN: MY41082317 SN: 100972                | Cal Date (Certificate No.)  06-Apr-16 (No. 217-02288/02289)  06-Apr-16 (No. 217-02288)  06-Apr-16 (No. 217-02289)  05-Apr-16 (No. 217-02292)  05-Apr-16 (No. 217-02295)  30-Jun-16 (No. EX3-3503 Jun-16)  30-Dec-15 (No. DAE4-601_Dec-15)  Check Date (in house)  07-Oct-15 (No. 217-02222)  07-Oct-15 (No. 217-02222)  15-Jun-15 (in house check Jun-15)                                                              | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16         |
| Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-08 Network Analyzer HP 8753E Calibrated by: | ID #  SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601  ID #  SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 | Cal Date (Certificate No.)  06-Apr-16 (No. 217-02288/02289)  06-Apr-16 (No. 217-02288)  06-Apr-16 (No. 217-02289)  05-Apr-16 (No. 217-02292)  05-Apr-16 (No. 217-02295)  30-Jun-16 (No. EX3-3503 Jun-16)  30-Dec-15 (No. DAE4-601_Dec15)  Check Date (in house)  07-Oct-15 (No. 217-02222)  07-Oct-15 (No. 217-02222)  07-Oct-15 (No. 217-02223)  15-Jun-15 (in house check Jun-15)  18-Oct-01 (in house check Oct-15) | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16  Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 |

Certificate No: D5GHzV2-1238\_Sep16

Page 1 of 16



#### Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

d) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.



#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                                                                                            | V52.8.8                          |
|------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation                                                                           |                                  |
| Phantom                      | Modular Flat Phantom V5.0                                                                        |                                  |
| Distance Dipole Center - TSL | 10 mm                                                                                            | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4.0 mm, dz = 1.4 mm                                                                     | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 5200 MHz ± 1 MHz<br>5300 MHz ± 1 MHz<br>5500 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5800 MHz ± 1 MHz |                                  |

## Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 36.0         | 4.66 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.6 ± 6 %   | 4.54 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        | ****         | 200              |

#### SAR result with Head TSL at 5200 MHz

| SAR averaged over 1 cm3 (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 7.76 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 76.9 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.22 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 21.9 W/kg ± 19.5 % (k=2) |



# Head TSL parameters at 5300 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.9         | 4.76 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.4 ± 6 %   | 4.63 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL at 5300 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 100 mW input power | 8.38 W/kg                  |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 83.0 W / kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm3 (10 g) of Head TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.40 W/kg                |
| SAR for nominal Head TSL parameters         | normalized to 1W   | 23.7 W/kg ± 19.5 % (k=2) |

## Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.6         | 4.96 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.2 ± 6 %   | 4.83 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL at 5500 MHz

| SAR averaged over 1 cm3 (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 8.21 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 81.3 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm3 (10 g) of Head TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.34 W/kg                |
| SAR for nominal Head TSL parameters         | normalized to 1W   | 23.1 W/kg ± 19.5 % (k=2) |



## Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.5         | 5.07 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.0 ± 6 %   | 4.93 mha/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        | 1,555        |                  |

#### SAR result with Head TSL at 5600 MHz

| SAR averaged over 1 cm3 (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 8.38 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 82.9 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm3 (10 g) of Head TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.39 W/kg                |
| SAR for nominal Head TSL parameters         | normalized to 1W   | 23.6 W/kg ± 19.5 % (k=2) |

## Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.3         | 5.27 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 33.7 ± 6 %   | 5.14 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        | ****         |                  |

## SAR result with Head TSL at 5800 MHz

| SAR averaged over 1 cm3 (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 7.96 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 78.8 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm3 (10 g) of Head TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.26 W/kg                |
| SAR for nominal Head TSL parameters         | normalized to 1W   | 22.3 W/kg ± 19.5 % (k=2) |



## Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 49.0         | 5.30 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.5 ± 6 %   | 5.45 mha/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Body TSL at 5200 MHz

| SAR averaged over 1 cm3 (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 7.48 W/kg                |
| SAR for nominal Body TSL parameters       | normalized to 1W   | 74.4 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.10 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.9 W/kg ± 19.5 % (k=2) |

## Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.9         | 5.42 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.3 ± 6 %   | 5.59 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        | ****         |                  |

## SAR result with Body TSL at 5300 MHz

| SAR averaged over 1 cm3 (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 7.69 W/kg                |
| SAR for nominal Body TSL parameters       | normalized to 1W   | 76.5 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm3 (10 g) of Body TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.17 W/kg                |
| SAR for nominal Body TSL parameters         | normalized to 1W   | 21.5 W/kg ± 19.5 % (k=2) |



## Body TSL parameters at 5500 MHz

The following parameters and calculations were applied

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.6         | 5.65 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.0 ± 6 %   | 5.86 mha/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        | 17577        |                  |

## SAR result with Body TSL at 5500 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.03 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 79.9 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm3 (10 g) of Body TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.23 W/kg                |
| SAR for nominal Body TSL parameters         | normalized to 1W   | 22.1 W/kg ± 19.5 % (k=2) |

## Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.5         | 5.77 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.8 ± 6 %   | 6.00 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        | ****         | ****             |

## SAR result with Body TSL at 5600 MHz

| SAR averaged over 1 cm3 (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 7.95 W/kg                |
| SAR for nominal Body TSL parameters       | normalized to 1W   | 79.1 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm3 (10 g) of Body TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.23 W/kg                |
| SAR for nominal Body TSL parameters         | normalized to 1W   | 22.1 W/kg ± 19.5 % (k=2) |



# Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.2         | 6.00 mha/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.4 ± 6 %   | 6.29 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              | 3773             |

## SAR result with Body TSL at 5800 MHz

| SAR averaged over 1 cm3 (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 7.66 W/kg                |
| SAR for nominal Body TSL parameters       | normalized to 1W   | 76.2 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm3 (10 g) of Body TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.13 W/kg                |
| SAR for nominal Body TSL parameters         | normalized to 1W   | 21.1 W/kg ± 19.5 % (k=2) |



## Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL at 5200 MHz

| Impedance, transformed to feed point | 47.1 Ω - 5.8 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 23.6 dB       |  |

#### Antenna Parameters with Head TSL at 5300 MHz

| Impedance, transformed to feed point | 50.5 Ω - 3.2 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 29.8 dB       |  |

#### Antenna Parameters with Head TSL at 5500 MHz

| Impedance, transformed to feed point | 49.0 Ω + 2.5 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 31.2 dB       |  |

## Antenna Parameters with Head TSL at 5600 MHz

| Impedance, transformed to feed point | 50.0 Ω + 0.6 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 44.1 dB       |

#### Antenna Parameters with Head TSL at 5800 MHz

| Impedance, transformed to feed point | $55.6 \Omega + 1.9 j\Omega$ |
|--------------------------------------|-----------------------------|
| Return Loss                          | - 25.1 dB                   |

## Antenna Parameters with Body TSL at 5200 MHz

| Impedance, transformed to feed point | 48.6 Ω - 3.4 jΩ |  |  |
|--------------------------------------|-----------------|--|--|
| Return Loss                          | - 28.6 dB       |  |  |

#### Antenna Parameters with Body TSL at 5300 MHz

| Impedance, transformed to feed point | 49.6 Ω - 2.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 32.3 dB       |

## Antenna Parameters with Body TSL at 5500 MHz

| Impedance, transformed to feed point | 49.5 Ω + 2.5 jΩ |  |  |
|--------------------------------------|-----------------|--|--|
| Return Loss                          | - 31.7 dB       |  |  |



#### Antenna Parameters with Body TSL at 5600 MHz

| Impedance, transformed to feed point | 50.8 Ω + 2.5 jΩ |  |  |
|--------------------------------------|-----------------|--|--|
| Return Loss                          | - 31.7 dB       |  |  |

#### Antenna Parameters with Body TSL at 5800 MHz

| Impedance, transformed to feed point | $56.0 \Omega + 3.0 j\Omega$ |  |  |
|--------------------------------------|-----------------------------|--|--|
| Return Loss                          | - 24.0 dB                   |  |  |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.191 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

Certificate No: D5GHzV2-1238\_Sep16

| Manufactured by | SPEAG        |
|-----------------|--------------|
| Manufactured on | May 04, 2015 |



#### **DASY5 Validation Report for Head TSL**

Date: 21.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1238

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500

MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz;  $\sigma = 4.54$  S/m;  $\epsilon_r = 34.6$ ;  $\rho = 1000$  kg/m<sup>3</sup> Medium parameters used: f = 5300 MHz;  $\sigma = 4.63$  S/m;  $\epsilon_r = 34.4$ ;  $\rho = 1000$  kg/m<sup>3</sup> Medium parameters used: f = 5500 MHz;  $\sigma = 4.83$  S/m;  $\epsilon_r = 34.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Medium parameters used: f = 5600 MHz; σ = 4.93 S/m;  $ε_r = 34.0$ ;  $ρ = 1000 \text{ kg/m}^3$ 

Medium parameters used: f = 5800 MHz;  $\sigma = 5.14$  S/m;  $\varepsilon_r = 33.7$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.59, 5.59, 5.59); Calibrated: 30.06.2016, ConvF(5.14, 5.14, 5.14); Calibrated: 30.06.2016, ConvF(5.02, 5.02, 5.02); Calibrated: 30.06.2016, ConvF(4.89, 4.89, 4.89); Calibrated: 30.06.2016, ConvF(4.85, 4.85, 4.85); Calibrated: 30.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

# Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.35 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 7.76 W/kg; SAR(10 g) = 2.22 W/kgMaximum value of SAR (measured) = 17.9 W/kg

## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.80 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 31.1 W/kg

SAR(1 g) = 8.38 W/kg; SAR(10 g) = 2.4 W/kg Maximum value of SAR (measured) = 19.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

Page 11 of 16

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.90 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 31.9 W/kg

SAR(1 g) = 8.21 W/kg; SAR(10 g) = 2.34 W/kgMaximum value of SAR (measured) = 19.5 W/kg



#### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

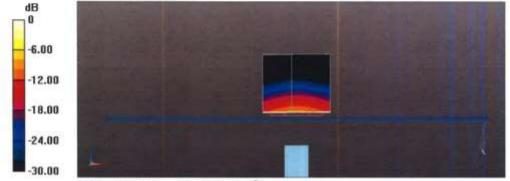
Reference Value = 71.51 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 32.8 W/kg

SAR(1 g) = 8.38 W/kg; SAR(10 g) = 2.39 W/kg

Maximum value of SAR (measured) = 20.0 W/kg

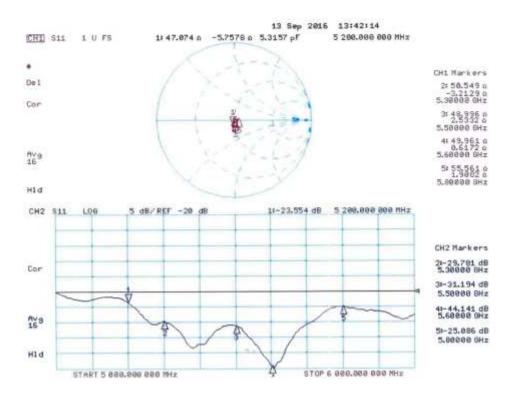
## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 69.07 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 32.5 W/kg

SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.26 W/kg


Maximum value of SAR (measured) = 19.4 W/kg



0 dB = 17.9 W/kg = 12.53 dBW/kg



## Impedance Measurement Plot for Head TSL





#### **DASY5 Validation Report for Body TSL**

Date: 20.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1238

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500

MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz;  $\sigma = 5.45$  S/m;  $\varepsilon_r = 47.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Medium parameters used: f = 5300 MHz;  $\sigma = 5.59$  S/m;  $\varepsilon_r = 47.3$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Medium parameters used: f = 5500 MHz;  $\sigma = 5.86 \text{ S/m}$ ;  $\varepsilon_r = 47.0$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Medium parameters used: f = 5600 MHz;  $\sigma = 6.00 \text{ S/m}$ ;  $\varepsilon_r = 46.8$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Medium parameters used: f = 5800 MHz;  $\sigma = 6.29 \text{ S/m}$ ;  $\varepsilon_r = 46.4$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.99, 4.99, 4.99); Calibrated: 30.06.2016, ConvF(4.75, 4.75, 4.75); Calibrated: 30.06.2016, ConvF(4.4, 4.4, 4.4); Calibrated: 30.06.2016, ConvF(4.35, 4.35, 4.35); Calibrated: 30.06.2016, ConvF(4.27, 4.27, 4.27); Calibrated: 30.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.67 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 7.48 W/kg; SAR(10 g) = 2.1 W/kg

Maximum value of SAR (measured) = 17.3 W/kg

#### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.01 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 29.4 W/kg

SAR(1 g) = 7.69 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 18.0 W/kg

## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.20 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 32.4 W/kg

SAR(1 g) = 8.03 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 19.2 W/kg



Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.47 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 32.7 W/kg

SAR(1 g) = 7.95 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 19.1 W/kg

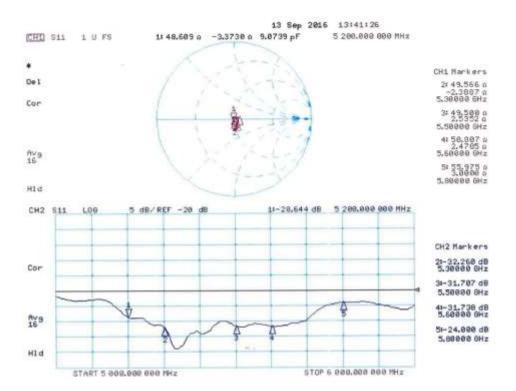
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.40 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 33.2 W/kg

SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.13 W/kg


Maximum value of SAR (measured) = 18.8 W/kg



0 dB = 17.3 W/kg = 12.38 dBW/kg



## Impedance Measurement Plot for Body TSL





# **ANNEX J Extended Calibration SAR Dipole**

Referring to KDB865664 D01, if dipoles are verified in return loss ( <-20dBm, within 20% of prior calibration), and in impedance ( within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

## Justification of Extended Calibration SAR Dipole D750V3- serial no.1163

| Head                   |                     |           |                            |                |                                  |                 |  |
|------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|--|
| Date of<br>Measurement | Return-Loss<br>(dB) | Delta (%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(johm) | Delta<br>(johm) |  |
| 2016-9-19              | -26.8               |           | 54.5                       |                | -1.8                             |                 |  |
| 2017-9-17              | -25.4               | 5.2       | 53.2                       | 1.3            | -2.5                             | -0.7            |  |
| /                      | /                   | /         | /                          | /              | /                                | /               |  |

| Body                   |                     |           |                            |                |                                  |                 |  |
|------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|--|
| Date of<br>Measurement | Return-Loss<br>(dB) | Delta (%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(johm) | Delta<br>(johm) |  |
| 2016-9-19              | -29.0               |           | 49.8                       |                | -3.5                             |                 |  |
| 2017-9-17              | -25.2               | 13.1      | 46.9                       | 2.9            | -2.8                             | 0.7             |  |
| /                      | /                   | /         | /                          | /              | /                                | /               |  |

## Justification of Extended Calibration SAR Dipole D835V2- serial no.4d057

| Head                   |                     |              |                            |             |                                  |                 |
|------------------------|---------------------|--------------|----------------------------|-------------|----------------------------------|-----------------|
| Date of<br>Measurement | Return-Loss<br>(dB) | Delta<br>(%) | Real<br>Impedance<br>(ohm) | Delta (ohm) | Imaginary<br>Impedance<br>(johm) | Delta<br>(johm) |
| 2015-10-22             | -29.8               |              | 49.2                       |             | -3.12                            |                 |
| 2016-10-20             | -26.7               | 10.4         | 47.5                       | -1.7        | -5.74                            | -2.62           |
| 2017-10-18             | -26.2               | 12.1         | 47.9                       | -1.3        | -5.32                            | -2.20           |

| Body                   |                     |           |                            |                |                                  |                 |  |
|------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|--|
| Date of<br>Measurement | Return-Loss<br>(dB) | Delta (%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(johm) | Delta<br>(johm) |  |
| 2015-10-22             | -24.7               |           | 48.1                       |                | -5.38                            |                 |  |
| 2016-10-20             | -22.4               | 9.3       | 46.7                       | 1.4            | -4.86                            | 0.52            |  |
| 2017-10-18             | -22.9               | 7.3       | 46.4                       | 1.7            | -4.79                            | 0.59            |  |



# Justification of Extended Calibration SAR Dipole D1800V2- serial no.2d147

| Head                   |                     |           |                            |                |                                  |                 |  |
|------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|--|
| Date of<br>Measurement | Return-Loss<br>(dB) | Delta (%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(johm) | Delta<br>(johm) |  |
| 2015-10-3              | -26.9               |           | 47.6                       |                | -3.68                            |                 |  |
| 2016-9-28              | -25.7               | 4.4       | 45.8                       | -1.8           | -2.81                            | 0.87            |  |
| 2017-9-25              | -25.1               | 6.7       | 48.2                       | 0.6            | -5.20                            | -1.52           |  |

| Body                   |                     |           |                            |                |                                  |                 |  |  |  |
|------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|--|--|--|
| Date of<br>Measurement | Return-Loss<br>(dB) | Delta (%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(johm) | Delta<br>(johm) |  |  |  |
| 2015-10-3              | -21.1               |           | 44.4                       |                | -6.17                            |                 |  |  |  |
| 2016-9-28              | -22.8               | -8.1      | 46.2                       | 1.8            | -5.56                            | 0.61            |  |  |  |
| 2017-9-25              | -22.9               | -8.5      | 46.8                       | 2.4            | -5.32                            | 0.85            |  |  |  |

## Justification of Extended Calibration SAR Dipole D1900V2- serial no.5d088

| Head                   |                     |           |                            |                |                                  |                 |  |  |
|------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|--|--|
| Date of<br>Measurement | Return-Loss<br>(dB) | Delta (%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(johm) | Delta<br>(johm) |  |  |
| 2015-10-4              | -22.4               |           | 52.7                       |                | 7.33                             |                 |  |  |
| 2016-9-28              | -25.3               | -12.9     | 50.8                       | -1.9           | 5.82                             | 1.51            |  |  |
| 2017-9-25              | -24.9               | -11.2     | 51.2                       | -1.5           | 6.22                             | 1.11            |  |  |

| Body                   |                     |           |                            |                |                                  |                 |  |  |
|------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|--|--|
| Date of<br>Measurement | Return-Loss<br>(dB) | Delta (%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(johm) | Delta<br>(johm) |  |  |
| 2015-10-4              | -25.4               |           | 50.9                       |                | 5.36                             |                 |  |  |
| 2016-9-28              | -23.7               | 6.7       | 48.9                       | -2.0           | 2.74                             | -2.62           |  |  |
| 2017-9-25              | -23.2               | 8.7       | 48.3                       | -2.6           | 3.84                             | -1.52           |  |  |



# Justification of Extended Calibration SAR Dipole D2450V2- serial no.873

| Head                   |                     |              |                            |                |                                  |                 |  |  |
|------------------------|---------------------|--------------|----------------------------|----------------|----------------------------------|-----------------|--|--|
| Date of<br>Measurement | Return-Loss<br>(dB) | Delta<br>(%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(johm) | Delta<br>(johm) |  |  |
| 2015-10-30             | -26.6               |              | 53.4                       |                | 3.42                             |                 |  |  |
| 2016-10-20             | -25.1               | 5.6          | 55.1                       | 1.7            | 2.91                             | 0.51            |  |  |
| 2017-10-18             | -25.7               | 3.4          | 54.6                       | 0.8            | 3.04                             | 0.38            |  |  |

| Body                   |                     |           |                            |                |                                  |                 |  |  |  |
|------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|--|--|--|
| Date of<br>Measurement | Return-Loss<br>(dB) | Delta (%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(johm) | Delta<br>(johm) |  |  |  |
| 2015-10-30             | -23.7               |           | 50.5                       |                | 6.53                             |                 |  |  |  |
| 2016-10-20             | -24.9               | 5.1       | 49.2                       | 1.3            | 7.28                             | 0.75            |  |  |  |
| 2017-10-18             | -25.5               | 7.6       | 49.6                       | 0.9            | 7.11                             | 0.58            |  |  |  |

## Justification of Extended Calibration SAR Dipole D2550V2- serial no.1010

| Head                   |                     |           |                            |                |                                  |                 |  |  |
|------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|--|--|
| Date of<br>Measurement | Return-Loss<br>(dB) | Delta (%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(johm) | Delta<br>(johm) |  |  |
| 2015-7-24              | -29.5               |           | 52.8                       |                | -2.0                             |                 |  |  |
| 2016-7-22              | -26.4               | 10.5      | 51.1                       | 1.7            | -2.62                            | -0.62           |  |  |
| 2017-7.21              | -27.3               | 7.5       | 53.9                       | 1.1            | -3.84                            | -1.84           |  |  |

| Body                   |                     |           |                            |                |                                  |                 |  |  |
|------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|--|--|
| Date of<br>Measurement | Return-Loss<br>(dB) | Delta (%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(johm) | Delta<br>(johm) |  |  |
| 2015-7-24              | -36.6               |           | 50.0                       |                | -1.5                             |                 |  |  |
| 2016-7-22              | -34.2               | 6.6       | 52.8                       | 2.8            | -2.67                            | -1.17           |  |  |
| 2017-7-21              | -37.5               | -2.5      | 52.4                       | 2.4            | -3.11                            | -1.61           |  |  |



# Justification of Extended Calibration SAR Dipole D5GHzV2- serial no.1238

| Head                   |           |                     |              |                            |                |                                  |                 |
|------------------------|-----------|---------------------|--------------|----------------------------|----------------|----------------------------------|-----------------|
| Date of<br>Measurement | Frequency | Return-Loss<br>(dB) | Delta<br>(%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(johm) | Delta<br>(johm) |
| 2016-9-21              | 5200MHz   | -23.6               |              | 47.1                       |                | 5.8                              |                 |
| 2017-9-20              | 5200MHz   | -21.7               | 8.1          | 48.3                       | 1.2            | 2.38                             | 2.42            |
| 2016-9-21              | 5300MHz   | -29.8               |              | 50.5                       |                | 3.2                              |                 |
| 2017-9-20              | 5300MHz   | -27.8               | 6.7          | 51.9                       | 1.4            | 4.51                             | 1.31            |
| 2016-9-21              | 5500MHz   | -31.2               |              | 49.0                       |                | 2.5                              |                 |
| 2017-9-20              | 5500MHz   | -29.5               | 5.4          | 50.3                       | 1.3            | 1.24                             | 1.26            |
| 2016-9-21              | 5600MHz   | -44.1               |              | 50.0                       |                | 0.6                              |                 |
| 2017-9-20              | 5600MHz   | -42.6               | 3.4          | 51.5                       | 1.5            | 2.55                             | 1.95            |
| 2016-9-21              | 5800MHz   | -25.1               |              | 55.6                       |                | 1.9                              |                 |
| 2017-9-20              | 5800MHz   | -23.8               | 5.2          | 56.9                       | 1.3            | 3.04                             | 1.14            |

| Body                   |           |                     |              |                            |                |                                  |                 |
|------------------------|-----------|---------------------|--------------|----------------------------|----------------|----------------------------------|-----------------|
| Date of<br>Measurement | Frequency | Return-Loss<br>(dB) | Delta<br>(%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(johm) | Delta<br>(johm) |
| 2016-9-21              | 5200MHz   | -28.6               |              | 48.6                       |                | 3.4                              |                 |
| 2017-9-20              | 5200MHz   | -26.4               | 7.7          | 50.0                       | 1.4            | 3.72                             | 0.32            |
| 2016-9-21              | 5300MHz   | -32.3               |              | 49.6                       |                | 2.4                              |                 |
| 2017-9-20              | 5300MHz   | -30.5               | 5.6          | 51.3                       | 1.7            | 3.64                             | 1.24            |
| 2016-9-21              | 5500MHz   | -31.7               |              | 49.5                       |                | 2.5                              |                 |
| 2017-9-20              | 5500MHz   | -29.8               | 6.0          | 51.4                       | 1.9            | 4.25                             | 1.75            |
| 2016-9-21              | 5600MHz   | -31.7               |              | 50.8                       |                | 2.5                              |                 |
| 2017-9-20              | 5600MHz   | -29.5               | 6.9          | 52.3                       | 1.5            | 2.91                             | 0.41            |
| 2016-9-21              | 5800MHz   | -24.0               |              | 56.0                       |                | 3.0                              |                 |
| 2017-9-20              | 5800MHz   | -22.8               | 5.0          | 57.3                       | 1.3            | 4.23                             | 1.23            |

The Return-Loss is <-20dB, and within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the value result should support extended c.