

Body Evaluation

Table 14.16: SAR Values (WLAN 2.4G - Body)- 802.11b 1Mbps

		Amb	ient Temper	ature: 22.	6°C Lic	quid Tempe	erature: 22.0	°C		
Frequency MHz Ch.		Test Mode	Power Power		Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)			
	Hotspot Test Data (10mm)									
2437	6	802.11 b	802.11 b Front / 15.55 16 0.				0.108	0.12	0.04	
2437	6	802.11 b	Rear	/	15.55	16	0.070	0.08	0.06	
2437	6	802.11 b	Right	/	15.55	16	0.075	0.08	0.08	
2437	6	802.11 b	Тор	Fig.14	15.55	16	0.162	0.18	0.01	
				Body Wo	rn Test Data	(15mm)				
2437	6	802.11 b	Front	/	15.55	16	0.071	0.08	0.01	
2437	2437 6 802.11 b Rear		Rear	/	15.55	16	0.043	0.05	0.03	

Note1:For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the reported SAR is \leq 1.2 W/kg or all required channels are tested.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. A maximum transmission duty factor of 100% is achievable for WLAN in this project and the scaled reported SAR is presented as below.

Table 14.17: SAR Values (WLAN - Body) – 802.11b 1Mbps (Scaled Reported SAR)

		Ambient Ter	mperature: 22.6	°C Liquid	d Temperature: 22	.0°C
Freque	ency	Test	Actual duty	maximum duty	Reported SAR	Scaled reported SAR
MHz	Ch.	Position	factor	factor	(1g)(W/kg)	(1g)(W/kg)
2437	6	Rear	100%	100%	0.18	0.18

SAR is not required for OFDM because the 802.11b adjusted SAR \leq 1.2 W/kg.

14.3 WLAN Evaluation for 5G

Table 14.18: SAR Values (WLAN 5G - Head)

		Am	bient Tempera	ture: 22.5	5°C Liqı	uid Tempe	rature: 22.0°	С			
Frequ MHz	ency Ch.	Test Mode	Test Position	Figure No.	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)		
					U-NII-2A						
5260 52 802.11 a Left Touch Fig.15 13.50 14 0.977 1.10 0.03											
5260	52	802.11 a	Left Tilt	/	13.50	14	0.935	1.05	0.02		
5260	52	802.11 a	Right Touch	/	13.50	14	0.474	0.53	0.06		
5260	52	802.11 a	Right Tilt	/	13.50	14	0.423	0.47	0.05		
5320	64	802.11 a	Left Touch	/	13.45	14	0.946	1.07	-0.06		
5320	64	802.11 a	Left Tilt	/	13.45	14	0.911	1.03	0.05		
					U-NII-2C						
5500	100	802.11 a	Left Touch	/	13.49	14	0.974	1.10	0.08		
5500	100	802.11 a	Left Tilt	/	13.49	14	0.847	0.95	0.04		
5500	100	802.11 a	Right Touch	/	13.49	14	0.529	0.59	-0.06		
5500	100	802.11 a	Right Tilt	/	13.49	14	0.503	0.57	0.05		
5580	116	802.11 a	Left Touch	/	13.39	14	0.836	0.96	0.07		
5580	116	802.11 a	Left Tilt	/	13.39	14	0.711	0.82	0.02		
	U-NII-3										
5745	149	802.11 a	Left Touch	/	13.41	14	0.542	0.62	-0.10		
5745	149	802.11 a	Left Tilt	/	13.41	14	0.446	0.51	0.07		
5745	149	802.11 a	Right Touch	/	13.41	14	0.326	0.37	0.06		
5745	149	802.11 a	Right Tilt	/	13.41	14	0.264	0.30	0.03		

Note1: U-NII-1 and U-NII-2A bands have the same specified maximum output and tolerance; SAR is measured for U-NII-2A band first. Adjusted SAR of U-NII-2A band is \leq 1.2W/kg, SAR is not required for U-NII-1 band.

Note2:For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. A maximum transmission duty factor of 100% is achievable for WLAN in this project and the scaled reported SAR is presented as below.

Table 14.19: SAR Values (WLAN 5G - Head) - (Scaled Reported SAR)

Frequ	ency	Test Position	Actual duty	maximum	Reported SAR	Scaled reported
MHz	Ch.	Test Position	factor	duty factor	(1g)(W/kg)	SAR (1g)(W/kg)
5260	52	Left Touch	100%	100%	1.10	1.10

Table 14.20: SAR Values (WLAN 5G - Body)

		Amb	ient Temper	ature: 22.	5°C Lic	uid Tempe	erature: 22.0	°C			
Frequ MHz	Ch.	Test Mode	Test Position	Figure No.	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)		
	U-NII-2A										
5260	5260 52 802.11 a Front Fig.16 13.5 14 0.076 0.09 0.03										
5260	52	802.11 a	Rear	/	13.5	14	0.036	0.04	-0.09		
5260	52	802.11 a	Right	/	13.5	14	0.010	0.01	0.11		
5260	52	802.11 a	Тор	/	13.5	14	0.022	0.02	-0.10		
					U-NII-2C						
5500	100	802.11 a	Front	/	13.49	14	0.042	0.05	0.09		
5500	100	802.11 a	Rear	/	13.49	14	0.023	0.03	0.01		
5500	100	802.11 a	Right	/	13.49	14	0.007	0.01	-0.12		
5500	100	802.11 a	Тор	/	13.49	14	0.021	0.02	0.04		
					U-NII-3						
5745 149 802.11 a Front					13.41	14	0.026	0.03	0.01		
5745	149	802.11 a	Rear	/	13.41	14	0.004	< 0.01	0.09		
5745	149	802.11 a	Right	/	13.41	14	0.002	< 0.01	-0.11		
5745 149 802.11 a Top		/	13.41	14	0.003	< 0.01	-0.05				

Note1: The WLAN5GHz Body-Worn mode have no SAR value, because it is too small to be probed Note2: U-NII-1 and U-NII-2A bands have the same specified maximum output and tolerance; SAR is measured for U-NII-2A band first. Adjusted SAR of U-NII-2A band is \leq 1.2W/kg, SAR is not required for U-NII-1 band.

Note3:For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the reported SAR is \leq 1.2 W/kg or all required channels are tested.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. A maximum transmission duty factor of 100% is achievable for WLAN in this project and the scaled reported SAR is presented as below.

Table 14.21: SAR Values (WLAN 5G - Body) – (Scaled Reported SAR)

		Ambient Temperat	ure: 22.5°C	Liquid Te	Ď.	
Frequ	ency	Test Position	Actual duty	maximum	Reported SAR	Scaled reported
MHz	Ch.	Test Fosition	factor	duty factor	(1g)(W/kg)	SAR (1g)(W/kg)
5260 52		Front	100%	100%	0.09	0.09

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 15.1: SAR Measurement Variability for Body - GSM 1900

	Frequency MHz Ch.		Test Position	Original	1 st Repeated	Ratio	2 nd Repeated	
			Test Fosition	SAR (W/kg)	SAR (W/kg)	Kallo	SAR (W/kg)	
	1850.2	512	Bottom	1.20	1.18	1.02	/	

Table 15.5: SAR Measurement Variability for Head –WLAN 5G

Frequ	uency	Test Position	Original	1 st Repeated	Ratio	2 nd Repeated	
MHz Ch.		Test Position	SAR (W/kg)	SAR (W/kg)	Kallo	SAR (W/kg)	
5260	52	Left Touch	0.977	0.972	1.01	/	

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

	10.1 Medadrement officertainty for Normal OAK 16313 (300MH2-30112)										
No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std. Unc.	Std. Unc.	Degree of	
		.,,,,	value	Distribution		1g	10g	(1g)	(10g)	freedom	
			Measu	rement systen	า						
1	Probe calibration	В	12	N	2	1	1	6.0	6.0	∞	
2	Isotropy	В	7.4	R	$\sqrt{3}$	1	1	4.3	4.3	∞	
3	Boundary effect	В	1.1	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞	
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
6	Readout electronics	В	1.0	N	1	1	1	1.0	1.0	∞	
7	Response time	В	0.0	R	$\sqrt{3}$	1	1	0.0	0.0	∞	
8	Integration time	В	1.7	R	$\sqrt{3}$	1	1	1.0	1.0	∞	
9	RF ambient conditions-noise	В	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞	
10	RF ambient conditions-reflection	В	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞	
11	Probe positioned mech. restrictions	В	0.35	R	$\sqrt{3}$	1	1	0.2	0.2	∞	
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞	
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
			Test	sample related							
14	Test sample positioning	Α	3.3	N	1	1	1	3.3	3.3	5	
15	Device holder uncertainty	Α	3.4	N	1	1	1	3.4	3.4	5	
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞	
	,		Phant	om and set-up	1						
17	Phantom uncertainty	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞	
19	Liquid conductivity (meas.)	Α	1.3	N	1	0.64	0.43	0.83	0.56	9	
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞	
21	Liquid parmittivity		1.6	N	1	0.6	0.49	0.96	0.78	9	
	pined standard rtainty	$u_c' =$	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.4	10.3	95.5	
	Expanded uncertainty (Confidence interval of 95 %)		$u_e = 2u_c$					20.8	20.6		

16.2 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz)

	L Modear official O		.,							_
No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std. Unc.	Std. Unc.	Degree of
			value	Distribution		1g	10g	(1g)	(10g)	freedom
Measu	urement system	I			I	ı				l .
1	Probe calibration	В	12	N	2	1	1	6.0	6.0	∞
2	Isotropy	В	7.4	R	$\sqrt{3}$	1	1	4.3	4.3	∞
3	Boundary effect	В	1.1	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	1.0	N	1	1	1	1.0	1.0	∞
7	Response time	В	0.0	R	$\sqrt{3}$	1	1	0.0	0.0	∞
8	Integration time	В	1.7	R	$\sqrt{3}$	1	1	1.0	1.0	∞
9	RF ambient conditions-noise	В	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
10	RF ambient conditions-reflection	В	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
11	Probe positioned mech. Restrictions	В	0.35	R	$\sqrt{3}$	1	1	0.2	0.2	∞
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
14	Fast SAR z-Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	∞
		I	Test	sample related	I	I				I
15	Test sample positioning	Α	3.3	N	1	1	1	3.3	3.3	5
16	Device holder uncertainty	Α	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phan	tom and set-up)					
18	Phantom uncertainty	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
20	Liquid conductivity (meas.)	Α	1.3	N	1	0.64	0.43	0.83	0.56	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
22	Liquid pormittivity		1.6	N	1	0.6	0.49	0.96	0.78	521
	Combined standard uncertainty $u_c' = \sqrt{\sum_{i=1}^{22}}$		$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					11.1	11.0	257
	Expanded uncertainty (Confidence interval of 95 %)		$u_e = 2u_c$					22.2	22.0	

16.3 Measurement Uncertainty for Normal SAR Tests (3GHz~6GHz)

	10.5 Measurement			5111101 	.00.0	(00				
No.	Error Description	Туре	Uncertainty value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Meas	urement system			ı				(19)	(1-9)	
1	Probe calibration	В	13	N	2	1	1	6.5	6.5	∞
2	Isotropy	В	7.4	R	$\sqrt{3}$	1	1	4.3	4.3	∞
3	Boundary effect	В	2.3	R	$\sqrt{3}$	1	1	1.3	1.3	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	1.0	N	1	1	1	1.0	1.0	∞
7	Response time	В	0.0	R	$\sqrt{3}$	1	1	0.0	0.0	∞
8	Integration time	В	1.7	R	$\sqrt{3}$	1	1	1.0	1.0	∞
9	RF ambient conditions-noise	В	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
10	RF ambient conditions-reflection	В	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
11	Probe positioned mech. restrictions	В	0.71	R	$\sqrt{3}$	1	1	0.4	0.4	∞
12	Probe positioning with respect to phantom shell	В	5.7	R	$\sqrt{3}$	1	1	3.3	3.3	∞
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Test	sample related					•	•			•
14	Test sample positioning	А	3.3	N	1	1	1	3.3	3.3	5
15	Device holder uncertainty	А	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Phan	tom and set-up									
17	Phantom uncertainty	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
19	Liquid conductivity (meas.)	Α	1.3	N	1	0.64	0.43	0.83	0.56	9
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
21	Liquid permittivity (meas.)	Α	1.6	N	1	0.6	0.49	0.96	0.78	9
Comb	Combined standard uncertainty $u_c^{'} = \sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$		$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					11.3	11.2	95.5
-	nded uncertainty idence interval of 95 %)	$2u_c$					22.6	22.4		

16.4 Measurement Uncertainty for Fast SAR Tests (3GHz~6GHz)

	T MICAGAI CITICITE CITICO		101 1 401		0 101					
			Uncertainty	Probably	Div	(Ci)	(Ci)	Std.	Std.	Degree
No.	Error Description	Type	value	Distributi	Div	1g	10g	Unc.	Unc.	of
			value	on	•	19	109	(1g)	(10g)	freedom
			Measure	ment systen	า					
1	Probe calibration	В	13	N	2	1	1	6.5	6.5	8
2	Isotropy	В	7.4	R	$\sqrt{3}$	1	1	4.3	4.3	8
3	Boundary effect	В	2.3	R	$\sqrt{3}$	1	1	1.3	1.3	8
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
6	Readout electronics	В	1.0	N	1	1	1	1.0	1.0	∞
7	Response time	В	0.0	R	$\sqrt{3}$	1	1	0.0	0.0	∞
8	Integration time	В	1.7	R	$\sqrt{3}$	1	1	1.0	1.0	8
9	RF ambient conditions-noise	В	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	8
10	RF ambient conditions-reflection	В	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
11	Probe positioned mech. Restrictions	В	0.71	R	$\sqrt{3}$	1	1	0.4	0.4	8
12	Probe positioning with respect to phantom shell	В	5.7	R	$\sqrt{3}$	1	1	3.3	3.3	8
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
14	Fast SAR z-Approximation	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	∞
			Test sar	nple related					•	
15	Test sample positioning	А	3.3	N	1	1	1	3.3	3.3	5
16	Device holder uncertainty	Α	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phanton	and set-up)	ı			I	
18	Phantom uncertainty	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
20	Liquid conductivity (meas.)	А	1.3	N	1	0.64	0.43	0.83	0.56	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
22	Liquid permittivity (meas.)	Α	1.6	N	1	0.6	0.49	0.96	0.78	521
Comb	pined standard uncertainty	$u_c^{'} = 1$	$\sum_{i=1}^{22} c_i^2 u_i^2$					13.9	13.9	257
· ·	nded uncertainty idence interval of 95 %)	$u_e = 2u$	u_c					27.8	27.7	

17 Main Test Instruments

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	Agilent E5071C	MY46103759	2017-11-17	One year
02	Dielectric probe	85070E	MY44300317	/	/
03	Power meter	NRP	102603	2018-01-04	One year
04	Power sensor	NRP-Z51	102211		
05	Power meter	NRP	101460	2018-02-05	One year
06	Power sensor	NRP-Z91	100553		
07	Signal Generator	E8257D	MY47461211	2017-06-06	One year
08	Amplifier	VTL5400	0404	/	/
09	E-field Probe	SPEAG EX3DV4	3633	2018-02-01	One year
10	DAE	SPEAG DAE4	786	2017-11-22	One year
11	Dipole Validation Kit	SPEAG D835V2	4d057	2015-10-22	Three year
12	Dipole Validation Kit	SPEAG D1900V2	5d088	2015-11-04	Three year
13	Dipole Validation Kit	SPEAG D2450V2	873	2015-10-30	Three year
14	Dipole Validation Kit	SPEAG D2550V2	1010	2015-07-24	Three year
15	Dipole Validation Kit	SPEAG D5GHzV2	1238	2016-09-21	Three year
16	BTS	E5515C	GB46110722	2018-02-19	One year
17	Radio Communication Analyzer	Anristu MT8820C	6201341853	2018-03-08	One year

^{***}END OF REPORT BODY***

ANNEX A Graph Results

GSM850 Head

Date: 2018-5-8

Electronics: DAE4 Sn786 Medium: Head 835 MHz

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.892 \text{ S/m}$; $\varepsilon_r = 41.709$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, GSM (0) Frequency: 836.6 MHz Duty Cycle: 1:8.30042

Probe: EX3DV4 - SN3633 ConvF (9.33, 9.33, 9.33);

Right Cheek Middle /Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.125 W/kg

Right Cheek Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.837 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.133 W/kg

SAR(1 g) = 0.092 W/kg; SAR(10 g) = 0.070 W/kg Maximum value of SAR (measured) = 0.111 W/kg

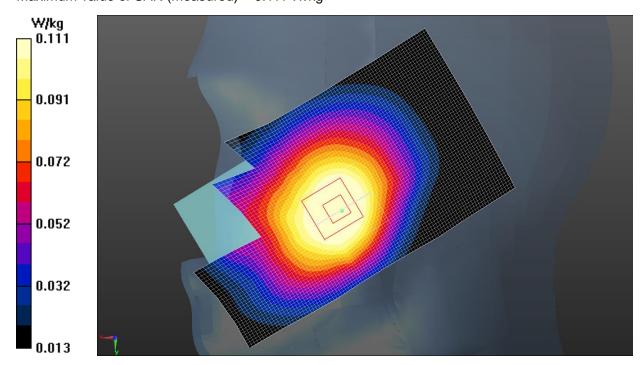


Fig.1 GSM 850MHz

GSM850 Body

Date: 2018-5-8

Electronics: DAE4 Sn786 Medium: Body 835 MHz

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.99 \text{ S/m}$; $\varepsilon_r = 52.671$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, GPRS 4Txslot (0) Frequency: 836.6 MHz Duty Cycle: 1:2

Probe: EX3DV4 - SN3633 ConvF (9.69, 9.69, 9.69);

Front side Mid/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.275 W/kg

Front side Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.85 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.231 W/kg

SAR(1 g) = 0.204 W/kg; SAR(10 g) = 0.146 W/kg

Maximum value of SAR (measured) = 0.365 W/kg

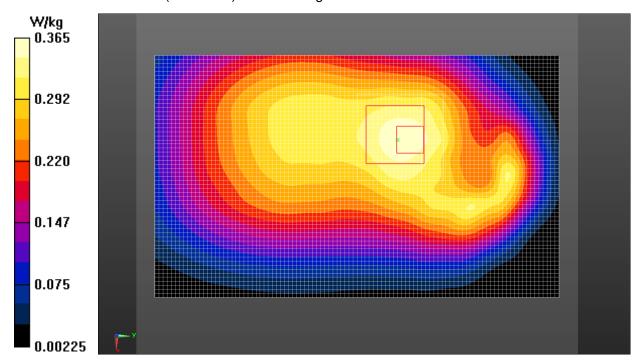


Fig.2 GSM 850 MHz

GSM1900 Head

Date: 2018-5-2

Electronics: DAE4 Sn786 Medium: Head 1900 MHz

Medium parameters used: f = 1880 MHz; σ = 1.399 S/m; ϵ_r = 39.745; ρ = 1000 kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, GSM (0) Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3633 ConvF (7.81, 7.81, 7.81);

Left Cheek Mid /Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.148 W/kg

Left Cheek Mid /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.600 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.204 W/kg

SAR(1 g) = 0.124 W/kg; SAR(10 g) = 0.080 W/kg

Maximum value of SAR (measured) = 0.141 W/kg

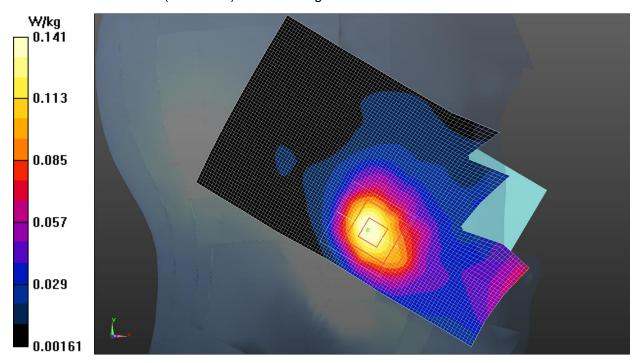


Fig.3 GSM 1900 MHz

GSM1900 Body

Date: 2018-5-14

Electronics: DAE4 Sn786 Medium: Body 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.532 \text{ S/m}$; $\epsilon_r = 53.064$; $\rho = 1000 \text{ J}$

kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, GPRS 3Txslot (0) Frequency: 1850.2 MHz Duty Cycle: 1:2.67

Probe: EX3DV4 - SN3633 ConvF (7.75, 7.75, 7.75);

Bottom Side Low/Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.45 W/kg

Bottom Side Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.69 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 2.27 W/kg

SAR(1 g) = 1.2 W/kg; SAR(10 g) = 0.595 W/kg

Maximum value of SAR (measured) = 1.37 W/kg

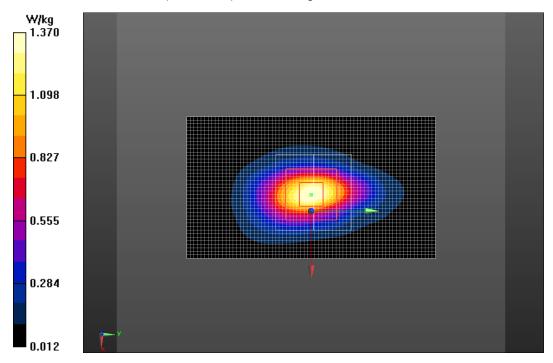


Fig.4 GSM 1900 MHz

WCDMA 850 Head

Date: 2018-5-8

Electronics: DAE4 Sn786 Medium: Head 835 MHz

Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.892 \text{ S/m}$; $\epsilon r = 41.711$; $\rho = 1000 \text{ kg/m}$ 3

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WCDMA (0) Frequency: 836.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (9.33, 9.33, 9.33);

Right Cheek Mid/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.227 W/kg

Right Cheek Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.141 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.282 W/kg

SAR(1 g) = 0.220 W/kg; SAR(10 g) = 0.166 W/kg

Maximum value of SAR (measured) = 0.233 W/kg

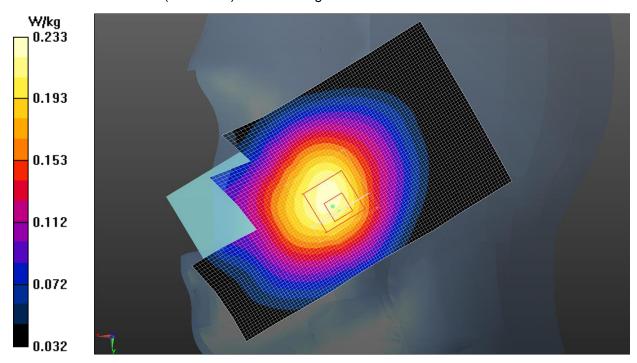


Fig.5 WCDMA 850

WCDMA 850 Body

Date: 2018-5-8

Electronics: DAE4 Sn786 Medium: Body 835 MHz

Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.99 \text{ S/m}$; $\epsilon_r = 52.673$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WCDMA (0) Frequency: 836.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (9.69, 9.69, 9.69);

Front side Mid /Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.541 W/kg

Front side Mid /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.51 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.704 W/kg

SAR(1 g) = 0.512 W/kg; SAR(10 g) = 0.371 W/kg

Maximum value of SAR (measured) = 0.539 W/kg

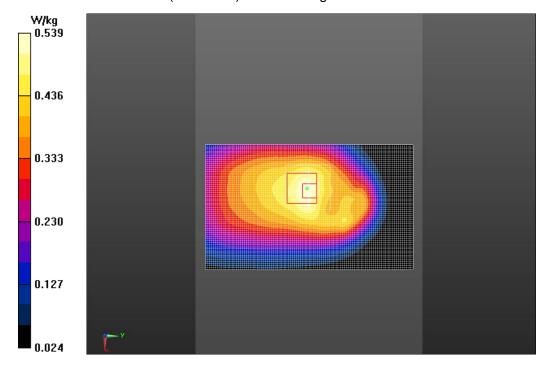


Fig.6 WCDMA 850

LTE Band 5 Head

Date: 2018-5-8

Electronics: DAE4 Sn786 Medium: Head 835 MHz

Medium parameters used (extrapolated): f = 836.5 MHz; $\sigma = 0.892 \text{ S/m}$; $\epsilon r = 41.710$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 836.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (9.33, 9.33, 9.33);

Right Cheek Middle 1RB_Low/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500

mm

Maximum value of SAR (interpolated) = 0.306 W/kg

Right Cheek Middle 1RB_Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.203 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.368 W/kg

SAR(1 g) = 0.290 W/kg; SAR(10 g) = 0.221 W/kg Maximum value of SAR (measured) = 0.304 W/kg

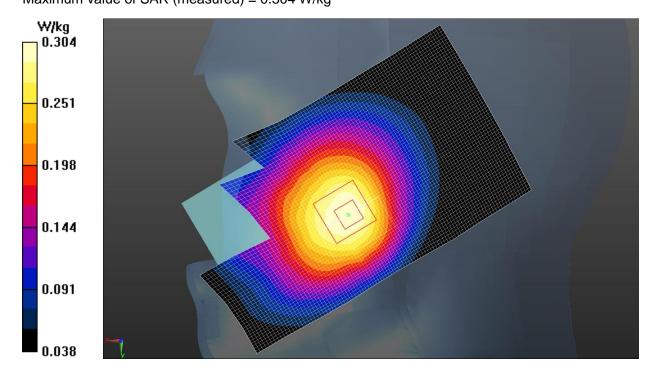


Fig.7 LTE Band 5

LTE Band 5 Body

Date: 2018-5-8

Electronics: DAE4 Sn786 Medium: Body 835 MHz

Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.99 \text{ S/m}$; $\varepsilon_r = 52.672$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 836.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (9.69, 9.69, 9.69);

Front side Middle 1B_Low/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.462 W/kg

Front side Middle 1B_Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.91 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.627 W/kg

SAR(1 g) = 0.452 W/kg; SAR(10 g) = 0.326 W/kg Maximum value of SAR (measured) = 0.473 W/kg

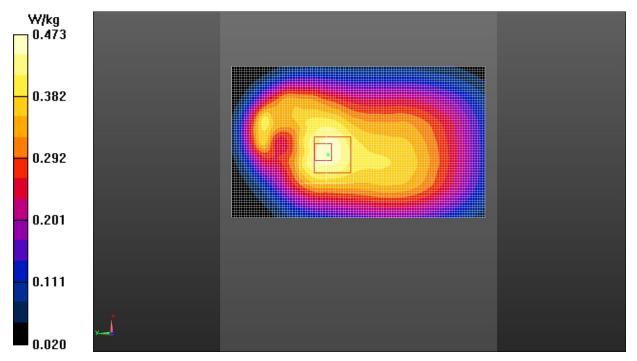


Fig.8 LTE Band 5

LTE Band 7 Head

Date: 2018-5-5

Electronics: DAE4 Sn786 Medium: Head 2550 MHz

Medium parameters used (interpolated): f = 2535 MHz; $\sigma = 1.953$ S/m; $\epsilon_r = 38.417$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 2535 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (7.28, 7.28, 7.28);

Left Cheek Middle 1RB_High/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.252 W/kg

Left Cheek Middle 1RB_High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.621 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.427 W/kg

SAR(1 g) = 0.201 W/kg; SAR(10 g) = 0.117 W/kg Maximum value of SAR (measured) = 0.248 W/kg

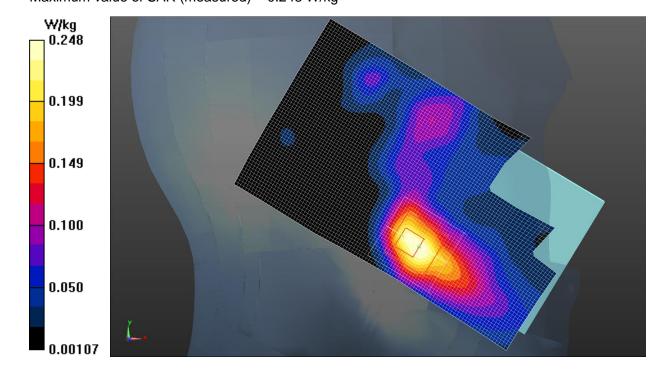


Fig.9 LTE Band 7

LTE Band 7 Body

Date: 2018-5-5

Electronics: DAE4 Sn786 Medium: Body 2550 MHz

Medium parameters used (interpolated): f = 2535 MHz; $\sigma = 2.034 \text{ S/m}$; $\epsilon_r = 53.265$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, 4G_LTE_FDD (0) Frequency: 2535 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (7.31, 7.31, 7.31);

Bottom Side Middle 1RB_Hlgh/Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.569 W/kg

Bottom Side Middle 1RB_Hlgh/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.89 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.802 W/kg

SAR(1 g) = 0.409 W/kg; SAR(10 g) = 0.217 W/kg Maximum value of SAR (measured) = 0.434 W/kg

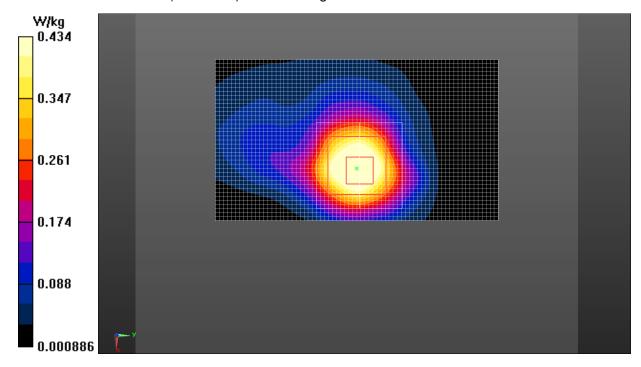


Fig.10 LTE Band 7

LTE Band 38 Head

Date: 2018-5-5

Electronics: DAE4 Sn786 Medium: Head 2550 MHz

Medium parameters used (interpolated): f = 2595 MHz; $\sigma = 2.023 \text{ S/m}$; $\epsilon_r = 38.196$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_TDD (0) Frequency: 2595 MHz Duty Cycle: 1:1.58

Probe: EX3DV4 - SN3633 ConvF (7.28, 7.28, 7.28);

Left Cheek Middle 1RB_Low/Area Scan (61x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.128 W/kg

Left Cheek Middle 1RB_Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.985 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.212 W/kg

SAR(1 g) = 0.112 W/kg; SAR(10 g) = 0.057 W/kg

Maximum value of SAR (measured) = 0.126 W/kg

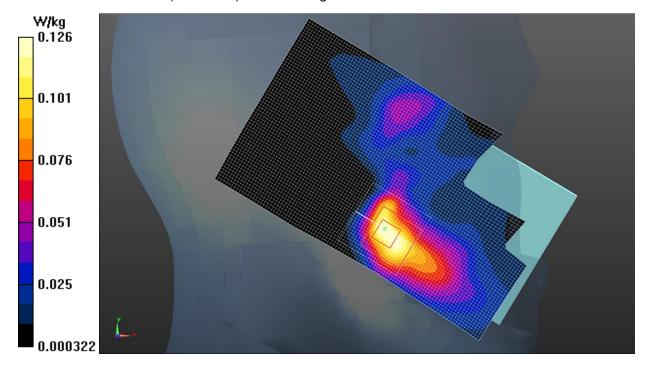


Fig.11 LTE Band 38

LTE Band 38 Body

Date: 2018-5-5

Electronics: DAE4 Sn786 Medium: Body 2550 MHz

Medium parameters used (interpolated): f = 2595 MHz; $\sigma = 2.105 \text{ S/m}$; $\epsilon r = 53.073$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 2595 MHz Duty Cycle: 1:1.58

Probe: EX3DV4 - SN3633 ConvF (7.31, 7.31, 7.31);

Bottom Side Middle 1RB_Low/Area Scan (41x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.368 W/kg

Bottom Side Middle 1RB_Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.24 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.550 W/kg

SAR(1 g) = 0.259 W/kg; SAR(10 g) = 0.130 W/kg

Maximum value of SAR (measured) = 0.271 W/kg
W/kg
0.271

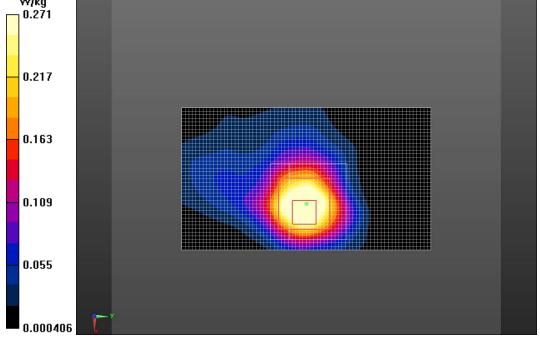


Fig.12 LTE Band 38

Wi-Fi 2.4G Head

Date: 2018-5-16

Electronics: DAE4 Sn786 Medium: Head 2450 MHz

Medium parameters used: f = 2462 MHz; $\sigma = 1.856$ S/m; $\epsilon_r = 38.701$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WiFi (0) Frequency: 2462 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (7.42, 7.42, 7.42);

Left Cheek High/Area Scan (71x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.12 W/kg

Left Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.33 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 2.13 W/kg

SAR(1 g) = 0.701 W/kg; SAR(10 g) = 0.301 W/kg

Maximum value of SAR (measured) = 0.845 W/kg

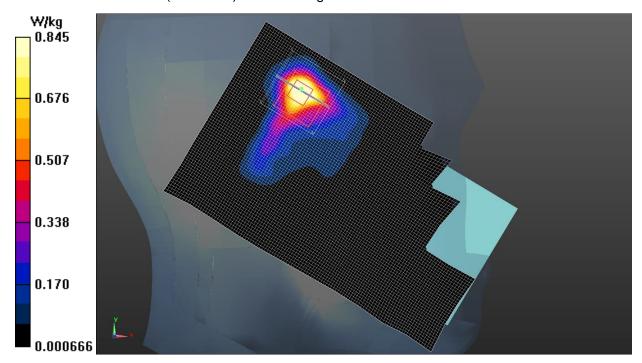


Fig.13 Wi-Fi 2.4G

Wi-Fi 2.4G Body

Date: 2018-5-16

Electronics: DAE4 Sn786 Medium: Body 2450 MHz

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.911$ S/m; $\epsilon_r = 53.568$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WiFi (0) Frequency: 2437 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (7.47, 7.47, 7.47);

Top Side Middle/Area Scan (51x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.173 W/kg

Top Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.003 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.288 W/kg

SAR(1 g) = 0.162 W/kg; SAR(10 g) = 0.082 W/kg

Maximum value of SAR (measured) = 0.181 W/kg

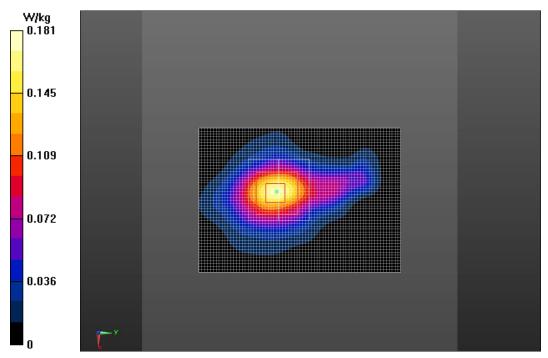


Fig.14 Wi-Fi 2.4G

Wi-Fi 5G Head

Date: 2018-5-18

Electronics: DAE4 Sn786 Medium: Head 5300 MHz

Medium parameters used: f = 5260 MHz; σ = 4.795 S/m; ϵ_r = 35.488; ρ = 1000 kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WIFI 5G (0) Frequency: 5260 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (5.61, 5.61, 5.61);

Left Cheek CH52/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.17 W/kg

Left Cheek CH52/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 5.476 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.22 W/kg

SAR(1 g) = 0.977 W/kg; SAR(10 g) = 0.259 W/kg

Maximum value of SAR (measured) = 1.35 W/kg

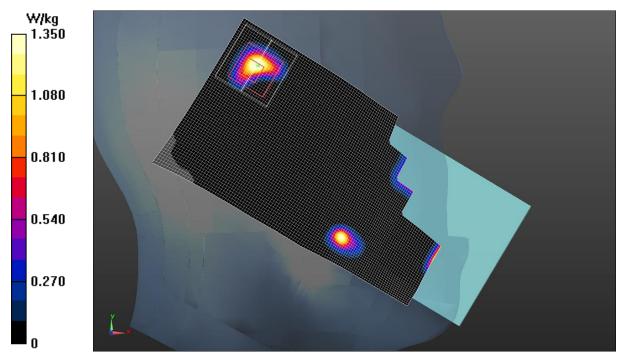


Fig.15 Wi-Fi 5G

Wi-Fi 5G Body

Date: 2018-5-18

Electronics: DAE4 Sn786 Medium: Body 5300 MHz

Medium parameters used: f = 5260 MHz; σ = 5.226 S/m; ϵ_r = 50.625; ρ = 1000 kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WIFI 5G (0) Frequency: 5260 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (5.15, 5.15, 5.15);

Front Side CH52/Area Scan (71x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.136 W/kg

Front Side CH52/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 3.230 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.215 W/kg

SAR(1 g) = 0.076 W/kg; SAR(10 g) = 0.002 W/kg

Maximum value of SAR (measured) = 0.119 W/kg

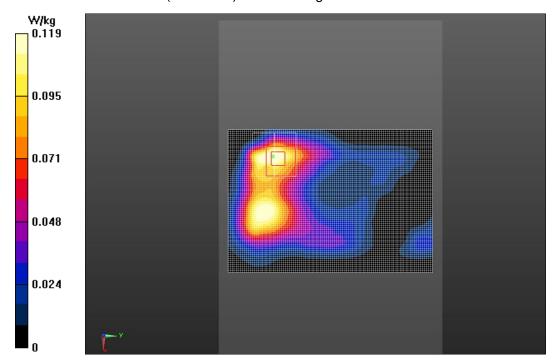


Fig.16 Wi-Fi 5G

ANNEX B SystemVerification Results

835MHz

Date: 2018-5-8

Electronics: DAE4 Sn786 Medium: Head 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.890$ S/m; $\epsilon r = 41.722$; $\rho = 1000$ kg/m³

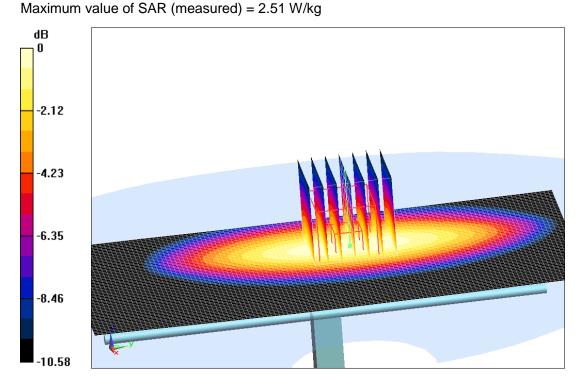
Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (9.33, 9.33, 9.33);

System Validation /Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 55.864 V/m; Power Drift = -0.05 dB

SAR(1 g) = 2.28 W/kg; SAR(10 g) = 1.50 W/kg


Maximum value of SAR (interpolated) = 2.55 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.864 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 3.36 W/kg

SAR(1 g) = 2.24 W/kg; SAR(10 g) = 1.48 W/kg

0 dB = 2.51 W/kg = 4.00 dBW/kg

Fig.B.1. Validation 835MHz 250mW

Date: 2018-5-8

Electronics: DAE4 Sn786 Medium: Body 835 MHz

Medium parameters used: f = 835 MHz; σ = 0.988 S/m; ε_r = 53.689; ρ = 1000 kg/m³

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (9.69, 9.69, 9.69);

System Validation /Area Scan (81x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 58.723 V/m; Power Drift = 0.07 dB

SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (interpolated) = 2.60 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.723 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 3.75 W/kg

SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.59 W/kg

Maximum value of SAR (measured) = 2.68 W/kg

0 dB = 2.68 W/kg = 4.28 dBW/kg

Fig.B.2. Validation 835MHz 250mW

Date: 2018-5-2

Electronics: DAE4 Sn786 Medium: Head 1900 MHz

Medium parameters used: f = 1900 MHz; σ = 1.419 S/m; ε_r = 39.61; ρ = 1000 kg/m³

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

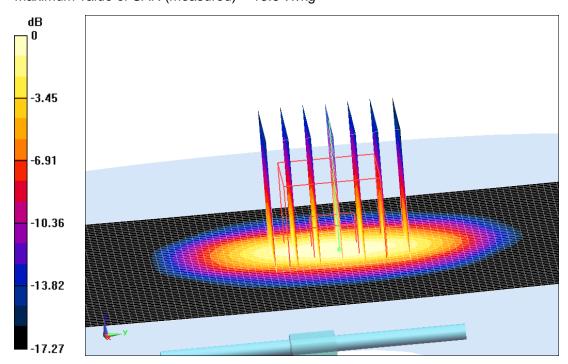
Probe: EX3DV4 - SN3633 ConvF (7.81, 7.81, 7.81);

System Validation /Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 92.967 V/m; Power Drift = 0.06 dB

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.28 W/kg

Maximum value of SAR (interpolated) = 13.2 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.967 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 20.2 W/kg

SAR(1 g) = 10.5 W/kg; SAR(10 g) = 5.33 W/kg

Maximum value of SAR (measured) = 13.6 W/kg

0 dB = 13.6 W/kg = 11.34 dB W/kg

Fig.B.3. Validation 1900MHz 250mW

Date: 2018-5-14

Electronics: DAE4 Sn786 Medium: Body 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.574 \text{ S/m}$; $\varepsilon_r = 52.948$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

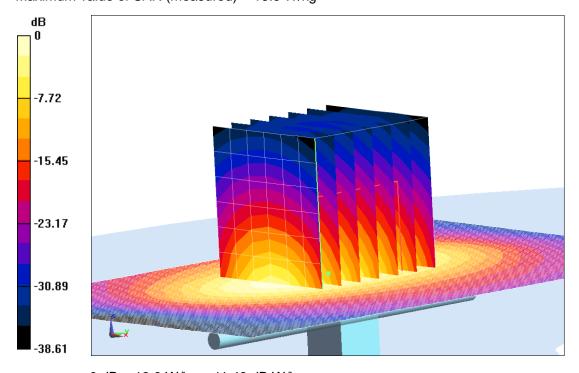
Probe: EX3DV4 - SN3633 ConvF (7.75, 7.75, 7.75);

System validation /Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 85.862 V/m; Power Drift = 0.11 dB

SAR(1 g) = 10.5 W/kg; SAR(10 g) = 5.44 W/kg

Maximum value of SAR (interpolated) = 13.5 W/kg


System validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 85.862 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 20.7 W/kg

SAR(1 g) = 10.7 W/kg; SAR(10 g) = 5.48 W/kg

Maximum value of SAR (measured) = 13.9 W/kg

0 dB = 13.9 W/kg = 11.43 dB W/kg

Fig.B.4. Validation 1900MHz 250mW

Date: 2018-5-16

Electronics: DAE4 Sn786 Medium: Head 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.842 \text{ S/m}$; $\varepsilon_r = 38.743$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.6°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

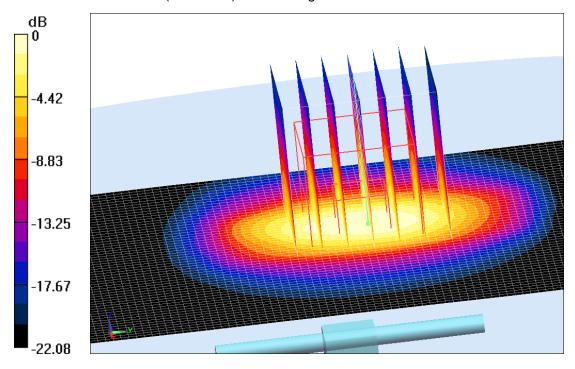
Probe: EX3DV4 - SN3633 ConvF (7.42, 7.42, 7.42);

System Validation /Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 90.544 V/m; Power Drift = 0.08 dB

SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.13 W/kg

Maximum value of SAR (interpolated) = 15.2 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.544 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 25.5 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.18 W/kg

Maximum value of SAR (measured) = 15.6 W/kg

0 dB = 15.6 W/kg = 11.93 dB W/kg

Fig.B.5. Validation 2450MHz 250mW

Date: 2018-5-16

Electronics: DAE4 Sn786 Medium: Body 2450 MHz

Medium parameters used: f = 2450 MHz; σ = 1.928 S/m; ϵ_r = 53.526; ρ = 1000 kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.6°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

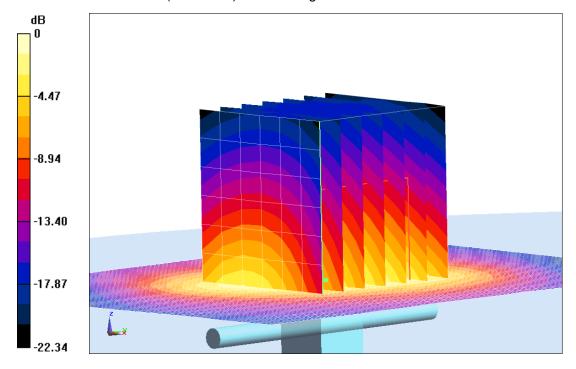
Probe: EX3DV4 - SN3633 ConvF (7.47, 7.47, 7.47);

System Validation/Area Scan (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 86.785 V/m; Power Drift = -0.02 dB

SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.07 W/kg

Maximum value of SAR (interpolated) = 14.8 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.785 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 23.9 W/kg

SAR(1 g) = 12.7 W/kg; SAR(10 g) = 6.02 W/kg

Maximum value of SAR (measured) = 14.4 W/kg

0 dB = 14.4 W/kg = 11.58 dB W/kg

Fig.B.6. Validation 2450MHz 250mW

Date: 2018-5-5

Electronics: DAE4 Sn786 Medium: Head 2550 MHz

Medium parameters used: f = 2550 MHz; $\sigma = 1.971 \text{ S/m}$; $\epsilon_r = 38.36$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.6°C Communication System: CW Frequency: 2550 MHz Duty Cycle: 1:1

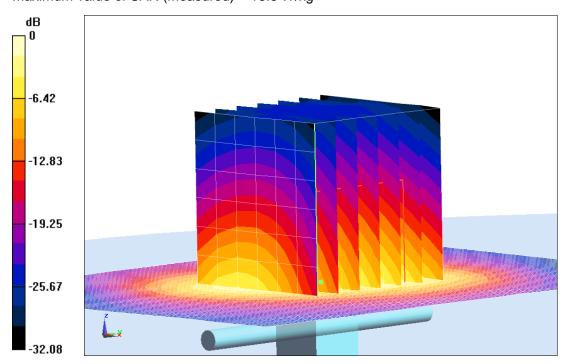
Probe: EX3DV4 - SN3633 ConvF (7.28, 7.28, 7.28);

System Validation/Area Scan (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 93.242 V/m; Power Drift = 0.02 dB

SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.55 W/kg

Maximum value of SAR (interpolated) = 16.1 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.242 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 28.8 W/kg

SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.58 W/kg

Maximum value of SAR (measured) = 16.6 W/kg

0 dB = 16.6 W/kg = 12.20 dB W/kg

Fig.B.7. Validation 2550MHz 250mW

Date: 2018-5-5

Electronics: DAE4 Sn786 Medium: Body 2550 MHz

Medium parameters used: f = 2550 MHz; $\sigma = 2.052 \text{ S/m}$; $\varepsilon_r = 53.214$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.6°C Communication System: CW Frequency: 2550 MHz Duty Cycle: 1:1

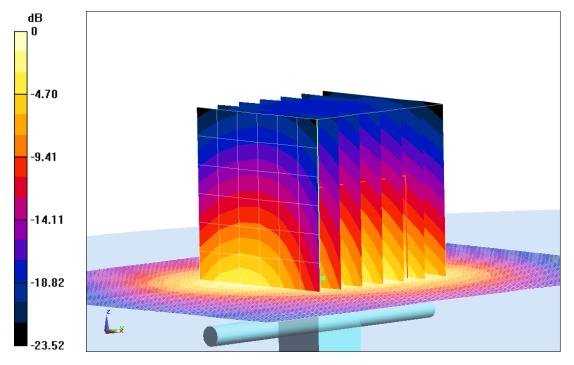
Probe: EX3DV4 - SN3633 ConvF (7.31, 7.31, 7.31);

System Validation/Area Scan (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 86.296 V/m; Power Drift = -0.08 dB

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.25 W/kg

Maximum value of SAR (interpolated) = 15.0 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.296 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 26.0 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.20 W/kg

Maximum value of SAR (measured) = 14.8 W/kg

0 dB = 14.8 W/kg = 11.70 dB W/kg

Fig.B.8. Validation 2550MHz 250mW

Date: 2018-5-18

Electronics: DAE4 Sn786 Medium: Head 5300 MHz

Medium parameters used: f = 5300 MHz; $\sigma = 4.847 \text{ S/m}$; $\varepsilon_r = 35.382$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 5300 MHz Duty Cycle: 1:1

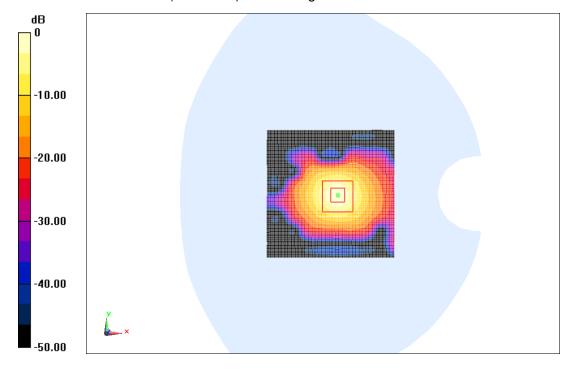
Probe: EX3DV4 - SN3633 ConvF (5.61, 5.61, 5.61);

System Validation /Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 58.774 V/m; Power Drift = 0.05 dB

SAR(1 g) = 8.50 W/kg; SAR(10 g) = 2.39 W/kg

Maximum value of SAR (interpolated) =10.2 W/kg


System Validation/Zoom Scan (8x8x8)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 58.774 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 30.3 W/kg

SAR(1 g) = 8.52 W/kg; SAR(10 g) = 2.41 W/kg

Maximum value of SAR (measured) =10.5 W/kg

0 dB = 10.5 W/kg = 10.21 dB W/kg

Fig.B.9. validation 5300MHz 100mW

Date: 2018-5-18

Electronics: DAE4 Sn786 Medium: Body 5300 MHz

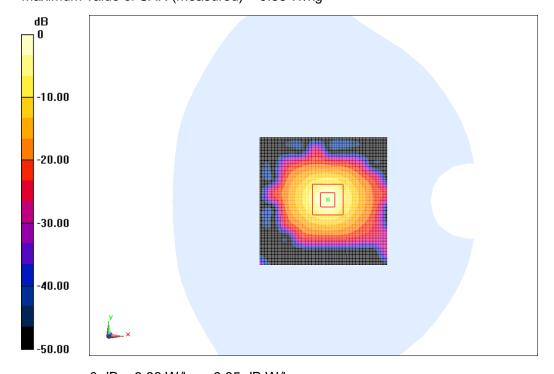
Medium parameters used: f = 5300 MHz; $\sigma = 5.379 \text{ S/m}$; $\varepsilon_r = 50.224$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 5300 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (5.15, 5.15, 5.15);

System Validation /Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 58.178 V/m; Power Drift = -0.12 dB


SAR(1 g) = 7.47 W/kg; SAR(10 g) = 2.13 W/kg Maximum value of SAR (interpolated) = 9.92 W/kg

System Validation/Zoom Scan (8x8x8)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 58.178 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 7.45 W/kg; SAR(10 g) = 2.11 W/kg Maximum value of SAR (measured) = 9.88 W/kg

0 dB = 9.88 W/kg = 9.95 dB W/kg

Fig.B.10. validation 5300MHz 100mW

Date: 2018-5-18

Electronics: DAE4 Sn786 Medium: Head 5600 MHz

Medium parameters used: f = 5600 MHz; σ = 5.212 S/m; ε_r =34.848; ρ = 1000 kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 5600 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (4.86, 4.86, 4.86);

System Validation /Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 63.892 V/m; Power Drift = 0.07 dB

SAR(1 g) = 8.42 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (interpolated) =9.98 W/kg

System Validation/Zoom Scan (8x8x8)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 63.892 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 32.8 W/kg

SAR(1 g) = 8.45 W/kg; SAR(10 g) = 2.35 W/kg Maximum value of SAR (measured) = 10.2 W/kg

-10.00
-20.00
-30.00
-40.00

0 dB = 10.2 W/kg = 10.09 dB W/kg

Fig.B.11. validation 5600MHz 100mW

5600MHz

Date: 2018-5-18

Electronics: DAE4 Sn786 Medium: Body 5600 MHz

Medium parameters used: f = 5600 MHz; $\sigma = 5.654 \text{ S/m}$; $\varepsilon_r = 48.971$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 5600 MHz Duty Cycle: 1:1

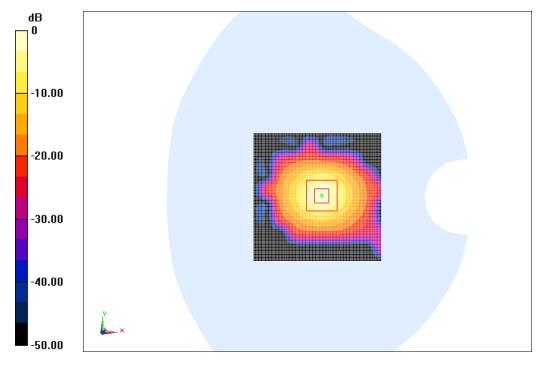
Probe: EX3DV4 - SN3633 ConvF (4.33, 4.33, 4.33);

System Validation /Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 60.464 V/m; Power Drift = -0.02 dB

SAR(1 g) = 7.74 W/kg; SAR(10 g) = 2.18 W/kg

Maximum value of SAR (interpolated) =9.84 W/kg


System Validation/Zoom Scan (8x8x8)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 60.464 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 28. 7 W/kg

SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 9.77 W/kg

0 dB = 9.77 W/kg = 9.90 dB W/kg

Fig.B.12. validation 5600MHz 100mW

5800MHz

Date: 2018-5-18

Electronics: DAE4 Sn786 Medium: Head 5800 MHz

Medium parameters used: f = 5800 MHz; $\sigma = 5.408 \text{ S/m}$; $\varepsilon_r = 34.59$; $\rho = 1000 \text{ kg/m}^3$

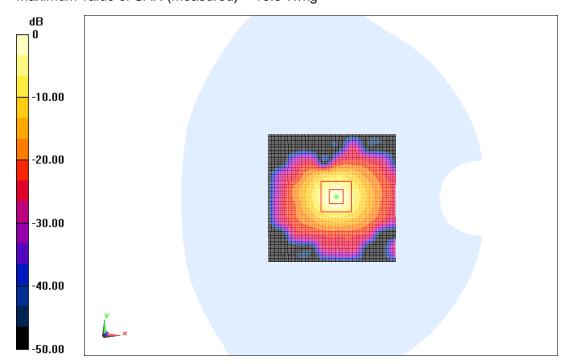
Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 5800 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (4.81, 4.81, 4.81);

System Validation/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 60.255 V/m; Power Drift = 0.10 dB

SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.23 W/kg Maximum value of SAR (interpolated) =10.1W/kg


System Validation/Zoom Scan (8x8x8)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 60.255 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 34.2 W/kg

SAR(1 g) = 8.11 W/kg; SAR(10 g) = 2.26 W/kg

Maximum value of SAR (measured) = 10.3 W/kg

0 dB = 10.3 W/kg = 10.13 dB W/kg

Fig.B.13. Validation 5800MHz 100mW

5800MHz

Date: 2018-5-18

Electronics: DAE4 Sn786 Medium: Body 5800 MHz

Medium parameters used: f = 5800 MHz; $\sigma = 6.193 \text{ S/m}$; $\varepsilon_r = 47.516$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 5800 MHz Duty Cycle: 1:1

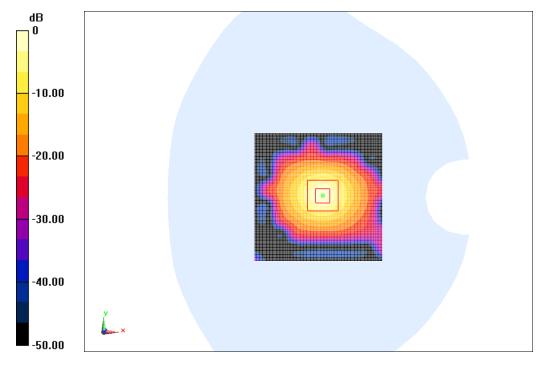
Probe: EX3DV4 - SN3633 ConvF (4.48, 4.48, 4.48);

System Validation/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 60.478 V/m; Power Drift = 0.11 dB

SAR(1 g) = 7.79 W/kg; SAR(10 g) = 2.14 W/kg

Maximum value of SAR (interpolated) =9.89 W/kg


System Validation/Zoom Scan (8x8x8)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 60.478 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 32.5 W/kg

SAR(1 g) = 7.85 W/kg; SAR(10 g) = 2.16 W/kg

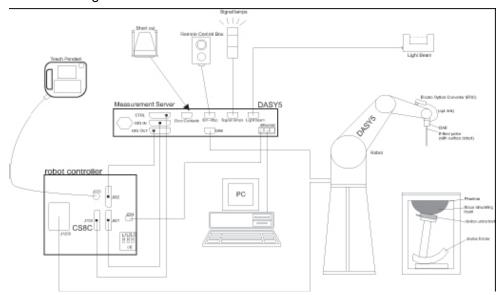
Maximum value of SAR (measured) = 10.1 W/kg

0 dB = 10.1 W/kg = 10.04 dB W/kg

Fig.B.14. Validation 5800MHz 100mW

The SAR system verification must be required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR.

Table B.1 Comparison between area scan and zoom scan for system verification


Band (MHz)	Position	Area scan (1g)	Zoom scan (1g)	Drift (%)	
750	Head	2.15	2.13	-0.93	
750	Body	2.18	2.21	1.38	
835	Head	2.28	2.24	-1.75	
835	Body	2.42	2.46	1.65	
1800	Head	9.87	9.92	0.51	
1800	Body	9.60	9.55	-0.52	
1900	Head	10.3	10.5	1.94	
1900	Body	10.5	10.7	1.90	
2450	Head	13.5	13.6	0.74	
2450	Body	12.9	12.7	-1.55	
2550	Head	14.4	14.5	0.69	
2550	Body	13.3	13.2	-0.75	

ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc.
 The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals
 for the digital communication to the DAE. To use optical surface detection, a special version of
 the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2 DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection durning a software approach and looks for the maximum using 2ndord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model: ES3DV3, EX3DV4

Frequency 10MHz — 6.0GHz(EX3DV4) Range: 10MHz — 4GHz(ES3DV3)

Calibration: In head and body simulating tissue at

Frequencies from 835 up to 5800MHz

Linearity: $\pm 0.2 \text{ dB}(30 \text{ MHz to 6 GHz}) \text{ for EX3DV4}$

± 0.2 dB(30 MHz to 4 GHz) for ES3DV3

Dynamic Range: 10 mW/kg — 100W/kg

Probe Length: 330 mm

Probe Tip

Length: 20 mm Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9 mm for ES3DV3)
Tip-Center: 1 mm (2.0mm for ES3DV3)
Application: SAR Dosimetry Testing

Compliance tests of mobile phones

Dosimetry in strong gradient fields

Picture C.2 Near-field Probe

Picture C.3 E-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed

in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 $\Delta t = \text{Exposure time (30 seconds)},$

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics (DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- ➤ High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- > Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 5

C.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5:128MB), RAM (DASY5:128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture C.6 Server for DASY 5

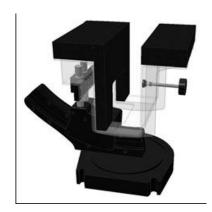
C.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ±0.5mm would produce a SAR uncertainty of ±20%. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss

POM material having the following dielectric


parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.7-1: Device Holder

Picture C.7-2: Laptop Extension Kit

C.4.5 Phantom

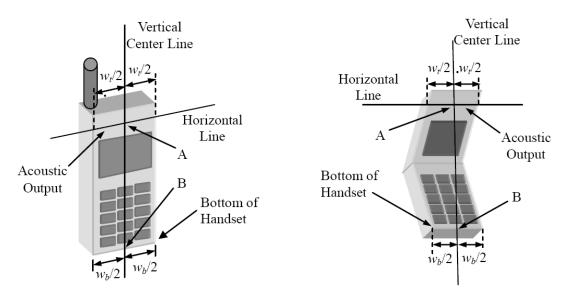
The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness: $2 \pm 0.2 \text{ mm}$ Filling Volume: Approx. 25 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W)

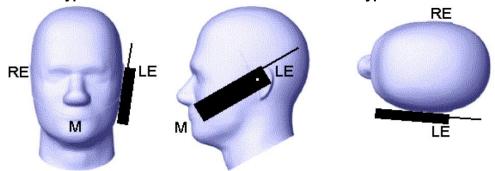
Available: Special


Picture C.8: SAM Twin Phantom

ANNEX D Position of the wireless device in relation to the phantom

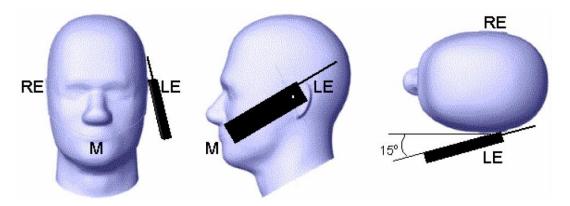
D.1 General considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.


 W_t Width of the handset at the level of the acoustic

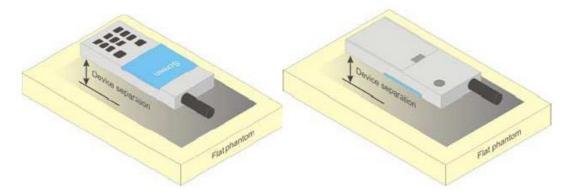
 W_b Width of the bottom of the handset

A Midpoint of the width w_t of the handset at the level of the acoustic output


B Midpoint of the width W_b of the bottom of the handset

Picture D.1-a Typical "fixed" case handset
Picture D.1-b Typical "clam-shell" case handset

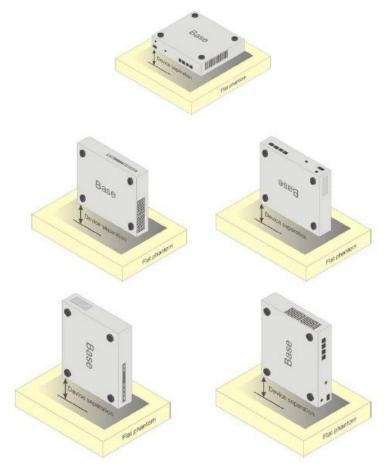
Picture D.2 Cheek position of the wireless device on the left side of SAM



Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.


Picture D.4 Test positions for body-worn devices

D.3 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

D.4 DUT Setup Photos

Picture D.6

ANNEX E Equivalent Media Recipes

The liquid used for the frequency range of 700-6000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

Table E.1: Composition of the Tissue Equivalent Matter

					-					
Frequency	835	835	1900	1900	2450	2450	5800	5800		
(MHz)	Head	Body	Head	Body	Head	Body	Head	Body		
Ingredients (% by weight)										
Water	41.45	52.5	55.242	69.91	58.79	72.60	65.53	65.53		
Sugar	56.0	45.0	\	\	\	\	\	\		
Salt	1.45	1.4	0.306	0.13	0.06	0.18	\	\		
Preventol	0.1	0.1	\	\	\	\	\	\		
Cellulose	1.0	1.0	\	\	\	\	\	\		
Glycol	,	,	44.452	29.96	41.15	27.22				
Monobutyl	\	\	44.432	29.90	41.15	21.22	\	\		
Diethylenglycol	\	,	\	\	\	\				
monohexylether	\	\	\	\	\	\	17.24	17.24		
Triton X-100	\	\	\	\	\	\	17.24	17.24		
Dielectric	ε=41.5	ε=55.2	ε=40.0	ε=53.3	ε=39.2	ε=52.7				
Parameters	$\sigma = 0.90$	σ=0.97	$\sigma = 1.40$	$\sigma = 1.52$	σ=1.80	ε=52.7 σ=1.95	ε=35.3	ε=48.2		
Target Value	0-0.90	0-0.97	0-1.40	0-1.02	0-1.60	0-1.93	σ=5.27	σ=6.00		

Note: There is a little adjustment respectively for 750, 1800, 2600, 5200, 5300, and 5600, based on the recipe of closest frequency in table E.1