

FCC Test Report

APPLICANT	: HMD Global Oy
EQUIPMENT	: Smart Phone
BRAND NAME	: NOKIA
MODEL NAME	: TA-1004
FCC ID	: 2AJOTTA-1004
STANDARD	: FCC 47 CFR FCC Part 15 Subpart B
CLASSIFICATION	: Certification

This is a variant report which is only valid together with the original test report. The product was received on Aug. 31, 2017 and testing was completed on Sep. 05, 2017. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI C63.4-2014 and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Louis Wu

Reviewed by: Louis Wu / Manager

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : 2AJOTTA-1004 Page Number: 1 of 20Report Issued Date: Sep. 13, 2017Report Version: Rev. 01Report Template No.: BU5-FD15B Version 2.0

TABLE OF CONTENTS

RE	VISION	I HISTORY	3
SU	MMAR	Y OF TEST RESULT4	ł
1.	GENE	RAL DESCRIPTION	5
	1.1. 1.2. 1.3. 1.4. 1.5.	Applicant	5 5 5 6
2	1.6.		
Ζ.		CONFIGURATION OF EQUIPMENT UNDER TEST	
	2.1. 2.2. 2.3. 2.4.	Test Mode 7 Connection Diagram of Test System 7 Support Unit used in test configuration and system 8 EUT Operation Test Setup 9	7 3
3.	TEST	RESULT10)
	3.1. 3.2.	Test of AC Conducted Emission Measurement 10 Test of Radiated Emission Measurement 14	
4.	LIST	OF MEASURING EQUIPMENT19	•
5.	UNCE	RTAINTY OF EVALUATION)

APPENDIX A. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FC783101	Rev. 01	Initial issue of report	Sep. 13, 2017

Report Section	FCC Rule	Description	Limit	Result	Remark
					Under limit
3.1	15.107	AC Conducted Emission	< 15.107 limits	PASS	9.70 dB at
					0.182 MHz
					Under limit
3.2	15.109	Radiated Emission	< 15.109 limits	PASS	9.47 dB at
					30.540 MHz

SUMMARY OF TEST RESULT

Remark: This is a variant report which can be referred Class II Permissive Change. All the test cases were performed on original report which can be referred to Sporton Report Number FC712102. Based on the original report, the conducted emission and radiated emission test cases were verified.

1. General Description

1.1. Applicant

HMD Global Oy

Karaportti 2, 02610 Espoo, Finland

1.2. Manufacturer

HMD Global Oy

Karaportti 2, 02610 Espoo, Finland

1.3. Product Feature of Equipment Under Test

GSM/WCDMA/LTE, Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n/ac, NFC, ANT+ and GPS.

Product Specification subjective to this standard				
	WWAN: PIFA Antenna			
	WLAN: PIFA Antenna			
Antonno Tuno	Bluetooth: PIFA Antenna			
Antenna Type	GPS / Glonass / Beidou: Monopole Antenna			
	NFC: Loop Antenna			
	ANT+ : PIFA Antenna			

1.4. Modification of EUT

No modifications are made to the EUT during all test items.

1.5. Test Location

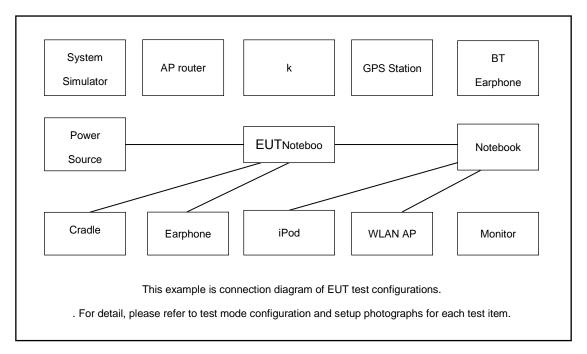
Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1190 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.					
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,					
Test Cite Leastion	Kwei-Shan District, Tao Yuan City, Tai	iwan, R.O.C.				
Test Site Location	TEL: +886-3-327-3456					
	FAX: +886-3-328-4978					
Toot Site No	Sporton Site No.					
iest site no.	Test Site No. CO05-HY 03CH06-HY					

1.6. Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC 47 CFR FCC Part 15 Subpart B
- ANSI C63.4-2014
- **Remark:** All test items were verified and recorded according to the standards and without any deviation during the test.


2. Test Configuration of Equipment Under Test

2.1. Test Mode

The EUT has been associated with peripherals pursuant to ANSI C63.4-2014 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (30MHz to the 5th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

Test Items	Function Type					
AC Conducted Emission	Mode 1: GSM850 Idle + Bluetooth Idle + WLAN (2.4GHz) Idle + ANT+ Idle + Earphone + USB Cable (Data Link with Notebook) + SIM 1					
Radiated Emissions	Mode 1: GSM850 Idle + Bluetooth Idle + WLAN (2.4GHz) Idle + ANT+ Idle + Earphone + USB Cable (Data Link with Notebook) + SIM 1					
Remark: Data Link with Notebook means data application transferred mode between EUT and						
Notebook.						

2.2.Connection Diagram of Test System

2.3. Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	System Simulator	R&S	CMU 200	N/A	N/A	Unshielded, 1.8 m
3.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
4.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8m
5.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0 m	N/A
6.	iPod EarPhone	Apple	N/A	Verification	Unshielded, 1.2m	N/A
7.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
8.	Notebook	DELL	Latitude E3340	FCC DoC/ Contains FCC ID: PD97260NGU	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
9.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A
10.	SD Card	SanDisk	MicroSDHC 16GB Class 10 UHS-I	FCC DoC	N/A	N/A
11.	Wheel Counter	N/A	N/A	N/A	N/A	N/A

2.4. EUT Operation Test Setup

The EUT was in GSM idle mode during the testing. The EUT was synchronized to the BCCH, and is in continuous receiving mode by setting system simulator's paging reorganization.

At the same time, the EUT was attached to the Bluetooth earphone or WLAN AP, and the following programs installed in the EUT were programmed during the test.

- 1. Data application is transferred between Laptop and EUT via USB cable.
- 2. EUT links with Notebook and execute ping.
- 3. Execute ANT+ application to connect with the wheel counter.

3. Test Result

3.1. Test of AC Conducted Emission Measurement

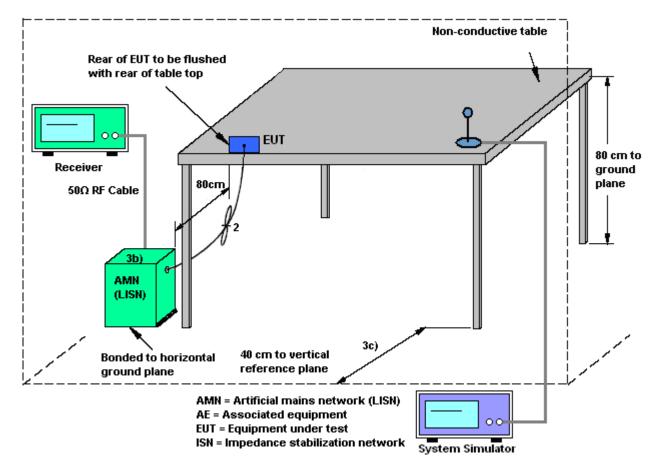
3.1.1 Limits of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission	Conducted	limit (dBuV)
(MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.1.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4 Test Setup

						Temper	rature :	27~28 ℃	
est Engineer :	Shareet Y	Shareef Yu				Relative Humidity :		47~48%	
est Voltage :	120Vac/6	120Vac / 60Hz					Phase :		
	100 90 80 70 60 60 40 40 30 20 10		ENV	216 Auto			P Limit at Main Port		
Final Res			300 1M	2M Frequenc	3M 4M 5 y in Hz	M 6 8 10	и 20М 30М		
Froquon				Corr	Margin	Limit			
Frequen (MHz)		eak Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)			
-	cy Quasi-P (dBµV	eak Filter	Line L1						
(MHz)	cy Quasi-P (dBµV 0 54.7	eak /) Filter		(dB)	(dB)	(dBµV)			
(MHz) 0.18200	cy Quasi-P (dBµV 0 54.7 0 45.6	eak /) Filter Off	L1	(dB) 19.5	(dB) 9.7	(dBµV) 64.4			
(MHz) 0.18200 0.24600 0.33400 0.57400	Cy Quasi-P (dBµV 0 54.7 0 45.6 0 31.1 0 35.2	eak) Filter Off Off Off Off Off	L1 L1 L1 L1	(dB) 19.5 19.5 19.5 19.5	(dB) 9.7 16.3 28.3 20.8	(dBµV) 64.4 61.9 59.4 56.0			
(MHz) 0.18200 0.24600 0.33400 0.57400 3.86200	Cy Quasi-P (dBµV 0 54.7 0 45.6 0 31.1 0 35.2 0 35.0	eak) Filter Off Off Off Off Off Off Off	L1 L1 L1 L1 L1	(dB) 19.5 19.5 19.5 19.5 19.5 19.6	(dB) 9.7 16.3 28.3 20.8 21.0	(dBµV) 64.4 61.9 59.4 56.0 56.0			
(MHz) 0.18200 0.24600 0.33400 0.57400 3.86200 7.00600	Cy Quasi-P (dBµV 0 54.7 0 45.6 0 31.1 0 35.2 0 35.0 0 38.3	eak) Filter Off Off Off Off Off Off Off Of	L1 L1 L1 L1 L1 L1 L1	(dB) 19.5 19.5 19.5 19.5 19.6 19.6	(dB) 9.7 16.3 28.3 20.8 21.0 21.7	(dBµV) 64.4 61.9 59.4 56.0 56.0 60.0			
(MHz) 0.18200 0.24600 0.33400 0.57400 3.86200	Cy Quasi-P (dBµV 0 54.7 0 45.6 0 31.1 0 35.2 0 35.0 0 38.3	eak Filter) Off Off Off Off Off Off Off Off	L1 L1 L1 L1 L1	(dB) 19.5 19.5 19.5 19.5 19.5 19.6	(dB) 9.7 16.3 28.3 20.8 21.0	(dBµV) 64.4 61.9 59.4 56.0 56.0			
(MHz) 0.18200 0.24600 0.33400 0.57400 3.86200 7.00600 16.0940	Cy Quasi-P (dBµV 0 54.7 0 45.6 0 31.1 0 35.2 0 35.0 0 38.3 00 29.6	eak y) Filter Off Off Off Off Off Off Off Of	L1 L1 L1 L1 L1 L1 L1	(dB) 19.5 19.5 19.5 19.5 19.6 19.6	(dB) 9.7 16.3 28.3 20.8 21.0 21.7	(dBµV) 64.4 61.9 59.4 56.0 56.0 60.0			
(MHz) 0.18200 0.24600 0.33400 0.57400 3.86200 7.00600 16.09400 Final Res	cy Quasi-P (dBµV 0 54.7 0 45.6 0 31.1 0 35.2 0 35.0 0 38.3 00 29.6 wult : Averag	eak y) Filter Off Off Off Off Off Off Off Of	L1 L1 L1 L1 L1 L1 L1	(dB) 19.5 19.5 19.5 19.5 19.6 19.6 19.7	(dB) 9.7 16.3 28.3 20.8 21.0 21.7 30.4	(dBµV) 64.4 61.9 59.4 56.0 56.0 60.0 60.0			
(MHz) 0.18200 0.24600 0.33400 0.57400 3.86200 7.00600 16.09400 Final Res Frequen	cy Quasi-P (dBµV 0 54.7 0 45.6 0 31.1 0 35.2 0 35.0 0 38.3 00 29.6 cult : Averag	eak) Filter Off Off Off Off Off Off Off Of	L1 L1 L1 L1 L1 L1 L1	(dB) 19.5 19.5 19.5 19.6 19.6 19.6 19.7 Corr.	(dB) 9.7 16.3 28.3 20.8 21.0 21.7 30.4 Margin	(dBµV) 64.4 61.9 59.4 56.0 56.0 60.0 60.0 Limit			
(MHz) 0.18200 0.24600 0.33400 0.57400 3.86200 7.00600 16.09400 Final Res Frequen (MHz)	cy Quasi-P (dBµV 0 54.7 0 45.6 0 31.1 0 35.2 0 35.0 0 38.3 00 29.6 cy Average (dBµV	eak) Off Off Off Off Off Off Off Off	L1 L1 L1 L1 L1 L1 L1 L1	(dB) 19.5 19.5 19.5 19.6 19.6 19.6 19.7 Corr. (dB)	(dB) 9.7 16.3 28.3 20.8 21.0 21.7 30.4 Margin (dB)	(dBµV) 64.4 61.9 59.4 56.0 56.0 60.0 60.0 Limit (dBµV)			
(MHz) 0.18200 0.24600 0.33400 0.57400 3.86200 7.00600 16.09400 Final Res Frequen (MHz) 0.18200	cy Quasi-P (dBµV 0 54.7 0 45.6 0 31.1 0 35.2 0 35.0 0 38.3 00 29.6 cult : Averag cy Averag (dBµV 0 40.9	eak () Filter Off Off Off Off Off Off Off Of	L1 L1 L1 L1 L1 L1 L1 L1 L1 Line	(dB) 19.5 19.5 19.5 19.6 19.6 19.6 19.7 Corr. (dB) 19.5	(dB) 9.7 16.3 28.3 20.8 21.0 21.7 30.4 Margin (dB) 13.5	(dBµV) 64.4 61.9 59.4 56.0 60.0 60.0 60.0 Limit (dBµV) 54.4			
(MHz) 0.18200 0.24600 0.33400 0.57400 3.86200 7.00600 16.09400 Final Res Frequen (MHz) 0.18200 0.24600	cy Quasi-P (dBµV 0 54.7 0 45.6 0 31.1 0 35.2 0 35.0 0 38.3 00 29.6 cy Averag (dBµV 0 40.9 0 31.8	eak y) Off Off Off Off Off Off Off Off	L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	(dB) 19.5 19.5 19.5 19.6 19.6 19.6 19.7 Corr. (dB) 19.5 19.5	(dB) 9.7 16.3 28.3 20.8 21.0 21.7 30.4 Margin (dB) 13.5 20.1	(dBµV) 64.4 61.9 59.4 56.0 60.0 60.0 60.0 Limit (dBµV) 54.4 51.9			
(MHz) 0.18200 0.24600 0.33400 0.57400 3.86200 7.00600 16.09400 Final Res Frequen (MHz) 0.18200	cy Quasi-P (dBµV 0 54.7 0 45.6 0 31.1 0 35.2 0 35.0 0 38.3 00 29.6 cult : Averag cy Averag (dBµV 0 40.9 0 31.8 0 19.6	eak () Pilter Off Off Off Off Off Off Off Of	L1 L1 L1 L1 L1 L1 L1 L1 L1 Line	(dB) 19.5 19.5 19.5 19.6 19.6 19.6 19.7 Corr. (dB) 19.5	(dB) 9.7 16.3 28.3 20.8 21.0 21.7 30.4 Margin (dB) 13.5	(dBµV) 64.4 61.9 59.4 56.0 60.0 60.0 60.0 Limit (dBµV) 54.4			
(MHz) 0.18200 0.24600 0.33400 0.57400 3.86200 7.00600 16.09400 Final Res Frequen (MHz) 0.18200 0.24600 0.33400	cy Quasi-P (dBµV 0 54.7 0 45.6 0 31.1 0 35.2 0 35.0 0 38.3 00 29.6 cy Averag (dBµV 0 40.9 0 31.8 0 19.6 0 23.8	eak () Filter) Off Off Off Off Off Off Off Off	L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	(dB) 19.5 19.5 19.5 19.6 19.6 19.6 19.7 Corr. (dB) 19.5 19.5	(dB) 9.7 16.3 28.3 20.8 21.0 21.7 30.4 Margin (dB) 13.5 20.1 29.8	(dBμV) 64.4 61.9 59.4 56.0 60.0 60.0 60.0 60.0 54.4 51.9 49.4			
(MHz) 0.18200 0.24600 0.33400 0.57400 3.86200 7.00600 16.09400 Final Res Frequen (MHz) 0.18200 0.24600 0.33400 0.57400	cy Quasi-P (dBµV 0 54.7 0 45.6 0 31.1 0 35.2 0 35.0 0 38.3 00 29.6 ult : Averag (dBµV 0 40.9 0 31.8 0 19.6 0 23.8 0 26.7	eak) Filter Off Off Off Off Off Off Off Of	L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	(dB) 19.5 19.5 19.5 19.6 19.6 19.6 19.7 Corr. (dB) 19.5 19.5 19.5 19.5	(dB) 9.7 16.3 28.3 20.8 21.0 21.7 30.4 Margin (dB) 13.5 20.1 29.8 22.2	(dBµV) 64.4 61.9 59.4 56.0 60.0 60.0 60.0 Limit (dBµV) 54.4 51.9 49.4 46.0			

3.1.5 Test Result of AC Conducted Emission

Tost Engineer	Sharoof V/··					Tempera	ature :	27~28 ℃
Test Engineer :	Shareef Yu					Relative Humidity :		: 47~48%
Test Voltage :	120Vac / 60Hz					Phase :		Neutral
Remark :	emark : All emissions not reported here are more					an 10 dB	below the	prescribed limit.
			ENV	216 Auto	Test-N			
	100 90 80 70 60 50 40 40 20 10						P Limit at Main F	
	0 150k 300 40	0 500 8	BOO 1M	2M Frequence	3M 4M 8 cy in Hz	5M 6 8 10M	M 20M 3	
	150k 300 40	<u> </u>		Frequence	cy in Hz		M 20M 3	- 30M
Final Resu Frequency (MHz)	150k 300 40		BOO 1M			5м 6 8 10м Limit (dBµV)	M 20M 3	- 30M
Frequenc	ilt : Quasi-Peak	<u> </u>		Frequence Corr.	cy in Hz Margin	Limit	M 20M 3	
Frequency (MHz)	Ilt : Quasi-Peak Quasi-Peak (dBµV)	Filter	Line	Frequence Corr. (dB)	Margin (dB)	Limit (dBµV)	M 20M 3	- 30M
Frequency (MHz) 0.174000	Ilt : Quasi-Peak Quasi-Peak (dBµV) 51.9	Filter	Line	Corr. (dB) 19.5	Margin (dB) 12.9	Limit (dBµV) 64.8	M 20M 3	i 30M
Frequency (MHz) 0.174000 0.230000 0.302000 0.558000	Ilt : Quasi-Peak (dBµV) 51.9 42.5 37.2 36.0	Filter Off Off Off	Line N N N	Frequence Corr. (dB) 19.5 19.5 19.5 19.5	Margin (dB) 12.9 19.9 23.0 20.0	Limit (dBµV) 64.8 62.4 60.2 56.0	M 20M 3	i 30M
Frequency (MHz) 0.174000 0.230000 0.302000 0.558000 1.374000	150k 300 40 Ilt: Quasi-Peak (dBμV) 51.9 42.5 37.2 36.0 27.6	Filter Off Off Off Off Off	Line N N N N	Frequent Corr. (dB) 19.5 19.5 19.5 19.5 19.5	Margin (dB) 12.9 19.9 23.0 20.0 28.4	Limit (dBµV) 64.8 62.4 60.2 56.0 56.0	м 20М :	- 30M
Frequency (MHz) 0.174000 0.230000 0.302000 0.558000 1.374000 3.870000	150k 300 40 Ilt: Quasi-Peak (dBμV) 51.9 42.5 37.2 36.0 27.6 35.1 35.1	Filter Off Off Off Off Off Off Off	Line N N N N N	Frequent Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.6	Margin (dB) 12.9 19.9 23.0 20.0 28.4 20.9	Limit (dBµV) 64.8 62.4 60.2 56.0 56.0 56.0	М 20М 3	i 30M
Frequency (MHz) 0.174000 0.230000 0.302000 0.558000 1.374000 3.870000 5.854000	150k 300 40 Ilt: Quasi-Peak (dBμV) 51.9 42.5 37.2 36.0 27.6 35.1 40.3 40.3	Filter Off Off Off Off Off Off Off Off	Line N N N N N N N	Frequence (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.6	Margin (dB) 12.9 19.9 23.0 20.0 28.4 20.9 19.7	Limit (dBµV) 64.8 62.4 60.2 56.0 56.0 56.0 60.0	M 20M 3	i 30M
Frequency (MHz) 0.174000 0.230000 0.302000 0.558000 1.374000 3.870000 5.854000 15.782000	150k 300 40 150k 300 40 Ilt : Quasi-Peak (dBμV) 51.9 42.5 37.2 36.0 27.6 35.1 40.3 30.6	Filter Off Off Off Off Off Off Off	Line N N N N N	Frequent Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.6	Margin (dB) 12.9 19.9 23.0 20.0 28.4 20.9	Limit (dBµV) 64.8 62.4 60.2 56.0 56.0 56.0	M 20M 3	i 30M
Frequency (MHz) 0.174000 0.230000 0.302000 0.558000 1.374000 3.870000 5.854000 15.782000 Final Resu	150k 300 40 1150k 300 40 Ilt : Quasi-Peak (dBμV) 6 51.9 42.5 37.2 36.0 27.6 35.1 40.3 30.6 Ilt : Average	Filter Off Off Off Off Off Off Off Off	Line N N N N N N N	Frequent (dB) 19.5 19.5 19.5 19.5 19.5 19.6 19.6 19.8	Margin (dB) 12.9 19.9 23.0 20.0 28.4 20.9 19.7 29.4	Limit (dBµV) 64.8 62.4 60.2 56.0 56.0 56.0 60.0 60.0	M 20M :	- 30M
Frequency (MHz) 0.174000 0.230000 0.302000 0.558000 1.374000 3.870000 5.854000 15.782000 Final Resu Frequency	150k 300 40 150k 300 40 Ilt : Quasi-Peak (dBμV) 6 51.9 42.5 37.2 36.0 27.6 35.1 40.3 30.6 Ilt : Average Average	Filter Off Off Off Off Off Off Off Off	Line N N N N N N N	Frequent (dB) 19.5 19.5 19.5 19.5 19.5 19.6 19.6 19.8 2007.	Margin (dB) 12.9 19.9 23.0 20.0 28.4 20.9 19.7 29.4 Margin	Limit (dBµV) 64.8 62.4 60.2 56.0 56.0 56.0 60.0 60.0 60.0	M 20M 3	i 30M
Frequency (MHz) 0.174000 0.230000 0.302000 0.558000 1.374000 3.870000 5.854000 15.782000 Final Resu Frequency (MHz)	150k 300 40 1150k 300 40 111 : Quasi-Peak (dBμV) 60 51.9 42.5 42.5 37.2 36.0 27.6 35.1 40.3 0 30.6 111 : Average (dBµV) 40.3	Filter Off Off Off Off Off Off Off Off Off	Line N N N N N N Line	Frequent (dB) 19.5 19.5 19.5 19.5 19.5 19.6 19.6 19.6 19.8 Corr. (dB)	Margin (dB) 12.9 19.9 23.0 20.0 28.4 20.9 19.7 29.4 Margin (dB)	Limit (dBµV) 64.8 62.4 60.2 56.0 56.0 56.0 60.0 60.0 Limit (dBµV)	M 20M 3	i 30M
Frequency (MHz) 0.174000 0.230000 0.302000 0.558000 1.374000 3.870000 5.854000 15.782000 Final Resu Frequency (MHz) 0.174000	150k 300 40 1150k 300 40 Ilt : Quasi-Peak (dBμV) 6 51.9 42.5 37.2 36.0 27.6 35.1 40.3 0 0 30.6 Ilt : Average (dBμV) 35.8	Filter Off Off Off Off Off Off Off Off Filter	Line N N N N N N N Line N	Frequent (dB) 19.5 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.8 Corr. (dB) 19.5	Margin (dB) 12.9 19.9 23.0 20.0 28.4 20.9 19.7 29.4 Margin (dB) 19.0	Limit (dBµV) 64.8 62.4 60.2 56.0 56.0 56.0 60.0 60.0 60.0 Limit (dBµV) 54.8	M 20M 3	i 30M
Frequency (MHz) 0.174000 0.230000 0.302000 0.558000 1.374000 3.870000 5.854000 15.782000 Final Resu Frequency (MHz) 0.174000 0.230000	150k 300 40 1150k 300 40 Ilt : Quasi-Peak (dBμV) 51.9 42.5 37.2 36.0 27.6 35.1 40.3 0 30.6 Ilt : Average (dBμV) 35.8 28.1 28.1	Filter Off Off Off Off Off Off Off Off Filter	Line N N N N N N Line N N	Frequent (dB) 19.5 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.8 (dB) 19.5 19.5	Margin (dB) 12.9 19.9 23.0 20.0 28.4 20.9 19.7 29.4 Margin (dB) 19.0 24.3	Limit (dBµV) 64.8 62.4 60.2 56.0 56.0 56.0 60.0 60.0 60.0 60.0 54.8 52.4	M 20M 3	i 30M
Frequency (MHz) 0.174000 0.230000 0.302000 0.558000 1.374000 3.870000 5.854000 15.782000 Final Resu Frequency (MHz) 0.174000 0.230000 0.302000	150k 300 40 1150k 300 40 Ilt : Quasi-Peak (dBμV) 51.9 42.5 37.2 36.0 27.6 35.1 40.3 0 30.6 Ilt : Average (dBμV) 35.8 28.1 25.5	Filter Off Off Off Off Off Off Off Off Off Of	Line N N N N N N N Line N N N N	Frequent (dB) 19.5 19.5 19.5 19.5 19.5 19.6 19.6 19.8 Corr. (dB) 19.5 19.5 19.5	Margin (dB) 12.9 19.9 23.0 20.0 28.4 20.9 19.7 29.4 Margin (dB) 19.0 24.3 24.7	Limit (dBµV) 64.8 62.4 60.2 56.0 56.0 56.0 60.0 60.0 60.0 60.0 54.8 52.4 52.4 50.2	M 20M 3	i 30M
Frequency (MHz) 0.174000 0.230000 0.302000 0.558000 1.374000 3.870000 5.854000 15.782000 Final Resu Frequency (MHz) 0.174000 0.230000 0.302000 0.558000	150k 300 40 150k 300 40 Ilt: Quasi-Peak (dBμV) 51.9 42.5 37.2 36.0 27.6 35.1 40.3 0 0 30.6 Ilt: Average (dBµV) 35.8 28.1 25.5 26.1	Filter Off Off Off Off Off Off Off Off Off Of	Line N N N N N N N Line N N N N N	Frequent (dB) 19.5 19.5 19.5 19.5 19.5 19.6 19.6 19.8 (dB) 19.5 19.5 19.5 19.5	Margin (dB) 12.9 19.9 23.0 20.0 28.4 20.9 19.7 29.4 Margin (dB) 19.0 24.3 24.7 19.9	Limit (dBµV) 64.8 62.4 60.2 56.0 56.0 56.0 60.0 60.0 60.0 60.0 54.8 52.4 50.2 46.0	M 20M 3	i 30M
Frequency (MHz) 0.174000 0.230000 0.302000 0.558000 1.374000 3.870000 5.854000 15.782000 Final Resu Frequency (MHz) 0.174000 0.230000 0.302000 0.558000 1.374000	150k 300 40 1150k 300 40 Ilt: Quasi-Peak (dBµV) 51.9 42.5 37.2 36.0 27.6 35.1 40.3 0 0 30.6 Ilt: Average (dBµV) 35.8 28.1 25.5 26.1 20.8 20.8	Filter Off Off Off Off Off Off Off Off Off Of	Line N N N N N N N Line N N N N N N	Frequent (dB) 19.5 19.5 19.5 19.5 19.5 19.6 19.6 19.8 (dB) 19.5 19.5 19.5 19.5 19.5 19.5	Margin (dB) 12.9 19.9 23.0 20.0 28.4 20.9 19.7 29.4 Margin (dB) 19.0 24.3 24.7 19.9 25.2	Limit (dBµV) 64.8 62.4 60.2 56.0 56.0 56.0 60.0 60.0 60.0 60.0 54.8 52.4 50.2 46.0 46.0	M 20M 3	i 30M
Frequency (MHz) 0.174000 0.230000 0.302000 0.558000 1.374000 3.870000 5.854000 15.782000 Final Resu Frequency (MHz) 0.174000 0.230000 0.302000 0.558000	150k 300 40 1150k 300 40 Ilt: Quasi-Peak (dBµV) 51.9 42.5 37.2 36.0 27.6 35.1 40.3 30.6 Ilt: Average (dBµV) 35.8 28.1 25.5 26.1 20.8 27.2	Filter Off Off Off Off Off Off Off Off Off Of	Line N N N N N N N Line N N N N N	Frequent (dB) 19.5 19.5 19.5 19.5 19.5 19.6 19.6 19.8 (dB) 19.5 19.5 19.5 19.5	Margin (dB) 12.9 19.9 23.0 20.0 28.4 20.9 19.7 29.4 Margin (dB) 19.0 24.3 24.7 19.9	Limit (dBµV) 64.8 62.4 60.2 56.0 56.0 56.0 60.0 60.0 60.0 60.0 54.8 52.4 50.2 46.0	M 20M 3	i 30M

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : 2AJOTTA-1004 Page Number: 13 of 20Report Issued Date: Sep. 13, 2017Report Version: Rev. 01Report Template No.: BU5-FD15B Version 2.0

3.2. Test of Radiated Emission Measurement

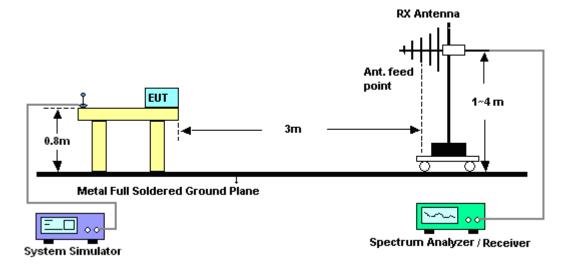
3.2.1. Limit of Radiated Emission

The emissions from an unintentional radiator shall not exceed the field strength levels specified in the following table:

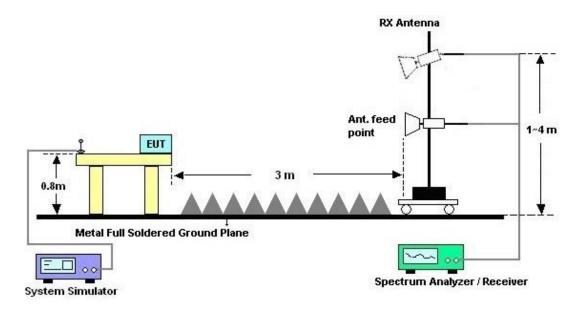
Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.2.2. Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.


3.2.3. Test Procedures

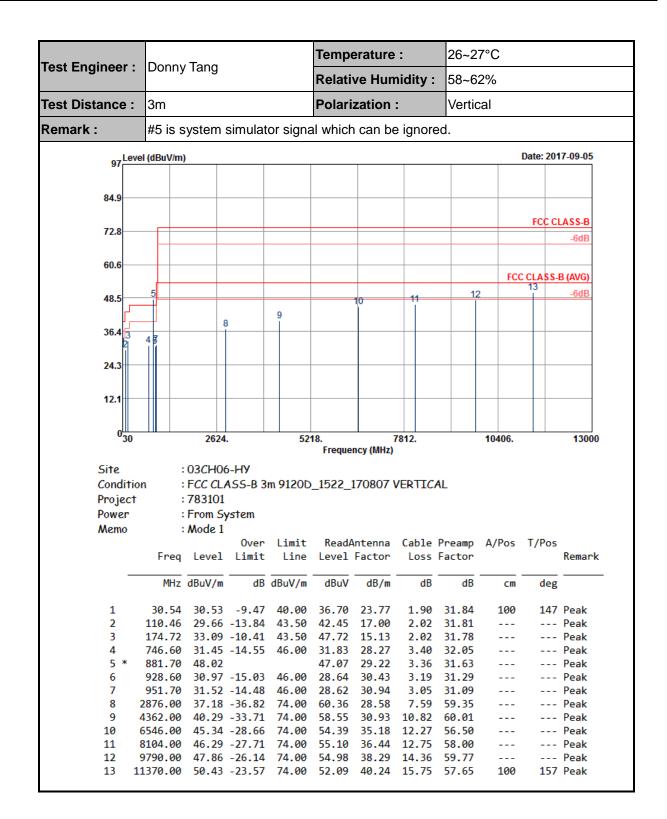
- 1. The EUT was placed on a turntable with 0.8 meter above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest radiation.
- 4. The antenna is a Bi-Log antenna and its height is adjusted between one to four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode (RBW=120kHz/VBW=300kHz for frequency below 1GHz; RBW=1MHz VBW=3MHz (Peak), RBW=1MHz/VBW=10Hz (Average) for frequency above 1GHz).
- 7. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, peak values of EUT will be reported. Otherwise, the emission will be repeated by using the quasi-peak method and reported.
- 8. Emission level (dB μ V/m) = 20 log Emission level (μ V/m)
- 9. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level



3.2.4. Test Setup of Radiated Emission

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz



3.2.5. Test Result of Radiated Emission

97 Level (dBuV/m) Date: 2017. 84.9 72.8 FCC CLA 60.6 FCC CLASS-B 48.5 0 5 0 36.4 8 34.9 8	
Remark : #5 is system simulator signal which can be ignored.	ASS-B
97 84.9 72.8 60.6 48.5 5 60.6 48.5 5 60.6 48.5 5 60.6 48.5 5 60.6 48.5 5 60.6 60.6 72.8 60.6 72.8 72.7 72.7 72.8 72.7 72.7 72.8 72.8 72.7 72.7 72.7 72.8 72.8	ASS-B
84.9 FCC CLA 72.8 FCC CLA 60.6 FCC CLASS-B 48.5 12 36.4 8	ASS-B
72.8 FCC CLA 60.6 Image: Constraint of the second	
72.8 FCC CLA 60.6 Image: Constraint of the second	
72.8 60.6 48.5 5 36.4 34.5 36.4 34.5 5 36.4 34.5 5 36.4 34.5 5 36.4 34.5 36.4 34.5 5 36.4 34.5 5 36.4 34.5 5 36.4 34.5 5 36.4 34.5 5 36.4 34.5 5 36.4 34.5 5 36.4 34.5 5 36.4 34.5 5 36.4 34.5 5 36.4 34.5 5 36.4 34.5 5 36.4 34.5 5 36.4 34.5 5 36.4 34.5 5 36.4 34.5 5 36.4 34.5 5 36.4 34.5 5 36.4 34.5 36.4 34.5 5 7 7 7 7 7 7 7 7 7 7 7 7 7	
60.6 48.5 5 36.4 34.5 36.4 36.	-6dB
48.5 5 36.4 34.3 36.4 34.3 36.4 34.3 36.4 34.3 36.4 34.3 36.4 34.3 36.4 34.3 36.4 34.3 36.4 34.3 36.4 34.3 36.4 34.3 36.4 34.3 36.4 34.3 36.4 34.3 36.4 34.3 36.4 34.3 36.4 37.4 37.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
36.4 3 4 3 4 3 4 3 4 3 4 3 4 4 5 5 4 5 5 5 4 5 5 5 5 5 5 5 5 5 5	<u>-6dB</u>
36.4	
24.3	
24.3	
12.1	
0 <mark>30 2624. 5218. 7812. 10406.</mark>	13000
Frequency (MHz)	
Site : 03CH06-HY	
Condition : FCC CLASS-B 3m 9120D_1522_170807 HORIZONTAL	
Project : 783101	
Power : From System	
Memo : Mode 1	
Over Limit ReadAntenna Cable Preamp A/Pos T/Pos Freq Level Limit Line Level Factor Loss Factor F	Remark
LIEN FENEL FINITE FINE FENEL LUCIOL. FORS LUCIOL. L	Nemar K
MHz dBuV/m dB dBuV/m dBuV dB/m dB dB cm deg	
1 86.97 27.66 -12.34 40.00 43.46 14.12 1.90 31.82 F	Peak
1 86.97 27.66 -12.34 40.00 43.46 14.12 1.90 31.82 F 2 108.03 30.65 -12.85 43.50 43.66 16.78 2.02 31.81 F	Peak
1 86.97 27.66 -12.34 40.00 43.46 14.12 1.90 31.82 F 2 108.03 30.65 -12.85 43.50 43.66 16.78 2.02 31.81 F 3 168.78 32.21 -11.29 43.50 46.37 15.56 2.06 31.78 100 129 F	Peak Peak
1 86.97 27.66 -12.34 40.00 43.46 14.12 1.90 31.82 F 2 108.03 30.65 -12.85 43.50 43.66 16.78 2.02 31.81 F 3 168.78 32.21 -11.29 43.50 46.37 15.56 2.06 31.78 100 129 F 4 307.70 30.33 -15.67 46.00 40.52 19.28 2.27 31.74 F	Peak Peak Peak
1 86.97 27.66 -12.34 40.00 43.46 14.12 1.90 31.82 F 2 108.03 30.65 -12.85 43.50 43.66 16.78 2.02 31.81 F 3 168.78 32.21 -11.29 43.50 46.37 15.56 2.06 31.78 100 129 F 4 307.70 30.33 -15.67 46.00 40.52 19.28 2.27 31.74 F 5 * 881.70 48.96 48.01 29.22 3.36 31.63 F	Peak Peak Peak Peak
1 86.97 27.66 -12.34 40.00 43.46 14.12 1.90 31.82 F 2 108.03 30.65 -12.85 43.50 43.66 16.78 2.02 31.81 F 3 168.78 32.21 -11.29 43.50 46.37 15.56 2.06 31.78 100 129 F 4 307.70 30.33 -15.67 46.00 40.52 19.28 2.27 31.74 F 5 * 881.70 48.96 48.01 29.22 3.36 31.63 F 6 925.10 31.42 -14.58 46.00 29.19 30.34 3.22 31.33 F	Peak Peak Peak Peak Peak
1 86.97 27.66 -12.34 40.00 43.46 14.12 1.90 31.82 F 2 108.03 30.65 -12.85 43.50 43.66 16.78 2.02 31.81 F 3 168.78 32.21 -11.29 43.50 46.37 15.56 2.06 31.78 100 129 F 4 307.70 30.33 -15.67 46.00 40.52 19.28 2.27 31.74 F 5 * 881.70 48.96 48.01 29.22 3.36 31.63 F 6 925.10 31.42 -14.58 46.00 29.19 30.34 3.22 31.33 F	Peak Peak Peak Peak Peak Peak
1 86.97 27.66 -12.34 40.00 43.46 14.12 1.90 31.82 F 2 108.03 30.65 -12.85 43.50 43.66 16.78 2.02 31.81 F 3 168.78 32.21 -11.29 43.50 46.37 15.56 2.06 31.78 100 129 F 4 307.70 30.33 -15.67 46.00 40.52 19.28 2.27 31.74 F 5 * 881.70 48.96 48.01 29.22 3.36 31.63 F 6 925.10 31.42 -14.58 46.00 29.19 30.34 3.22 31.33 F 7 946.10 31.72 -14.28 46.00 28.94 30.85 3.08 31.15 F 8 2814.00 36.83 -37.17 74.00 60.18 28.46 7.56 59.37 F F <td< td=""><td>Peak Peak Peak Peak Peak Peak Peak</td></td<>	Peak Peak Peak Peak Peak Peak Peak
1 86.97 27.66 -12.34 40.00 43.46 14.12 1.90 31.82 F 2 108.03 30.65 -12.85 43.50 43.66 16.78 2.02 31.81 F 3 168.78 32.21 -11.29 43.50 46.37 15.56 2.06 31.78 100 129 F 4 307.70 30.33 -15.67 46.00 40.52 19.28 2.27 31.74 F 5 * 881.70 48.96 48.01 29.22 3.36 31.63 F 6 925.10 31.42 -14.58 46.00 29.19 30.34 3.22 31.33 F 7 946.10 31.72 -14.28 46.00 28.94 30.85 3.08 31.15 F 8 2814.00 36.83 -37.17 74.00 60.18 28.46 7.56 59.37 <	Peak Peak Peak Peak Peak Peak Peak Peak
1 86.97 27.66 -12.34 40.00 43.46 14.12 1.90 31.82 F 2 108.03 30.65 -12.85 43.50 43.66 16.78 2.02 31.81 F 3 168.78 32.21 -11.29 43.50 46.37 15.56 2.06 31.78 100 129 F 4 307.70 30.33 -15.67 46.00 40.52 19.28 2.27 31.74 F 5 * 881.70 48.96 48.01 29.22 3.36 31.63 F 6 925.10 31.42 -14.58 46.00 29.19 30.34 3.22 31.33 F 7 946.10 31.72 -14.28 46.00 28.94 30.85 3.08 31.15 F 8 2814.00 36.83 -37.17 74.00 60.18 28.46 7.56 59.37 <	Peak Peak Peak Peak Peak Peak Peak Peak
1 86.97 27.66 -12.34 40.00 43.46 14.12 1.90 31.82 F 2 108.03 30.65 -12.85 43.50 43.66 16.78 2.02 31.81 F 3 168.78 32.21 -11.29 43.50 46.37 15.56 2.06 31.78 100 129 F 4 307.70 30.33 -15.67 46.00 40.52 19.28 2.27 31.74 F 5 * 881.70 48.96 48.01 29.22 3.36 31.63 F 6 925.10 31.42 -14.58 46.00 29.19 30.34 3.22 31.33 F 7 946.10 31.72 -14.28 46.00 28.94 30.85 3.08 31.15 F 8 2814.00 36.83 -37.17 74.00 60.18 28.46 7.56 59.37 <	Peak Peak Peak Peak Peak Peak Peak Peak

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Sep. 05, 2017	N/A	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 29, 2016	Sep. 05, 2017	Nov. 28, 2017	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Dec. 06, 2016	Sep. 05, 2017	Dec. 05, 2017	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESU26	100472	20Hz~26.5GHz	Dec. 29, 2016	Sep. 05, 2017	Dec. 28, 2017	Conduction (CO05-HY)
Bilog Antenna	Schaffner	CBL6111C&N- 6-06	2725&AT-N06 01	30MHz~1GHz	Oct. 15, 2016	Sep. 04, 2017 ~ Sep. 05, 2017	Oct. 14, 2017	Radiation (03CH06-HY)
EMI Test Receiver	Rohde & Schwarz	ESU26	100472	20Hz~26.5GHz	Dec. 29, 2016	Sep. 04, 2017 ~ Sep. 05, 2017	Dec. 28, 2017	Radiation (03CH06-HY)
Preamplifier	SONOMA	310N	186713	9kHz~1GHz	Apr. 25, 2017	Sep. 04, 2017 ~ Sep. 05, 2017	Apr. 24, 2018	Radiation (03CH06-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1850117	1GHz ~ 18GHz	May 22, 2017	Sep. 04, 2017 ~ Sep. 05, 2017	May 21, 2018	Radiation (03CH06-HY)
Antenna Mast	MF	MF-7802	MF78020821 2	1m~4m	N/A	Sep. 04, 2017 ~ Sep. 05, 2017	N/A	Radiation (03CH06-HY)
Turn Table	INN-CO	DS2000	420/650/00	0-360 degree	N/A	Sep. 04, 2017 ~ Sep. 05, 2017	N/A	Radiation (03CH06-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1522	1G~18GHz	Mar. 17, 2017	Sep. 04, 2017 ~ Sep. 05, 2017	Mar. 16, 2018	Radiation (03CH06-HY)

5. Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.70	
of 95% (U = 2Uc(y))	2.70	

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	3.90
--	------

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.70	
of 95% (U = 2Uc(y))	4.70	