

FCC TEST REPORT

(PART 24)

Applicant:	FIH International Co., Ltd.
Address:	No.18, Tongji zhonglu, Beijing Economic & Technological Development Area

Manufacturer or Supplier:	HMD Global Oy
Address:	Karaportti 2 02610 Espoo FINLAND
Product:	GSM/WCDMA/LTE Mobile Phone
Brand Name:	Nokia
Model Name:	TA-1063
FCC ID:	2AJOTTA-1063
Date of tests:	Mar. 23, 2018 ~ Apr. 28, 2018

The tests have been carried out according to the requirements of the following standard:

☑ FCC PART 24, Subpart E
☑ ANSI C63.26-2015
☑ ANSI/TIA/EIA-603-D
☑ ANSI/TIA/EIA-603-E

CONCLUSION: The submitted sample was found to <u>COMPLY</u> with the test requirement

Prepared by Yuqiang Yin Engineer / Mobile Department	Approved by Sam Tung Manager / Mobile Department
fingdong	rms
Date: May 02, 2018	Date: May 02, 2018
	port to or for any other person or entity, or use of our name or trademark, is ndings solely with respect to the test samples identified herein. The results set

permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or or issue acues of by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification

BV 7Layers Communications Technology (Shenzhen) Co. Ltd

No.B102, Dazu Chuangxin Mansion, North of Beihuan Avenue, North Area, Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China Tel: +86 755 8869 6566 Fax: +86 755 8869 6577 Email: <u>customerservice.dg@cn.bureauveritas.com</u>

TABLE OF CONTENTS

RE	LEAS	SE CONTROL RECORD	4
1	SUI	MMARY OF TEST RESULTS	5
1	1.1	MEASUREMENT UNCERTAINTY	5
1	1.2	TEST SITE AND INSTRUMENTS	
2	GEI	NERAL INFORMATION	.7
	-	GENERAL DESCRIPTION OF EUT	
	2.1	CONFIGURATION OF SYSTEM UNDER TEST	. /
	2.2 2.3	DESCRIPTION OF SUPPORT UNITS	
	2.3	TEST ITEM AND TEST CONFIGURATION	
_	2.5	EUT OPERATING CONDITIONS	
	2.6	GENERAL DESCRIPTION OF APPLIED STANDARDS	
3		ST TYPES AND RESULTS	
3	3.1	OUTPUT POWER MEASUREMENT	
	3.1.		
	3.1.		
	3.1.		
	3.1. 3.2		
	o.∠ 3.2.		
	3.2.		
	3.2.		
	3.2.		-
3	3.3	OCCUPIED BANDWIDTH MEASUREMENT	
	3.3.		
	3.3.	2 TEST SETUP 1	19
	3.3.		
3	3.4		
	3.4.		
	3.4.		
	3.4.		
	3.4.		
Ċ	3.5 3.5.	CONDUCTED SPURIOUS EMISSIONS	
	3.5. 3.5.		
	3.5.		
	3.5.		
2	3.6		
	3.6.		
	3.6.		
	3.6.	3 DEVIATION FROM TEST STANDARD	27
	3.6.		
	3.6.		
3		PEAK TO AVERAGE RATIO	
	3.7.		
	3.7.		
	3.7.		
	3.7.	4 TEST RESULTS	45

4	INFORMATION ON THE TESTING LABORATORIES	51
---	---	----

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF180131W003-4	Original release	Apr. 18, 2018
RF180411W007-5	Based on the original report RF180131W003-4 changing model name & FCC ID, removing some frequency bands, and update WWAN power & radiated data.	May 02, 2018

RELEASE CONTROL RECORD

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	APPLIED STANDARD: FCC Part 24 & Part 2					
STANDARD SECTION	TEST TYPE	RESULT	REMARK			
2.1046 24.232	Equivalent Isotropic Radiated Power	PASS	Meet the requirement of limit.			
2.1055 24.235	Frequency Stability	PASS	Meet the requirement of limit.			
2.1049 24.238(b)	Occupied Bandwidth	PASS	Meet the requirement of limit.			
24.232(d)	Peak to average ratio	PASS	Meet the requirement of limit.			
24.238(b)	Band Edge Measurements	PASS	Meet the requirement of limit.			
2.1051 24.238	Conducted Spurious Emissions	PASS	Meet the requirement of limit.			
2.1053 24.238	Radiated Spurious Emissions		Meet the requirement of limit. Minimum passing margin is -18.21dB at 46.490MHz.			

1.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz~30MHz	2.66dB
	9KHz ~ 30MHz	2.68dB
Radiated emissions	30MHz ~ 1GHz	3.26dB
	1GHz ~ 18GHz	4.48dB
	18GHz ~ 40GHz	4.12dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
MXE EMI Receiver	KEYSIGHT	N9038A-544	MY54450026	Mar. 16,18	Mar. 15,19
EXA Signal Analyzer	KEYSIGHT	N9010A-544	MY54510332	Jun. 28,17	Jun. 27,18
Bilog Antenna 1	ETS-LINDGREN	3143B	00161964	Nov. 26,16	Nov. 25,18
Bilog Antenna 2	ETS-LINDGREN	3143B	00161965	Nov. 26,16	Nov. 25,18
Horn Antenna 1	ETS-LINDGREN	3117	00168728	Nov. 26,16	Nov. 25,18
Horn Antenna 2	ETS-LINDGREN	3117	00168692	Nov. 26,16	Nov. 25,18
Loop antenna	Daze	ZN30900A	0708	Nov. 20,17	Nov. 19,18
Horn Antenna (18GHz-40GHz)	N/A	QWH-SL-18-40 -K-SG/QMS-00 361		Dec. 16,16	Dec. 15,18
Radio Communication Analyzer	ANRITSU	MT8820C	6201465426	Mar. 02,18	Mar. 01,19
Signal Pre-Amplifier	EMSI	EMC 9135	980249	Jul. 24,17	Jul. 23,18
Signal Pre-Amplifier	EMSI	EMC 012645B	980257	Jul. 24,17	Jul. 23,18
Signal Pre-Amplifier	EMSI	EMC 184045B	980259	Jul. 24,17	Jul. 23,18
3m Semi-anechoic Chamber	ETS-LINDGREN	9m*6m*6m	Euroshieldpn- CT0001143-1216	May 06,17	May 05,18
Test Software	E3	V 9.160323	N/A	N/A	N/A
Test Software	ADT	ADT_Radiated _V7.6.15.9.2	N/A	N/A	N/A
10dB Attenuator	JFW/USA	50HF-010-SM A	1505	Jul. 24,17	Jul. 23,18
Power Meter	Anritsu	ML2495A	1506002	Mar. 02,18	Mar. 01,19
Power Sensor	Anritsu	MA2411B	1339352	Mar. 16,18	Mar. 15,19
Humid & Temp Programmable Tester	Juyi	ITH-120-45-CP -AR	IAA1504-001	Jul. 18,17	Jul. 17,18
MXG Analog Microvave Signal Generator	KEYSIGHT	N5183A	MY50143024	Mar. 13,18	Mar. 12,19

1.2 TEST SITE AND INSTRUMENTS

NOTE: 1. The calibration interval of the above test instruments is 12 months or 24 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

2. The test was performed in 3m Semi-anechoic Chamber and RF Oven Room.

3. The horn antenna is used only for the measurement of emission frequency above 1GHz if tested.

4. The FCC Site Registration No. is 525120.

2 GENERAL INFORMATION

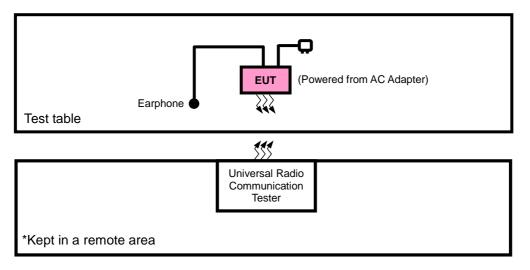
2.1 GENERAL DESCRIPTION OF EUT

PRODUCT	GSM/WCDMA/LTE Mobile Phone			
BRAND NAME	Nokia			
MODEL NAME	TA-1063			
POWER SUPPLY	5.0Vdc (adapter or host equipm 3.9Vdc (Li-ion, battery)	ent)		
MODULATION TYPE	GSM, GPRS: GMSK EDGE: GMSK, 8PSK			
FREQUENCY RANGE	GSM, GPRS, EDGE 1850.2MHz ~ 1909.8MHz			
MAX. EIRP POWER	GSM	1239mW		
WAA. EIRF FOWER	EDGE	519mW		
EMISSION DESIGNATOR	GSM	247KGXW		
EMISSION DESIGNATOR	EDGE	247KG7W		
ANTENNA TYPE	Fixed Internal Antenna with 3.17	7dBi gain		
HW VERSION	HW0301			
SW VERSION	000C_0_34A			
I/O PORTS	Refer to user's manual			
CABLE SUPPLIED	USB cable: non-shielded, detac Earphone cable: non-shielded, o			

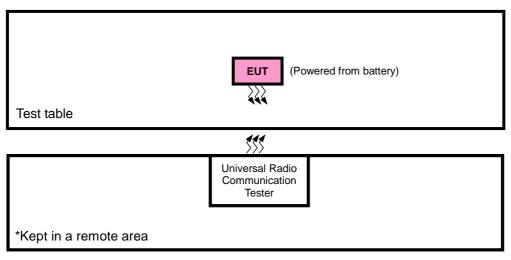
NOTE:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.


ACCESSORIES	BRAND	MANUFACTURER	MODEL	SPECIFICATION	
Adapter 1	Salcomp	Salcomp (Shenzhen) Co., Ltd.	FC0202	I/P: 100-240Vac, 150mA O/P: 5Vdc, 1000mA	
Adapter 2	Aohai	DONGGUAN AOHAI TECHNOLOGY CO., LTD.	AD-5WU	I/P: 100-240Vac, 150mA O/P: 5Vdc, 1000mA	
Battery	SCUD	SCUD (Fujian) Electronics CO., Ltd.	HE336	Rating: 3.85Vdc, 2900mAh	
Earphone 1	Nokia	FIT	WH-108	1.5m non-shielded cable w/o core	
Earphone 2	Nokia	ОВО	WH-108	1.5m non-shielded cable w/o core	
USB Cable	Nokia	FIH	CA-190CD	1.0m non-shielded cable w/o core	

List of Accessories:



2.2 CONFIGURATION OF SYSTEM UNDER TEST

FOR RADIATION EMISSION TEST

FOR CONDUCTED & E.I.R.P. TEST

2.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	DC source	LONG WEI	PS-6403D	010934269	N/A
2	PC	HP	A6608CN	3CR83825X3	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	DC Line: Unshielded, Detachable 1.0m
2	AC Line: Unshielded, Detachable 1.5m

NOTE:

1. All power cords of the above support units are non shielded (1.8m).

2.4 TEST ITEM AND TEST CONFIGURATION

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports

The worst case in EIRP and radiated emission was found when positioned on X-plane for GSM/EDGE. Following channel(s) was (were) selected for the final test as listed below:

EUT CONFIGURE MODE	DESCRIPTION
Α	EUT + Adapter + USB Cable + Earphone with GSM link
В	EUT + Battery with GSM link

GSM MODE

EUT CONFIGURE MODE	TEST ITEM	AVAILABLE CHANNEL	TESTED CHANNEL	MODE
В	EIRP	512 to 810	512, 661, 810	GSM, EDGE
В	FREQUENCY STABILITY	512 to 810	512, 810	GSM, EDGE
В	OCCUPIED BANDWIDTH	512 to 810	512, 661, 810	GSM, EDGE
В	PEAK TO AVERAGE RATIO	512 to 810	512, 661, 810	GSM, EDGE
В	BAND EDGE	512 to 810	512, 810	GSM, EDGE
В	CONDCUDETED EMISSION	512 to 810	512, 661, 810	GSM, EDGE
А	RADIATED EMISSION	512 to 810	512, 661, 810	GSM, EDGE

TEST CONDITION:

TEST ITEM	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
EIRP	25deg. C, 57%RH	3.9Vdc from Battery	Star Le
FREQUENCY STABILITY	23deg. C, 61%RH	DC 3.7V/3.9V/4.0V	Wenliang Wu
OCCUPIED BANDWIDTH	23deg. C, 61%RH	3.9Vdc from Battery	Wenliang Wu
PEAK TO AVERAGE RATIO	23deg. C, 61%RH	3.9Vdc from Battery	Wenliang Wu
BAND EDGE	23deg. C, 61%RH	3.9Vdc from Battery	Wenliang Wu
CONDCUDETED EMISSION	23deg. C, 61%RH	3.9Vdc from Battery	Wenliang Wu
RADIATED EMISSION	23deg. C, 70%RH	5Vdc from adapter	Star Le

2.5 EUT OPERATING CONDITIONS

The EUT makes a call to the communication simulator. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency

2.6 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2 FCC 47 CFR Part 24 KDB 971168 D01 Power Meas License Digital Systems v03 ANSI/TIA/EIA-603-D ANSI/TIA/EIA-603-E ANSI C63.26-2015

NOTE: All test items have been performed and recorded as per the above standards.

3 TEST TYPES AND RESULTS

3.1 OUTPUT POWER MEASUREMENT

3.1.1 LIMITS OF OUTPUT POWER MEASUREMENT

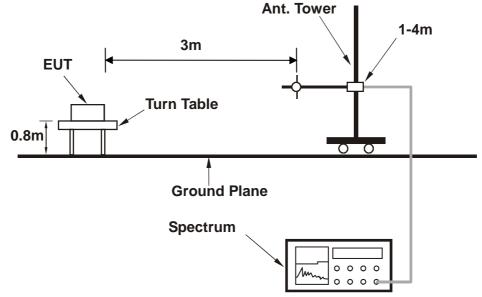
Mobile and portable stations are limited to 2 watts EIRP.

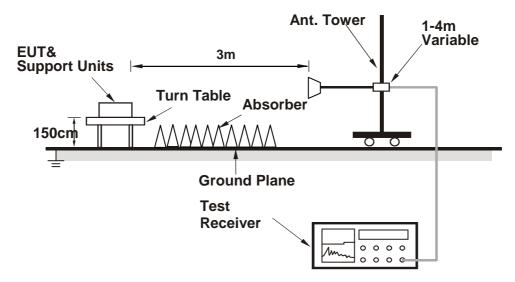
3.1.2 TEST PROCEDURES

EIRP MEASUREMENT:

- a. All measurements were done at low, middle and high operational frequency range. RBW and VBW is 1MHz for GSM & GPRS.
- b. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- c. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step b. Record the power level of S.G
- d. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.

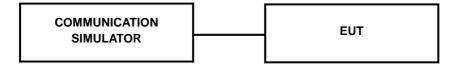
CONDUCTED POWER MEASUREMENT:


The EUT was set up for the maximum power with GSM, GPRS & EDGE link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.


3.1.3 TEST SETUP

EIRP / ERP Measurement:

<Radiated Emission below or equal 1 GHz>



<Radiated Emission above 1 GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

CONDUCTED POWER MEASUREMENT:

BV 7Layers Communications Technology (Shenzhen) Co. Ltd

No.B102, Dazu Chuangxin Mansion, North of Beihuan Avenue, North Area, Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China Tel: +86 755 8869 6566 Fax: +86 755 8869 6577 Email: <u>customerservice.dq@cn.bureauveritas.com</u>

3.1.4 TEST RESULTS

CONDUCTED OUTPUT POWER (dBm)

Band		GSM1900	
Channel	512	661	810
Frequency (MHz)	1850.2	1880.0	1909.8
GSM	29.69	29.59	29.41
GPRS 8	29.68	29.58	29.40
GPRS 10	27.69	27.59	27.41
GPRS 11	24.75	24.65	24.47
GPRS 12	23.20	23.10	22.92
EDGE 8 (MCS9)	24.91	24.81	24.63
EDGE 10 (MCS9)	21.98	21.88	21.70
EDGE 11 (MCS9)	20.30	20.20	20.02
EDGE 12 (MCS9)	18.71	18.61	18.43

EIRP POWER (dBm) GSM

Channel	Frequency (MHz)	SPA LVL (dBm)	Correction Factor(dB)	EIRP(dBm)	EIRP(mW)	Polarization (H/V)
512	1850.2	-13.55	43.83	30.28	1066.60	Н
661	1880.0	-12.83	43.57	30.74	1185.77	Н
810	1909.8	-13.64	44.57	30.93	1238.80	Н
512	1850.2	-26.88	46.39	19.51	89.33	V
661	1880.0	-26.82	47.10	20.28	106.61	V
810	1909.8	-25.45	45.98	20.53	112.88	V

REMARKS: 1. EIRP Output Power (dBm) = SPA LVL (dBm) + Correction Factor (dB).

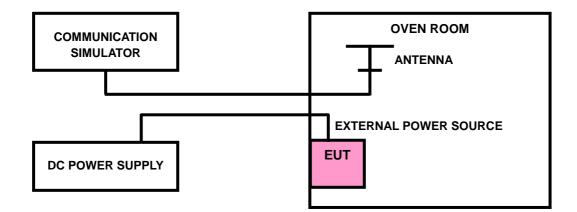
2. Correction factor (dB) = Free Space Loss + Antenna Factor + Cable Loss

EDGE

Channel	Frequency (MHz)	SPA LVL (dBm)	Correction Factor(dB)	EIRP(dBm)	EIRP(mW)	Polarization (H/V)
512	1850.2	-16.74	43.83	27.09	511.68	Н
661	1880.0	-16.55	43.57	27.02	503.50	Н
810	1909.8	-17.42	44.57	27.15	518.80	Н
512	1850.2	-28.45	46.39	17.94	62.20	V
661	1880.0	-27.93	47.10	19.17	82.53	V
810	1909.8	-27.65	45.98	18.32	67.97	V

REMARKS: 1. EIRP Output Power (dBm) = SPA LVL (dBm) + Correction Factor (dB). 2. Correction factor (dB) = Free Space Loss + Antenna Factor + Cable Loss

3.2 FREQUENCY STABILITY MEASUREMENT


3.2.1 LIMITS OF FREQUENCY STABILIITY MEASUREMENT

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

3.2.2 TEST PROCEDURE

- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the $\pm 0.5^{\circ}$ C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

NOTE: The frequency error was recorded frequency error from the communication simulator.

3.2.3 TEST SETUP

3.2.4 TEST RESULTS

GSM1900

FREQUENCY ERROR VS. VOLTAGE

	FREQUENCY E		
VOLTAGE (Volts)	Low Channel	High Channel	LIMIT (ppm)
3.9	0.0008	0.0010	2.5
3.7	-0.0008	-0.0010	2.5
4.0	0.0007	0.0009	2.5

NOTE: The applicant defined the normal working voltage of the battery is from 3.7Vdc to 4.0Vdc.

ТЕМР. (℃)	FREQUENCY E	RROR (ppm)	
	Low Channel	High Channel	LIMIT (ppm)
-30	-0.0057	-0.0055	2.5
-20	-0.0052	-0.0050	2.5
-10	-0.0048	-0.0046	2.5
0	-0.0042	-0.0040	2.5
10	-0.0035	-0.0033	2.5
20	-0.0034	-0.0032	2.5
30	-0.0026	-0.0024	2.5
40	-0.0022	-0.0020	2.5
50	-0.0004	-0.0002	2.5
60	-0.0003	-0.0002	2.5

FREQUENCY ERROR vs. TEMPERATURE.

EDGE 1900

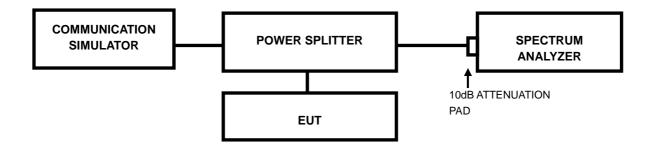
FREQUENCY ERROR VS. VOLTAGE

	FREQUENCY		
VOLTAGE (Volts)	Low Channel	High Channel	LIMIT (ppm)
3.9	0.0009	0.0009	2.5
3.7	-0.0008	-0.0010	2.5
4.0	0.0008	0.0009	2.5

NOTE: The applicant defined the normal working voltage of the battery is from 3.7Vdc to 4.0Vdc.

FREQUENCY ERROR vs. TEMPERATURE.

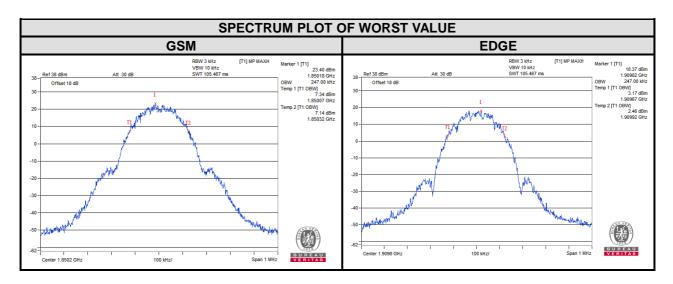
ТЕМР. (℃)	FREQUENCY	ERROR (ppm)	
	Low Channel	High Channel	LIMIT (ppm)
-30	-0.0051	-0.0047	2.5
-20	-0.0050	-0.0047	2.5
-10	-0.0049	-0.0046	2.5
0	-0.0044	-0.0041	2.5
10	-0.0040	-0.0037	2.5
20	-0.0030	-0.0028	2.5
30	-0.0025	-0.0023	2.5
40	-0.0015	-0.0014	2.5
50	0.0004	0.0004	2.5
60	0.0007	0.0007	2.5

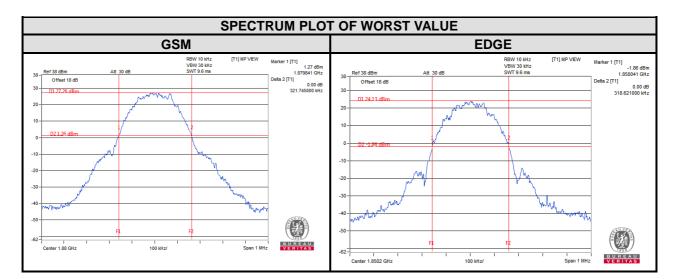


3.3 OCCUPIED BANDWIDTH MEASUREMENT

3.3.1 TEST PROCEDURES

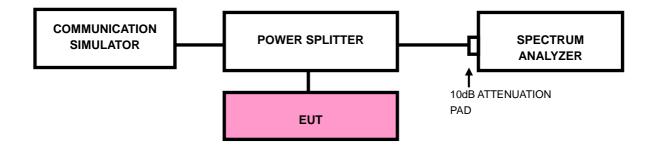
The EUT makes a call to the communication simulator. All measurements were done at low, middle and high operational frequency range. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.


3.3.2 TEST SETUP


3.3.3 TEST RESULTS

Channel				Frequency (MHz)	99% Occupied bandwidth (MHz)
	(101112)	GSM	GSM		EDGE
512	1850.2	247.00	512	1850.2	242.00
661	1880.0	244.00	661	1880.0	244.00
810	1909.8	245.00	810	1909.8	247.00

Channel	Frequency	26dB bandwidth (kHz)	CHANNEL FREQUENCY (MHz)		26dB bandwidth (MHz)
	(MHz)	GSM		(MHz)	EDGE
512	1850.2	320.61	512	1850.2	318.62
661	1880.0	321.75	661	1880.0	317.58
810	1909.8	321.01	810	1909.8	316.52

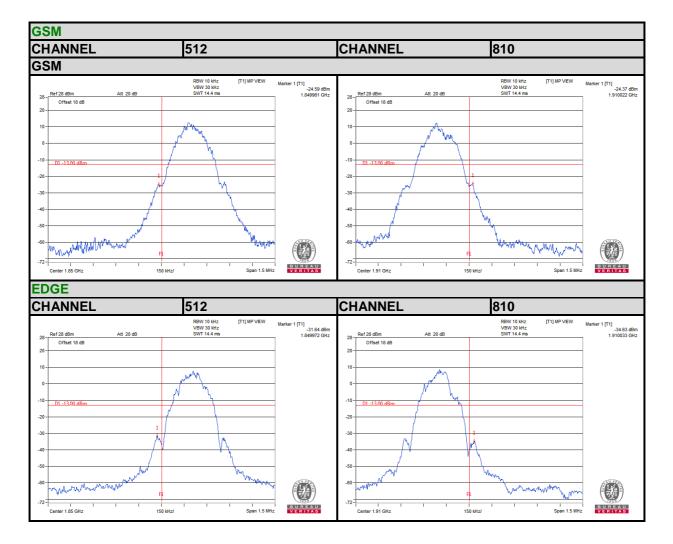


3.4 BAND EDGE MEASUREMENT

3.4.1 LIMITS OF BAND EDGE MEASUREMENT

Power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

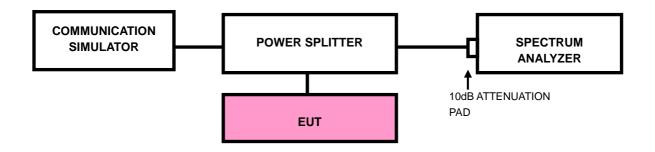
3.4.2 TEST SETUP



3.4.3 TEST PROCEDURES

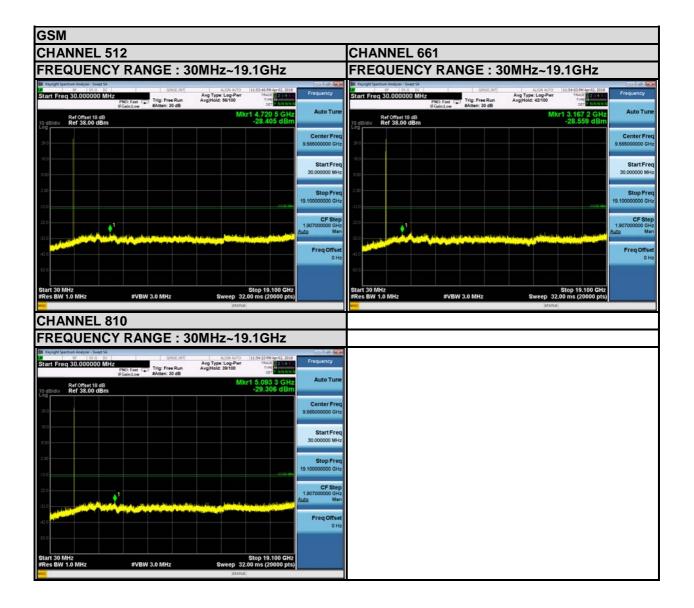
- a. All measurements were done at low and high operational frequency range.
- b. The center frequency of spectrum is the band edge frequency and span is 1.5 MHz. RBW of the spectrum is 10kHz and VBW of the spectrum is 30kHz (GSM/GPRS/ EDGE).
- c. Record the max trace plot into the test report.

3.4.4 TEST RESULTS

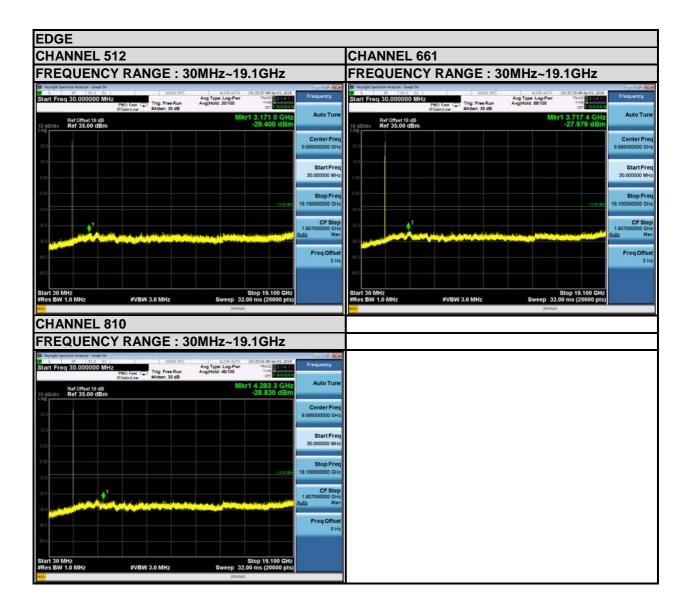

3.5 CONDUCTED SPURIOUS EMISSIONS

3.5.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$. The emission limit equal to -13 dBm.


- 3.5.2 3.5.2 TEST PROCEDURE
- a. The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range.
- Measuring frequency range is from 9 kHz to 19.1GHz. 10dB attenuation pad is connected with spectrum. RBW=1MHz and VBW=3MHz is used for conducted emission measurement.

3.5.3 TEST SETUP

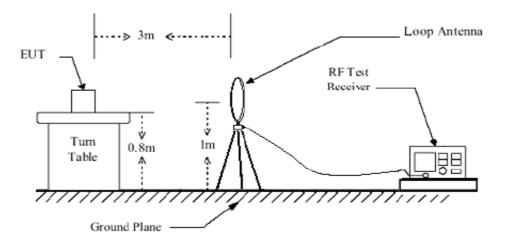


3.5.4 TEST RESULTS

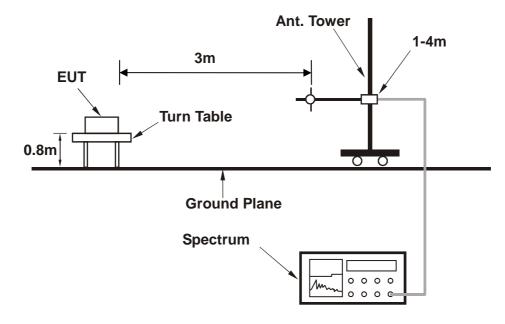
3.6 RADIATED EMISSION MEASUREMENT

3.6.1 LIMITS OF RADIATED EMISSION MEASUREMENT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + $10 \log(P) dB$. The emission limit equal to -13dBm.

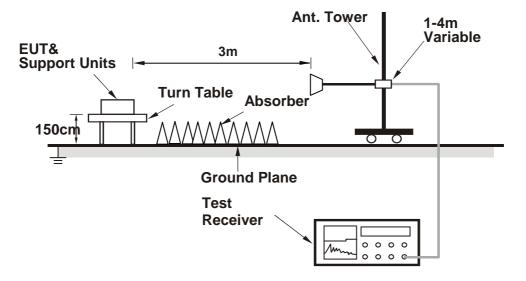

- 3.6.2 TEST PROCEDURES
- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.
- 3.6.3 DEVIATION FROM TEST STANDARD

No deviation



3.6.4 TEST SETUP

<Below 30MHz>

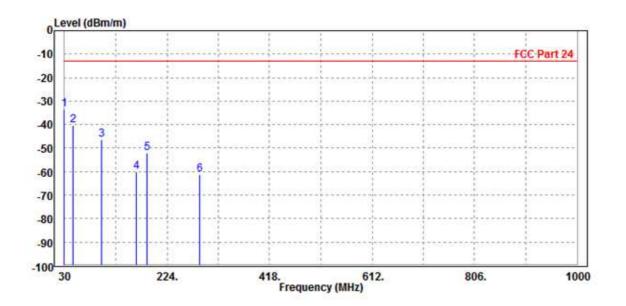


< Frequency Range 30MHz~1GHz >

< Frequency Range above 1GHz >

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.6.5 TEST RESULTS


BELOW 1GHz WORST-CASE DATA

9 KHz - 30 MHz data: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

30 MHz – 1GHz data:

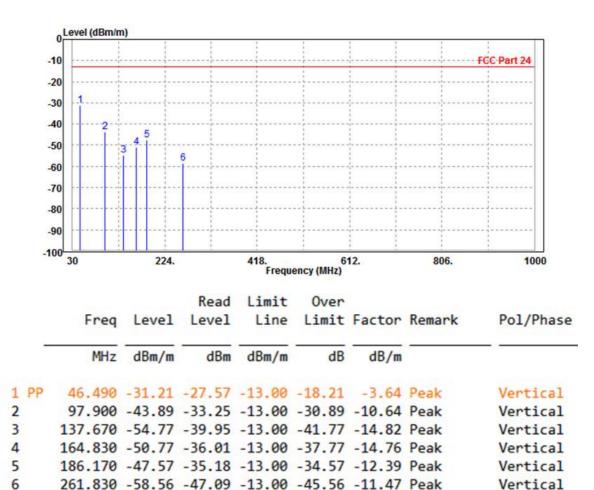
PCS 1900:

MODE	ODE TX channel 661		Below 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 5V from adapter			
TESTED BY	Star Le					
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						

Read Limit

Freq Level Level

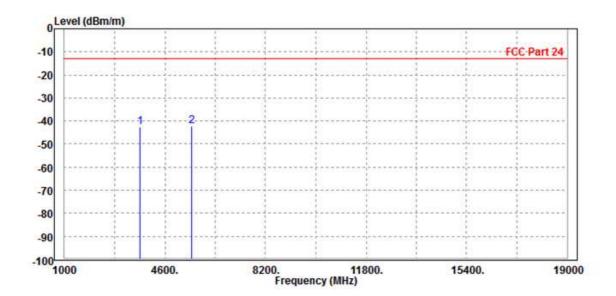
Over Line Limit Factor Remark


Pol/Phase

	MHz	dBm/m	dBm	dBm/m	dB	dB/m		
1 PP	30.000	-33.33	-52.67	-13.00	-20.33	19.34	Peak	Horizontal
2	46.490	-40.27	-46.61	-13.00	-27.27	6.34	Peak	Horizontal
3	100.810	-46.57	-35.25	-13.00	-33.57	-11.32	Peak	Horizontal
4	165.800	-60.15	-41.89	-13.00	-47.15	-18.26	Peak	Horizontal
5	186.170	-51.90	-34.30	-13.00	-38.90	-17.60	Peak	Horizontal
6	285.110	-61.11	-46.57	-13.00	-48.11	-14.54	Peak	Horizontal

BV 7Layers Communications Technology (Shenzhen) Co. Ltd

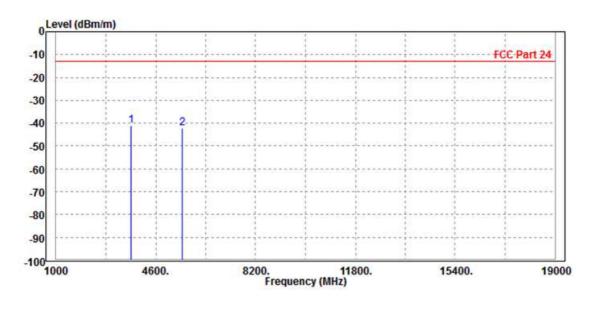
MODE	TX channel 661	FREQUENCY RANGE	Below 1000MHz				
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 5V from adapter				
TESTED BY	Star Le						
ANTEN	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						


ABOVE 1GHz DATA

Note: For higher frequency, the emission is too low to be detected.

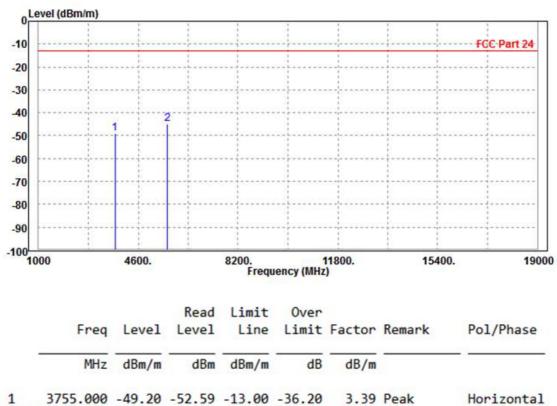
PCS 1900:

CH 512


MODE	TX channel 512	FREQUENCY RANGE	Above 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 5V from adapter			
TESTED BY	Star Le					
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						

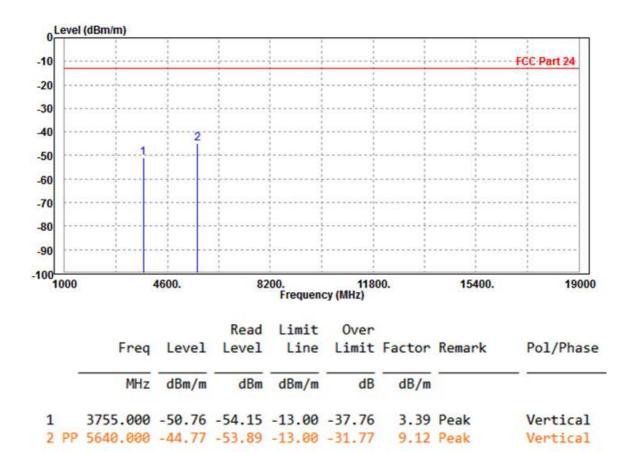
		Freq	Level		Limit Line	Over Limit	Factor	Remark	Pol/Phase
	č	MHz	dBm/m	dBm	dBm/m	dB	dB/m		_
1	PP	3698.000						Peak Peak	Horizontal Horizontal

MODE	TX channel 512	FREQUENCY RANGE	Above 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 5V from adapter			
TESTED BY	Star Le					
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						

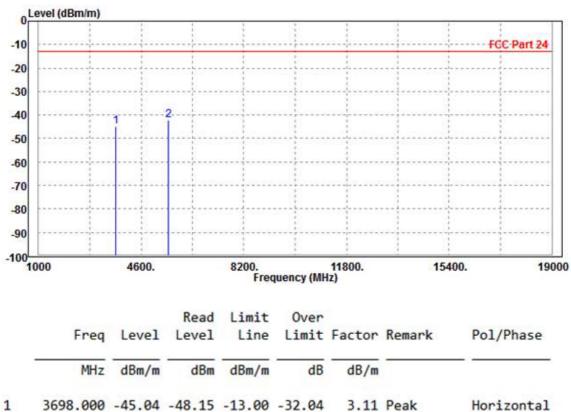

Read Limit Over

		Freq	Level	Level	Line	Limit	Factor	Remark	Pol/Phase
	2	MHz	dBm/m	dBm	dBm/m	dB	dB/m		
1	PP	3698.000	-41.21	-44.78	-13.00	-28.21	3.57	Peak	Vertical
2		5558.000	-42.16	-50.25	-13.00	-29.16	8.09	Peak	Vertical

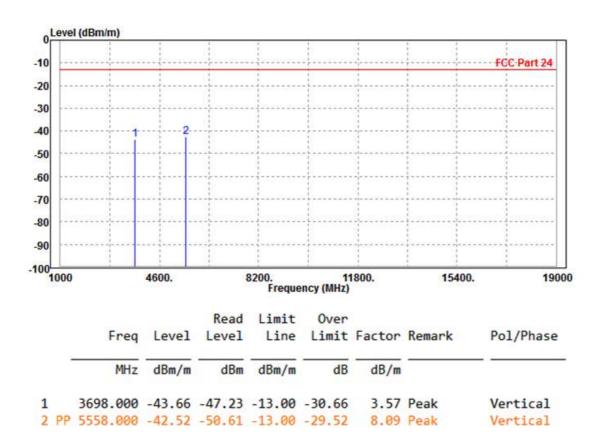
CH 661


MODE	TX channel 661	FREQUENCY RANGE	Above 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 5V from adapter			
TESTED BY	Star Le					
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						

1		3755.000	-49.20	-52.59	-13.00	-36.20	3.39 Peak	Horizontal
2	PP	5640.000	-44.72	-53.84	-13.00	-31.72	9.12 Peak	Horizontal

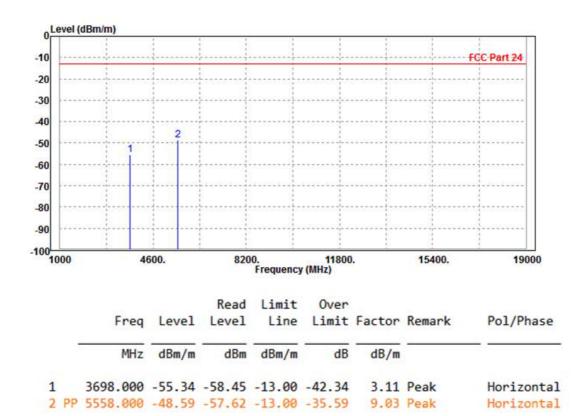

MODE	TX channel 661	FREQUENCY RANGE	Above 1000MHz				
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 5V from adapter				
TESTED BY	Star Le						
ANTEN	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						

CH 810

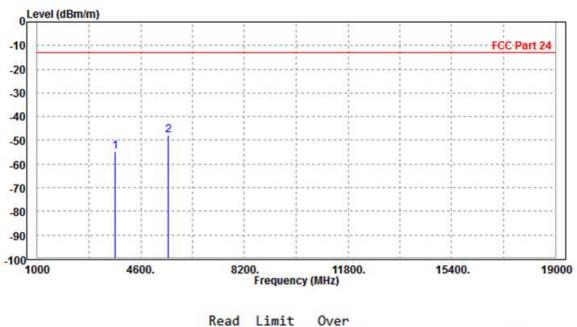

MODE TX channel 810		FREQUENCY RANGE	Above 1000MHz				
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 5V from adapter				
TESTED BY	Star Le						
ANTENN	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						

-	5050.000	43.04	-40.15	-10.00	- 52.04	J.TT I Cak	nor izonicaz
2 F	P 5558.000	-42.13	-51.16	-13.00	-29.13	9.03 Peak	Horizontal

MODE	TX channel 810	FREQUENCY RANGE	Above 1000MHz				
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 5V from adapter				
TESTED BY	ESTED BY Star Le						
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							

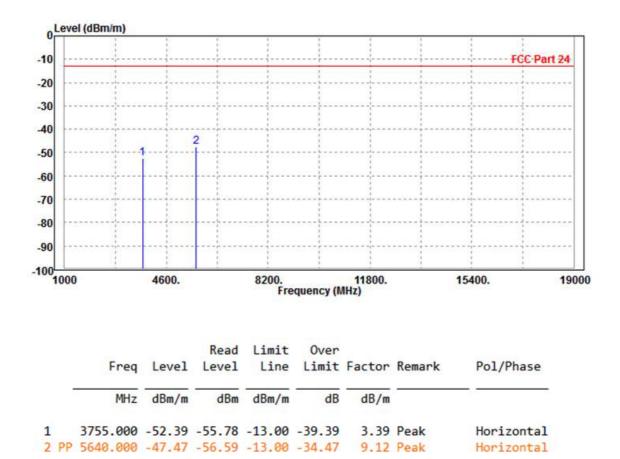


EDGE 1900:

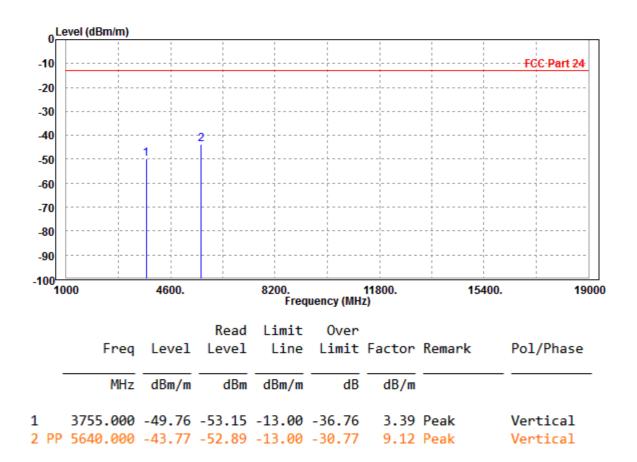

CH 512

MODE	TX channel 512	FREQUENCY RANGE	Above 1000MHz				
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 5V from adapter				
TESTED BY	Star Le						
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							

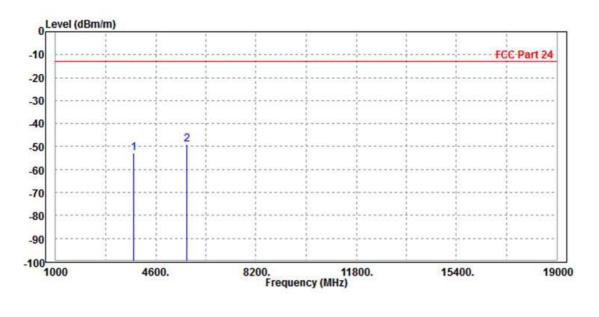
MODE	TX channel 512	FREQUENCY RANGE	Above 1000MHz				
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 5V from adapter				
TESTED BY	TED BY Star Le						
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							


Read Limit Ov

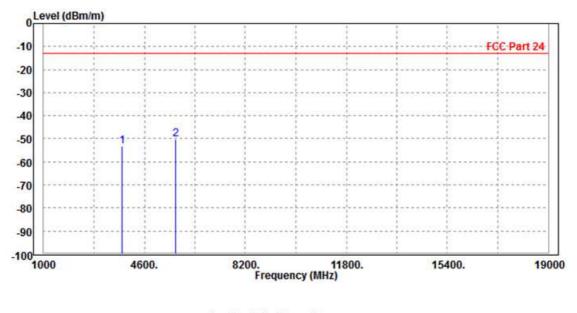
	Freq	Level	Level	Line	Limit	Factor	Remark	Pol/Phase
	MHz	dBm/m	dBm	dBm/m	dB	dB/m		_
1	3698.000	-54.56	-58.13	-13.00	-41.56	3.57	Peak	Vertical
2	PP 5558.000	-47.72	-55.81	-13.00	-34.72	8.09	Peak	Vertical


CH 661

MODE	TX channel 661	FREQUENCY RANGE	Above 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 5V from adapter			
TESTED BY Star Le						
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						


MODE	TX channel 661	FREQUENCY RANGE	Above 1000MHz				
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 5V from adapter				
TESTED BY	TESTED BY Star Le						
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							

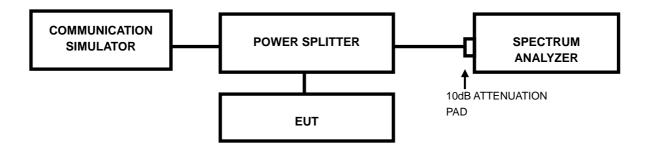
CH 810


MODE	TX channel 810	FREQUENCY RANGE	Above 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	IINPUT POWER	DC 5V from adapter			
TESTED BY	Star Le					
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						

		Freq	Level		Limit Line		Factor	Remark	Pol/Phase
	8	MHz	dBm/m	dBm	dBm/m	dB	dB/m		
1	PP	3812.000 5721.000			1000			1	Horizontal Horizontal

MODE	TX channel 810	FREQUENCY RANGE	Above 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 5V from adapter			
TESTED BY	Star Le					
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						

	Freq	Level		Limit Line	Over Limit	Factor	Remark	Pol/Phase
	MHz	dBm/m	dBm	dBm/m	dB	dB/m		
1	3812.000	20 TO 1 1 1 1 1 1	10000	1.		10.000	Peak	Vertical
Z PP	5721.000	-50.36	-58./8	-13.00	-37.36	8.42	Реак	Vertical



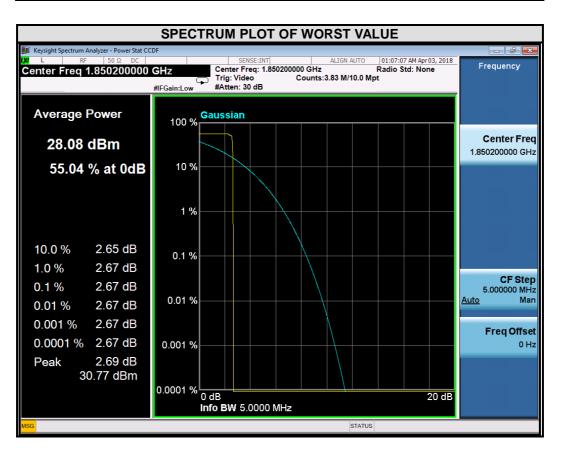
3.7 PEAK TO AVERAGE RATIO

3.7.1 LIMITS OF peak to average ratio MEASUREMENT

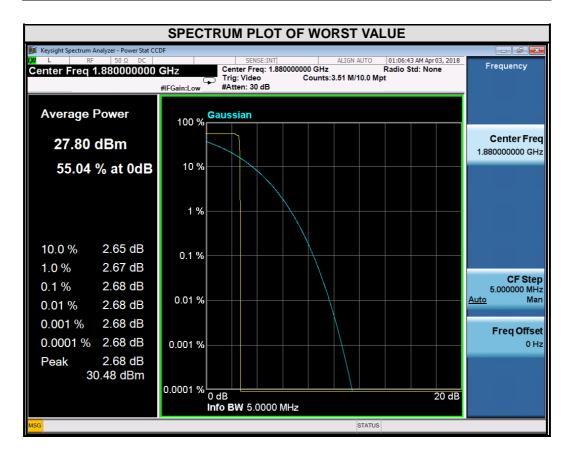
In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB

3.7.2 TEST SETUP

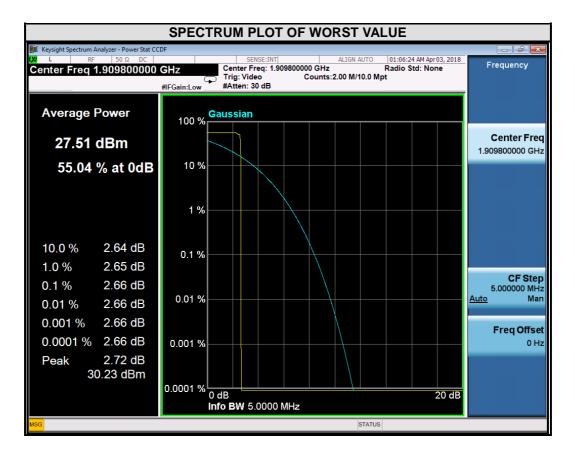
3.7.3 TEST PROCEDURES


- 1. Set resolution/measurement bandwidth \geq signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Record the maximum PAPR level associated with a probability of 0.1%.

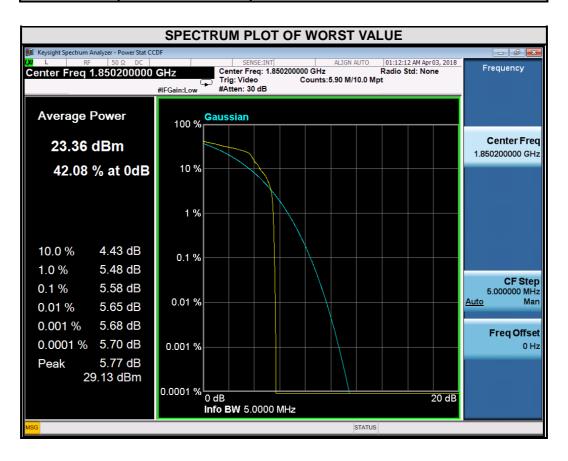
3.7.4 TEST RESULTS


GSM

CHANNEL	FREQUENCY (MHz)	PEAK TO AVERAGE RATIO (dB)
512	1850.2	2.67

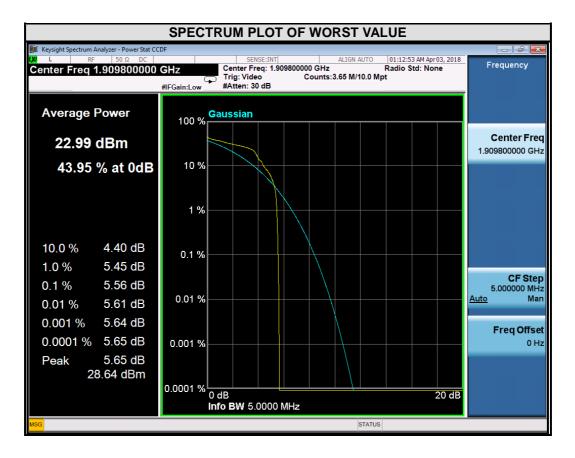


CHANNEL	FREQUENCY (MHz)	PEAK TO AVERAGE RATIO (dB)
661	1880	2.68


CHANNEL	FREQUENCY (MHz)	PEAK TO AVERAGE RATIO (dB)
810	1909.8	2.66

EDGE

CHANNEL	FREQUENCY (MHz)	PEAK TO AVERAGE RATIO (dB)
512	1850.2	5.58



CHANNEL	FREQUENCY (MHz)	PEAK TO AVERAGE RATIO (dB)
661	1880	5.60

CHANNEL	FREQUENCY (MHz)	PEAK TO AVERAGE RATIO (dB)
810	1909.8	5.56

4 INFORMATION ON THE TESTING LABORATORIES

We, BV 7LAYERS COMMUNICATIONS TECHNOLOGY (SHENZHEN) CO. LTD., were founded in 2015 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Shenzhen EMC/RF Lab: Tel: +86-755-88696566 Fax: +86-755-88696577

Email: customerservice.dg@cn.bureauveritas.com Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

5 APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END----