	TEST REPOR	Т				
FCC ID	2AJOT-TWS-411W					
Test Report No:	TCT210531E008	$(C^{(1)})$				
Date of issue:	Jun. 07, 2021					
Testing laboratory:	SHENZHEN TONGCE TESTING	G LAB				
Testing location/ address:	TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District Shenzhen, Guangdong, 518103, People's Republic of China					
Applicant's name::	HMD global Oy	(\mathcal{C})				
Address:	Bertel Jungin aukio 9, Espoo 02	600 Finland				
Manufacturer's name :	HMD global Oy					
Address:	Bertel Jungin aukio 9, Espoo 02	600 Finland				
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013					
Test item description :	NOKIA COMFORT EARBUDS+					
Trade Mark:	Nokia					
Model/Type reference :	TWS-411W					
Rating(s):	Rechargeable Li-ion Battery DC	3.7V				
Date of receipt of test item	May 31, 2021	(C)				
Date (s) of performance of test:	See dates for each test case					
Tested by (+signature) :	Brews Xu	Brendonter				
Check by (+signature) :	Beryl Zhao	But (not)				
Approved by (+signature):	Tomsin	on sin s				
General disclaimer:						

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information		
1.1. EUT description		
1.2. Model(s) list		3
1.3. Operation Frequency		
2. Test Result Summary		
3. General Information		
3.1. Test environment and mode		
3.2. Description of Support Units	\sim	6
4. Facilities and Accreditations		
4.1. Facilities		
4.2. Location		
4.3. Measurement Uncertainty		7
5. Test Results and Measurement Data	S	
5.1. Antenna requirement		8
5.2. Conducted Emission		
5.3. Conducted Output Power	\sim	13
5.4. 20dB Occupy Bandwidth		
5.5. Carrier Frequencies Separation		
5.6. Hopping Channel Number		17
5.7. Dwell Time		
5.8. Pseudorandom Frequency Hopping Sequ	Jence	
5.9. Conducted Band Edge Measurement		
5.10.Conducted Spurious Emission Measurer		
5.11.Radiated Spurious Emission Measureme	ənt	
Appendix A: Test Result of Conducted Te	est	
Appendix B: Photographs of Test Setup		
Appendix C: Photographs of EUT		

1. General Product Information

1.1. EUT description

Test item description:	NOKIA COMFORT EARBUDS+	3
Model/Type reference:	TWS-411W	
Sample Number:	TCT210531E005-0103	
Bluetooth Version:	: V5.1	
Operation Frequency:	2402MHz~2480MHz	
Transfer Rate:	: 1/2 Mbits/s	G)
Number of Channel:	: 79	
Modulation Type:	GFSK, π/4-DQPSK	
Modulation Technology:	FHSS	
Antenna Type:	: FPC Antenna	
Antenna Gain:	: 1.2dBi	5)
Rating(s):	Rechargeable Li-ion Battery DC 3.7V	
Remark:		

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

Page 3 of 64

Report No.: TCT210531E008

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
G)1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz 🔾
·						·	
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
							S
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		-
Remark:	Channel 0, 3	9 &78 ha	ve been tes	ted for GI	-SK, π/4-DC	PSK mo	dulation mode.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

2. Test Result Summary

Requirement	CFR 47 Section		Result	
Antenna Requirement	§15.203/§15.247 (c)	NO NO	PASS	N.
AC Power Line Conducted Emission	§15.207		PASS	
Conducted Peak Output Power	§15.247 (b)(1)		PASS	
20dB Occupied Bandwidth	§15.247 (a)(1)		PASS	
Carrier Frequencies Separation	§15.247 (a)(1)		PASS	
Hopping Channel Number	§15.247 (a)(1)		PASS	
Dwell Time	§15.247 (a)(1)		PASS	
Radiated Emission	§15.205/§15.209		PASS	
Band Edge	§15.247(d)		PASS	

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test environment and mode

Operating Environment:		
Condition	Conducted Emission	Radiated Emission
Temperature:	25.0 °C	25.0 °C
Humidity:	55 % RH	55 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar
Test Software:		
Software Information:	1.0.2.2	
Power Level:	10	
Test Mode:	· · · · · · · · · · · · · · · · · · ·	
Engineering mode:	Keep the EUT in continuous channel and modulations w	0,
above the ground plane of 3 polarities were performed. If the EUT continuously work axis (X, Y & Z) and corr manipulating interconnecting from 1m to 4m in both	8m & 1.5m for the measure 8m chamber. Measurements i During the test, each emissio ing, investigated all operating sidered typical configuratio g cables, rotating the turnta horizontal and vertical po shown in Test Results	n both horizontal and vertica n was maximized by: having g modes, rotated about all 3 n to obtain worst position ble, varying antenna height plarizations. The emissions

DH1 DH3 DH5 all have been tested , only worse case DH1 is reported.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	K-E30502000E1	1	1	BESTGK

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

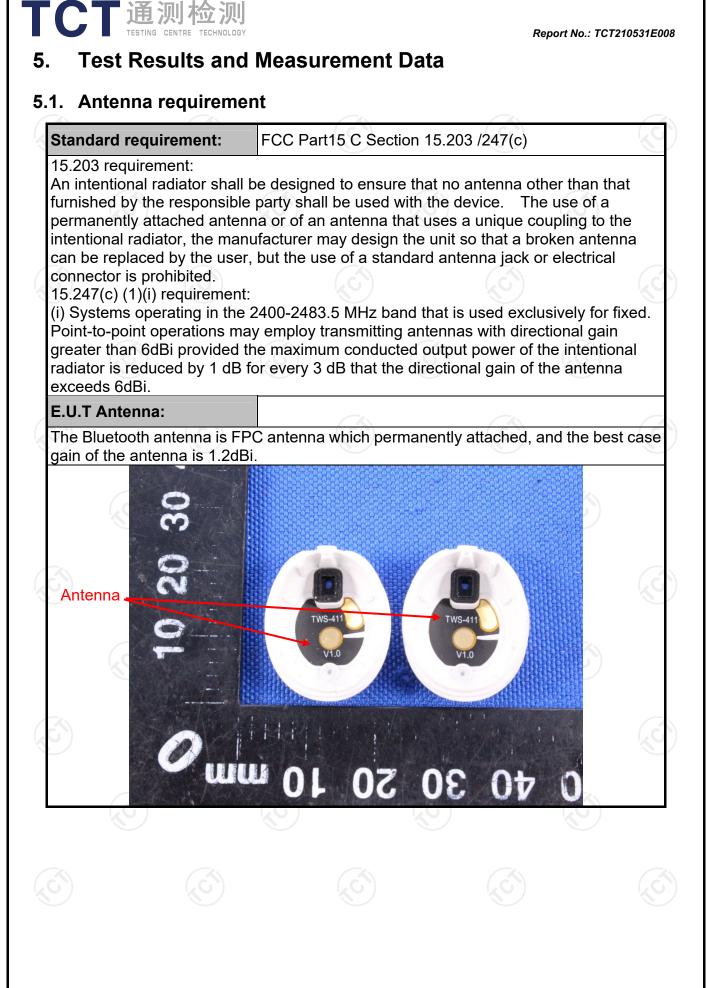
SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB.


Address: TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

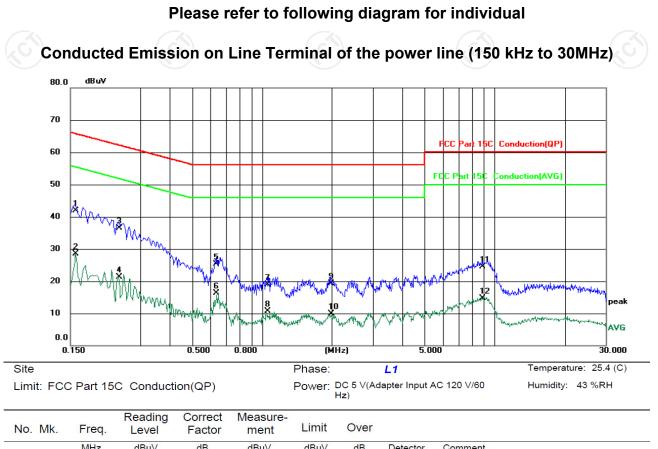
No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	n 15.207 🚫	×			
Test Method:	ANSI C63.10:2013					
Frequency Range:	150 kHz to 30 MHz					
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	e=auto			
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (Quasi-peak 66 to 56* 56 60	dBuV) Average 56 to 46* 46 50			
Test Setup: Test Mode:	Reference Plane					
	Refer to item 4.1 1. The E.U.T is conner impedance stabilized provides a 500hm/s	zation network	(L.I.S.N.). This			
Test Procedure:	 measuring equipme 2. The peripheral device power through a L coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interference emission, the relative the interface cables ANSI C63.10:2013 (2013) 	ent. ces are also conne ISN that provides e with 50ohm tern diagram of the . line are checke nce. In order to fin ve positions of equal must be changed	ected to the mains a 50ohm/50uH nination. (Please test setup and ed for maximum nd the maximum ipment and all o l according to			

Page 9 of 64

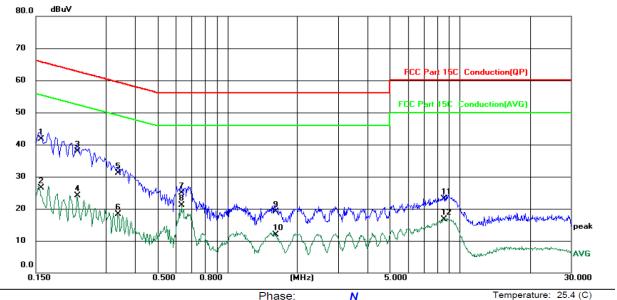

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)								
Equipment	Manufacturer	Model	Serial Number	Calibration Due				
Test Receiver	R&S	ESCI3	100898	Jul. 27, 2021				
LISN-2	Schwarzbeck	NSLK 8126	8126453	Sep. 11, 2021				
Line-5	тст	CE-05	N/A	Sep. 02, 2021				
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A				
\mathcal{O}	G		(\mathbf{C})	(SC				

Page 10 of 64

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.2.3. Test data


Report No.: TCT210531E008

NO. WIX.	ricq.	Level	T actor	ment				
	MHz	dBuV	dB	dBu∨	dBuV	dB	Detector	Comment
1 *	0.1580	32.50	9.45	41.95	65.57	-23.62	QP	
2	0.1580	19.15	9.45	28.60	55.57	-26.97	AVG	
3	0.2420	27.10	9.37	36.47	62.03	-25.56	QP	
4	0.2420	11.96	9.37	21.33	52.03	-30.70	AVG	
5	0.6340	16.10	9.24	25.34	56.00	-30.66	QP	
6	0.6340	6.98	9.24	16.22	46.00	-29.78	AVG	
7	1.0500	9.50	9.40	18.90	56.00	-37.10	QP	
8	1.0500	1.27	9.40	10.67	46.00	-35.33	AVG	
9	1.9780	9.70	9.51	19.21	56.00	-36.79	QP	
10	1.9780	0.33	9.51	9.84	46.00	-36.16	AVG	
11	8.8579	14.90	9.65	24.55	60.00	-35.45	QP	
12	8.8579	5.01	9.65	14.66	50.00	-35.34	AVG	

Note:

Note:		
Freq. = Emission frequency in MHz		
Reading level ($dB\mu V$) = Receiver reading		
Corr. Factor (dB) = LISN factor + Cable loss		
Measurement (dBμV) = Reading level (dBμV	/) + Corr. Factor (dB)	
Limit (dB μ V) = Limit stated in standard		
Margin (dB) = Measurement (dBµV) – Limits	: (dBµV)	
Q.P. =Quasi-Peak		
AVG =average		
* is meaning the worst frequency has been to	ested in the frequency range 150 kHz to	30MHz.
		Page 11 of 64

Humidity: 43 %RH

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site

Limit: FCC Part 15C Conduction(QP)

Phase: N Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1580	32.30	9.44	41.74	65.57	-23.83	QP	
2		0.1580	16.97	9.44	26.41	55.57	-29.16	AVG	
3		0.2260	28.60	9.34	37.94	62.60	-24.66	QP	
4		0.2260	14.77	9.34	24.11	52.60	-28.49	AVG	
5		0.3379	21.70	9.35	31.05	59.25	-28.20	QP	
6		0.3379	8.90	9.35	18.25	49.25	-31.00	AVG	
7		0.6340	15.60	9.26	24.86	56.00	-31.14	QP	
8		0.6340	11.80	9.26	21.06	46.00	-24.94	AVG	
9		1.6060	9.70	9.42	19.12	56.00	-36.88	QP	
10		1.6060	2.58	9.42	12.00	46.00	-34.00	AVG	
11		8.5459	13.40	9.66	23.06	60.00	-36.94	QP	
12		8.5459	6.99	9.66	16.65	50.00	-33.35	AVG	

Note1:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average * is meaning the ward for every has been tested in the foreward results

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and two modulation (GFSK, *Pi/4* DQPSK), and the worst case Mode ((highest channel and *Pi/4* DQPSK) was submitted only.

Page 12 of 64

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.
Test Setup:	
Teet Meder	spectrum Analyzer
Test Mode:	Transmitting mode with modulation
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
Test Result:	PASS

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

Page 13 of 64

5.4. 20dB Occupy Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	KDB 558074 D01 v05r02		
Limit:	N/A		
Test Setup:	Spectrum Analyzer EUT		
Test Mode:	Transmitting mode with modulation		
Test Mode: Transmitting mode with modulation 1. The RF output of EUT was connected to the spect analyzer by RF cable and attenuator. The path lew was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3F Sweep = auto; Detector function = peak; Trace = hold.			
Test Result:	PASS		

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021
				(A

Page 14 of 64

5.5. Carrier Frequencies Separation

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Hopping mode			
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. 			
Test Result:	PASS			

Page 15 of 64

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.6. Hopping Channel Number

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1) KDB 558074 D01 v05r02				
Test Method:					
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Hopping mode				
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report. 				
Test Result:	PASS				
E 6 2 Test Instruments					

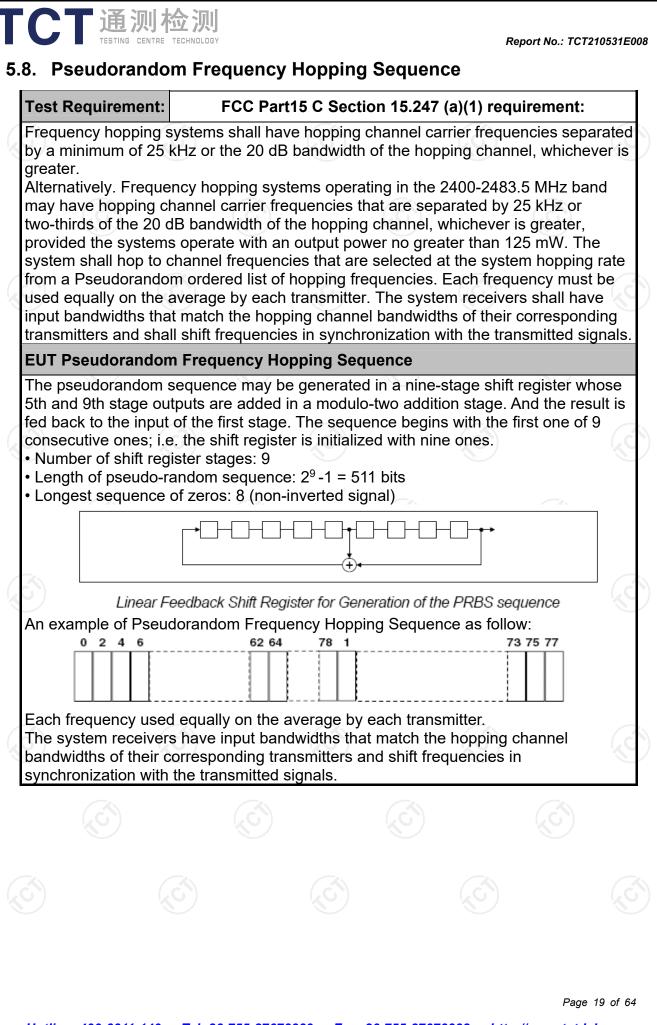
5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	S N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021
$\left(\mathcal{C}^{\prime}\right)$	(\mathcal{C})	(\mathcal{C})		(c)

Page 17 of 64

5.7. Dwell Time

5.7.1. Test Specification


TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

5.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

Report No.: TCT210531E008

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

FCC Part15 C Section 15.247 (d)
KDB 558074 D01 v05r02
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Spectrum Analyzer EUT
Transmitting mode with modulation
 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
PASS

5.9.2. Test Instruments

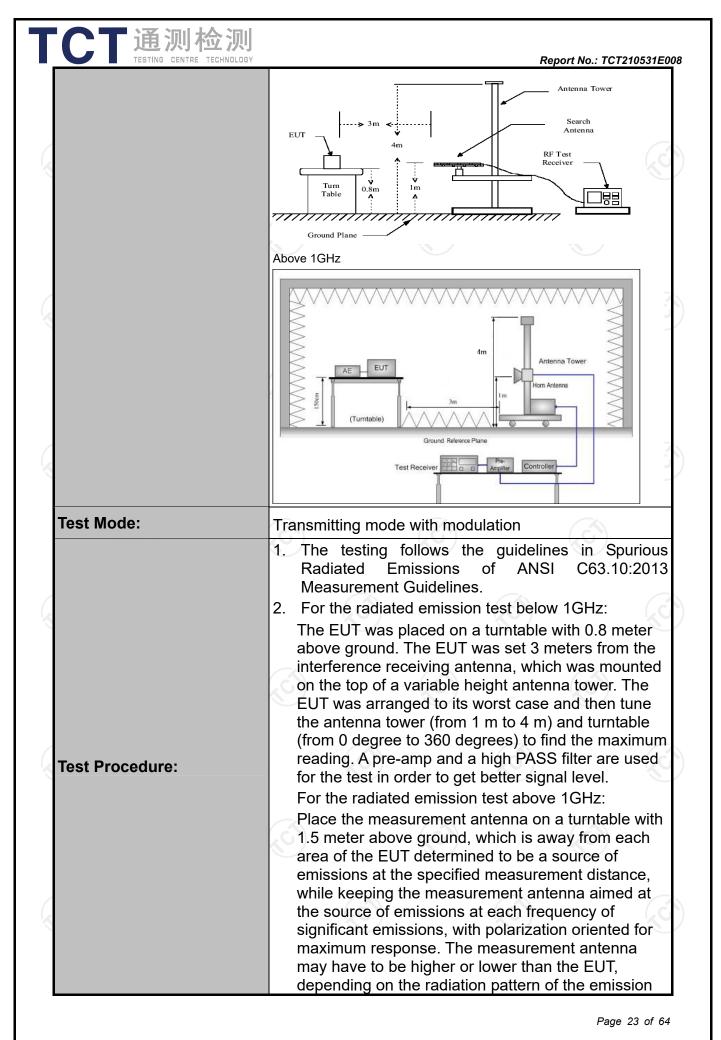
Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021
$\langle \mathcal{O} \rangle$	(\mathcal{C})	$\langle \mathcal{O} \rangle$	(\mathcal{C})	(C)

5.10. Conducted Spurious Emission Measurement

5.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

5.10.2. Test Instruments


Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	5 N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021
<u>(</u> C)	(0)	$\langle \mathcal{O} \rangle$		KC)

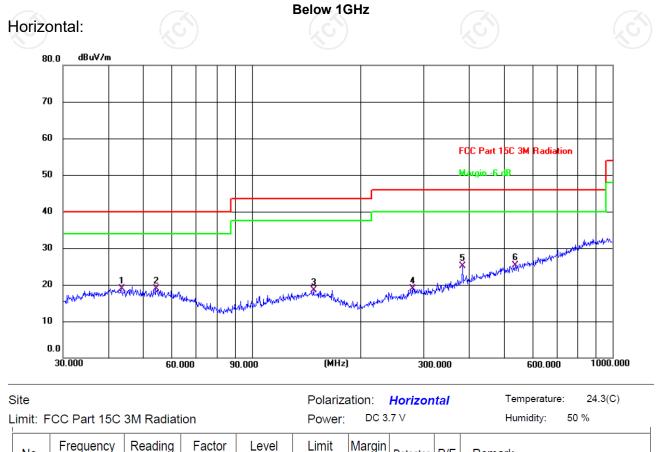
5.11. Radiated Spurious Emission Measurement

5.11.1. Test Specification

Test Requirement:	FCC Part15	C Section	15.209			
Test Method:	ANSI C63.10	0:2013	· · · · · · · · · · · · · · · · · · ·			0
Frequency Range:	9 kHz to 25 (GHz			<u></u>	
Measurement Distance:	3 m	K	<u>(</u>)			
Antenna Polarization:	Horizontal &	Vertical				
	Frequency	Detector RBW		VBW	Remark	
	9kHz- 150kHz	Quasi-peak	200Hz	1kHz	Quasi-p	eak Value
Receiver Setup:			150kHz- Quasi-peak 9kHz 30kHz	30kHz	Quasi-peak Val	
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-p	eak Value
	Above 1GHz	Peak	1MHz	3MHz	Peal	k Value
	Above IGHZ	Peak	1MHz	10Hz	Avera	ge Value
	_		Field Stre	ength	Meas	urement
	Frequen	ю	(microvolts	-		e (meters)
	0.009-0.4	490	2400/F(I			300
	0.490-1.7		24000/F(30
	1.705-3	30	30			30
	30-88		100			3
	88-216	6	150			3
Limit:	216-96		200		10°)	3
	Above 9	60	500			3
	Frequency Above 1GHz	(micro	volts/meter) 500 5000	Distar (mete 3 3	rs)	Average Peak
Test setup:		ssions below stance = 3m Turn table Ground			Computer Amplifier Receiver	
		S)	(,	Ś		

	receiv meas maxin anter restria above 3. Set t EUT 4. Use (1) \$ (2) \$ f	= max hold For averag	aximum sign ntenna elev missions. T on for maxir inge of heig d or referen imum powe ontinuously. ng spectrum wide enoug eing measu 20 kHz for ; VBW≥RB uto; Detect d for peak ge measure factor meth uty cycle =	mission so nal. The f ration sha The meas num emis phts of fro nce grour er setting n analyze h to fully red; f < 1 GH: W; cor function ment: use nod per On time/ ²	inal all be that surement ssions sha om 1 m to and plane. and enat r settings: capture th z, RBW=1 on = peak; e duty cyc 100 millise	which all be 4 m ole th ne MHz Trace le
	J	length of ty Average E		s, etc. vel = Pea ycle) itenna Fa	ak Emissio actor + Cal	on ble
Γest results:	J	length of ty Average E Level + 20 Corrected F	/pe 1 pulse mission Le *log(Duty c Reading: An	s, etc. vel = Pea ycle) itenna Fa	ak Emissio actor + Cal	on ble
Fest results:		length of ty Average E Level + 20 Corrected F	/pe 1 pulse mission Le *log(Duty c Reading: An	s, etc. vel = Pea ycle) itenna Fa	ak Emissio actor + Cal	on ble
Fest results:		length of ty Average E Level + 20 Corrected F	/pe 1 pulse mission Le *log(Duty c Reading: An	s, etc. vel = Pea ycle) itenna Fa	ak Emissio actor + Cal	on ble
Fest results:		length of ty Average E Level + 20 Corrected F	/pe 1 pulse mission Le *log(Duty c Reading: An	s, etc. vel = Pea ycle) itenna Fa	ak Emissio actor + Cal	on ble

5.11.2. **Test Instruments**

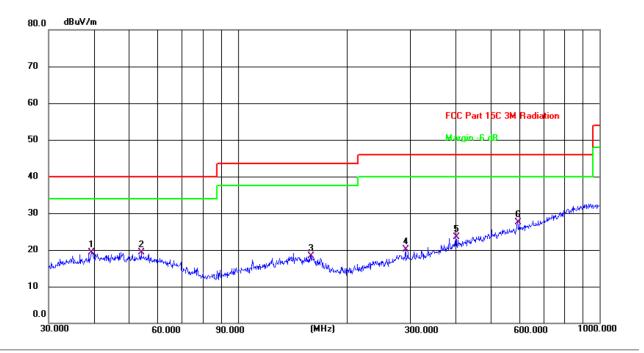

	Radiated Em	ission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Test Receiver	ROHDE&SCHW ARZ	ESIB7	100197	Jul. 27, 2021
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ40	200061	Sep. 11, 2021
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 02, 2021
Pre-amplifier	HP	8447D	2727A05017	Sep. 02, 2021
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022
Horn Antenna	A-INFO	LB-180400-KF	J211020657	Sep. 04, 2022
Antenna Mast	Keleto	RE-AM	N/A	N/A
Line-4	тст	RE-high-04	N/A	Sep. 02, 2021
Line-8	тст	RE-01	N/A	Jul. 27, 2021
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.11.3. **Test Data**

Please refer to following diagram for individual

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	43.5057	5.08	13.92	19.00	40.00	-21.00	QP	Ρ	
2	54.2610	5.46	13.50	18.96	40.00	-21.04	QP	Ρ	
3	148.4410	5.27	13.31	18.58	43.50	-24.92	QP	Ρ	
4	280.0237	4.78	14.19	18.97	46.00	-27.03	QP	Ρ	
5	383.9318	8.44	16.69	25. 1 3	46.00	-20.87	QP	Ρ	
6 *	537.5891	5.13	20.09	25.22	46.00	-20.78	QP	Ρ	


Report No.: TCT210531E008

Page 26 of 64

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Vertical:

TCT通测检测 TESTING CENTRE TECHNOLOGY

Site	FCC Part 15C	3M Radiat	ion		Polariz Power:		Vertica	I	Temperature: 24.3(C) Humidity: 50 %
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin	Detector	P/F	Remark
1	39.4371	5.29	13.92	19.21	40.00	-20.79	QP	Ρ	
2	54.0711	5.70	13.51	19.21	40.00	-20.79	QP	Ρ	
3	158.6677	5.00	13.40	18.40	43.50	-25.10	QP	Ρ	
4	291.0360	6.11	13.94	20.05	46.00	-25.95	QP	Ρ	
5	400.4319	6.23	17.27	23.50	46.00	-22.50	QP	Ρ	
6 *	593.0497	6.36	21.13	27.49	46.00	-18.51	QP	Ρ	

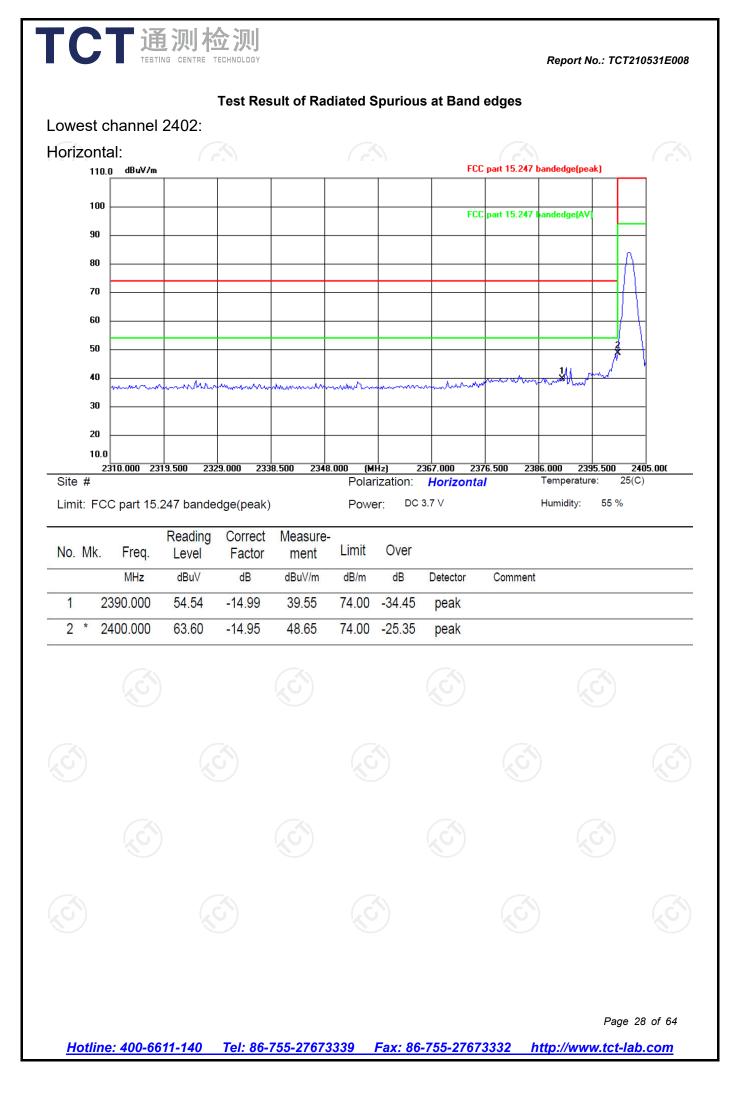
Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

2. Measurements were conducted in all three channels (high, middle, low) and two modulation (GFSK, Pi/4 DQPSK) and the worst case Mode (highest channel and Pi/4 DQPSK) was submitted only.

3. Freq. = Emission frequency in MHz

Measurement $(dB\mu V/m) = Reading level (dB\mu V) + Corr. Factor (dB)$

Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

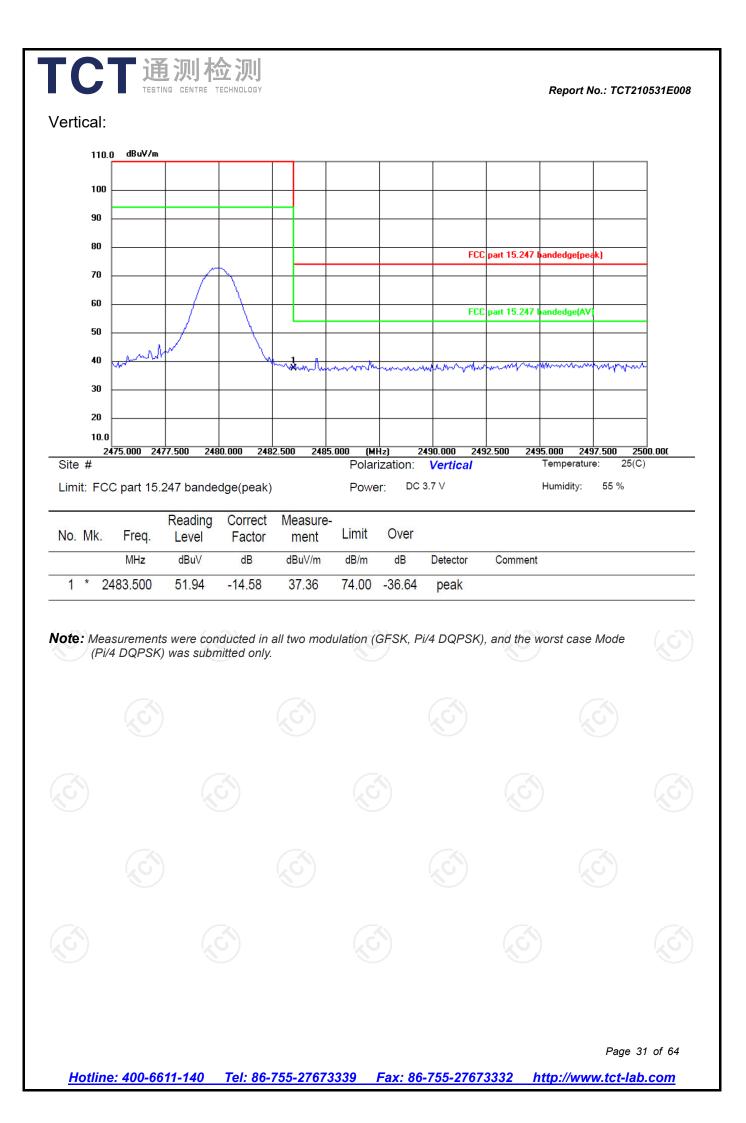

 $Limit (dB\mu V/m) = Limit stated in standard$

Over (dB) = Measurement (dB μ V/m) – Limits (dB μ V/m)

* is meaning the worst frequency has been tested in the test frequency range.

Page 27 of 64

Report No.: TCT210531E008



												rtical:
		ge(peak	bandeo	part 15.247	FCC						0 dBuV/m	110
	_	ge(AV	bandeo	part 15.247	FCC							100
												90
												80
	╗╢											70
												60
	*											50
	~	<u>kanan</u>	m	manana	man man	mm	muhun	muline	propria	umm	manhan	40
												30
												20
5.000		2395	86.000	76.500 238				8.500 2348	9.000 233	9.500 232	310.000 231	
	25(C 5 %	erature: lity:	Temp Humi		Vertical 3.7 V	ization: r: DC	Polar Powe		dge(peak)	47 bande	C part 15.2	ite # mit: FC
								Measure-	Correct	Reading		
						Over	Limit	ment	Factor	Level	Freq.	o. Mk.
			ť	Comment	Detector	dB	dB/m	dBuV/m	dB	dBuV	MHz	
					1000 Contract of the 1000 Contract							
					peak	-37.03	Charles Backsterre	36.97	-14.99	51.96	390.000	
					peak peak	-37.03 -26.21	Charles Backeterre	36.97 47.79	-14.99 -14.95	51.96 62.74	390.000 400.000	
2			/	Š		-26.21	Charles Backeterre		We BARAD COOR	62.74		
			/			-26.21	74.00		-14.95	62.74		2 * 2
C	6)	6	/	~		-26.21	74.00		-14.95	62.74		2 * 2
J.)		/			-26.21	74.00		-14.95	62.74		2 * 2
)		/			-26.21	74.00		-14.95	62.74		2 * 2
)		· · · · · · · · · · · · · · · · · · ·			-26.21	74.00		-14.95	62.74		2 * 2
)		·)			-26.21	74.00		-14.95	62.74		2 * 2
)			-26.21	74.00		-14.95	62.74		2 * 2
)			-26.21	74.00		-14.95	62.74		2 * 2
						-26.21	74.00		-14.95	62.74		2 * 2
						-26.21	74.00		-14.95	62.74		2 * 2
						-26.21	74.00		-14.95	62.74		2 * 2
						-26.21	74.00		-14.95	62.74		2 * 2

	TEST		TECHNOLOGY						Report N	No.: TCT2	10531E008
	st channel	2480:									
lorizo											
1	10.0 dBu∀/m										
1	00										-
9	0										-
8	0		\mathbf{h}				FCI	C part 15.247	bandedge(pe	ak)	
7	0										-
6	0						FC	C part 15.247	bandedge(AV	T	
5	io ana	<i>y</i>		1.							-
	0			and the second s	Art when a	mon	n dawn war	handre	and the states	how	~
	0										
	0.0										-
Site # Limit: F	2475.000 247	247 bande Reading	dge(peak)	Measure	Powe	ization: er: DC	<mark>490.000 24</mark> Horizonta 3.7 ∨		95.000 249 Temperatur Humidity:		500.00(C)
Site # Limit: F No. MI	2475.000 247 FCC part 15.2 k. Freq. MHz	247 bande Reading Level dBuV	edge(peak) Correct Factor dB	Measure- ment dBuV/m	Polari Powe - Limit dB/m	ization: er: DC Over dB	Horizonta 3.7 V Detector		Temperatur Humidity:	re: 25(
Site # Limit: F No. MI	2475.000 247 FCC part 15.2 k. Freq.	247 bande Reading Level	dge(peak) Correct Factor	Measure ment	Polari Powe - Limit	ization: er: DC Over	Horizont a 3.7 ∨	al	Temperatur Humidity:	re: 25(
Site # Limit: F No. MI	2475.000 247 FCC part 15.2 k. Freq. MHz	247 bande Reading Level dBuV 58.97	edge(peak) Correct Factor dB	Measure- ment dBuV/m	Polari Powe - Limit dB/m	ization: er: DC Over dB -29.61	Horizonta 3.7 V Detector	al	Temperatur Humidity:	re: 25(C)
Site # Limit: F No. MI	2475.000 247 FCC part 15.2 k. Freq. MHz	247 bande Reading Level dBuV 58.97	Correct Factor dB -14.58	Measure- ment dBuV/m	Polari Powe Limit dB/m 74.00	ization: er: DC Over dB -29.61	Horizonta 3.7 V Detector	Comment	Temperatur Humidity:	re: 25(C)
Site # Limit: F No. MI	2475.000 247 FCC part 15.2 k. Freq. MHz 2483.500	247 bande Reading Level dBuV 58.97	Correct Factor dB -14.58	Measure- ment dBuV/m 44.39	Polari Powe Limit dB/m 74.00	ization: er: DC Over dB -29.61	Horizonta 3.7 ∨ Detector peak	Comment	Temperatur Humidity:	re: 25(55 %	c)
Site # Limit: F No. MI	2475.000 247 FCC part 15.2 k. Freq. MHz 2483.500	247 bande Reading Level dBuV 58.97	Correct Factor dB -14.58	Measure- ment dBuV/m 44.39	Polari Powe Limit dB/m 74.00	ization: er: DC Over dB -29.61	Horizonta 3.7 ∨ Detector peak	Comment	Temperatur Humidity:	re: 25(55 %	c)
Site # Limit: F No. MI	2475.000 247 FCC part 15.2 k. Freq. MHz 2483.500	247 bande Reading Level dBuV 58.97	Correct Factor dB -14.58	Measure- ment dBuV/m 44.39	Polari Powe Limit dB/m 74.00	ization: er: DC Over dB -29.61	Horizonta 3.7 ∨ Detector peak	Comment	Temperatur Humidity:	re: 25(55 %	

Page 30 of 64

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Above 1GHz

	Modulation	Type: Pi/4	4 DQPSK							
	Low chann	el: 2402 N	IHz							
	Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	A\/	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
	4804	Н	44.28		0.66	44.94		74	54	-9.06
	7206	Н	35.36		9.5	44.86		74	54	-9.14
		Н							7-4	
	(<u> </u>		(JC)			·C`)		(G)	
	4804	V	44.49		0.66	45.15		74	54	-8.85
	7206	V	36.24		9.5	45.74		74	54	-8.26
		V								
(Ň.				

Middle cha	nnel: 2441	MHz		X			KO)		N.
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)		Margin (dB)
4882	Н	45.67		0.99	46.66	·	74	54	-7.34
7323	KOH)	35.88	- KO	9.87	45.75	0+	74	54	-8.25
	Ĥ					· · · ·			
4882	V	43.71		0.99	44.70		74	54	-9.30
7323	V	34.22		9.87	44.09		74	54	-9.91
	V			\	/		<u> </u>		

High channel: 2480 MHz

Ant Pol		AV				Peak limit	ΔV limit	Margin
		5		Peak	AV			(dB)
11/ V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(abp v/m)		(GD)
Н	45.69		1.33	47.02		74	54	-6.98
Н	36.83		10.22	47.05		74	54	-6.95
Н			/	2				
	(.G)		(.0			(.G)		0.0
V	46.44		1.33	47.77		74	54	-6.23
V	37.92		10.22	48.14		74	54	-5.86
V								
	Ant. Pol. H/V H H H H V V	Ant. Pol. H/V Peak reading (dBµV) H 45.69 H 36.83 H V 46.44 V 37.92	Ant. Pol. H/V Peak reading (dBμV) AV reading (dBμV) H 45.69 H 36.83 H V 46.44 V 37.92	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBµV) Correction Factor (dB/m) H 45.69 1.33 H 36.83 10.22 H 10.22 V 46.44 1.33 V 37.92 10.22	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBµV) Correction Factor (dB/m) Emissic Peak (dBµV/m) H 45.69 1.33 47.02 H 36.83 10.22 47.05 H V 46.44 1.33 47.77 V 37.92 10.22 48.14	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBµV) Correction Factor (dB/m) Emission Level Peak (dBµV/m) H 45.69 1.33 47.02 H 36.83 10.22 47.05 H V 46.44 1.33 47.77 V 37.92 10.22 48.14	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBµV) Correction Factor (dB/m) Emission Level Peak (dBµV/m) Peak limit (dBµV/m) H 45.69 1.33 47.02 74 H 36.83 10.22 47.05 74 H 74 74 H 74 V 46.44 1.33 47.77 74 V 37.92 10.22 48.14 74	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBµV) Correction Factor (dB/m) Emission Level Peak (dBµV/m) Peak limit (dBµV/m) AV limit (dBµV/m) H 45.69 1.33 47.02 74 54 H 36.83 10.22 47.05 74 54 H V 46.44 1.33 47.77 74 54 V 37.92 10.22 48.14 74 54

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

2. Margin (dB) = Emission Level (Peak) ($dB\mu V/m$)-Average limit ($dB\mu V/m$)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

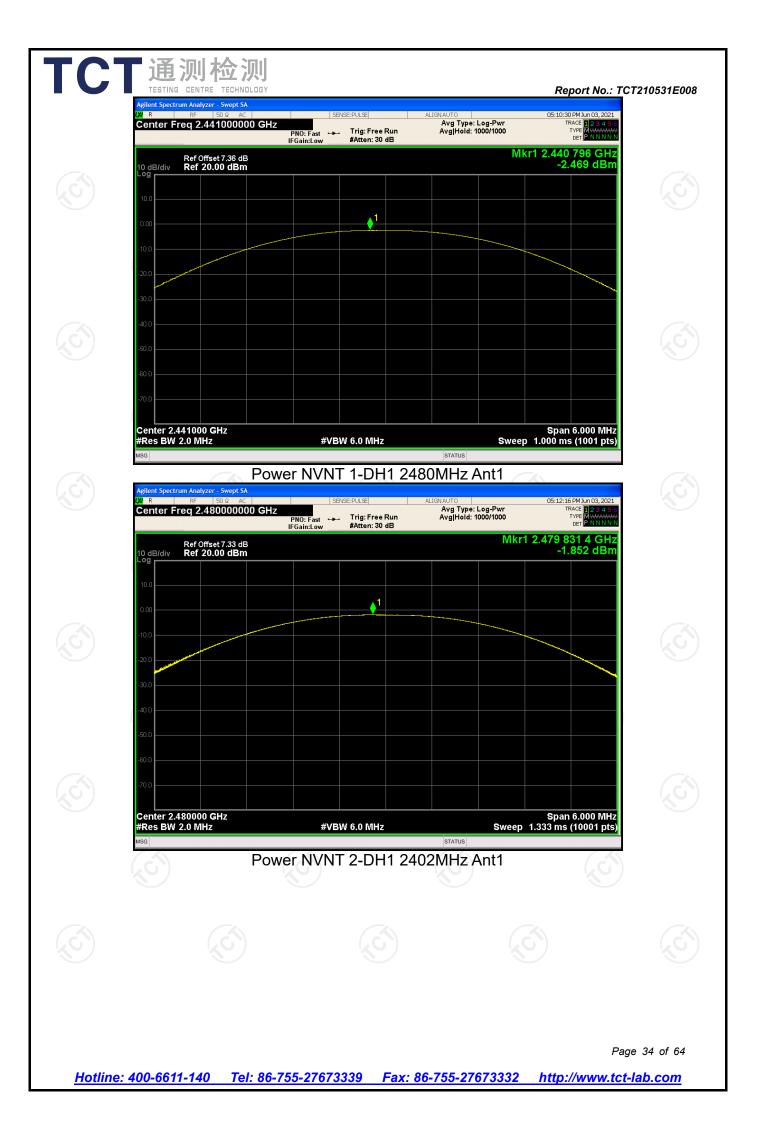
4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

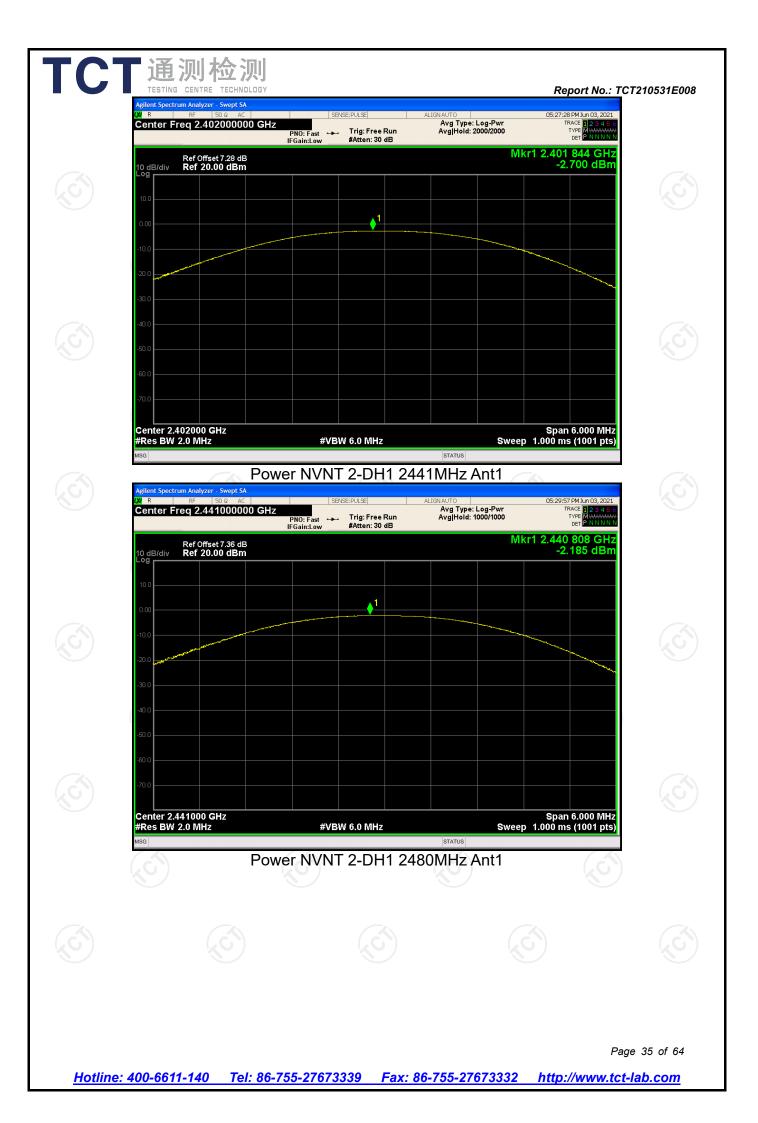
5. Data of measurement shown "----"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

 Measurements were conducted in all two modulation (GFSK, Pi/4 DQPSK), and the worst case Mode (Pi/4 DQPSK) was submitted only.

7. All the restriction bands are compliance with the limit of 15.209.

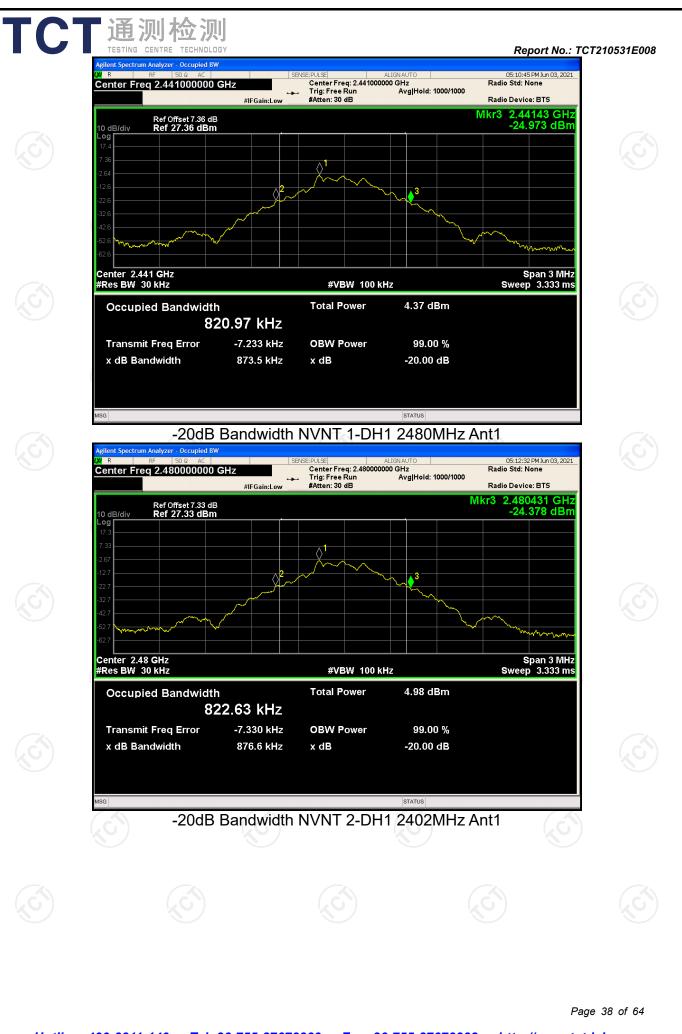
Page 33 of 64

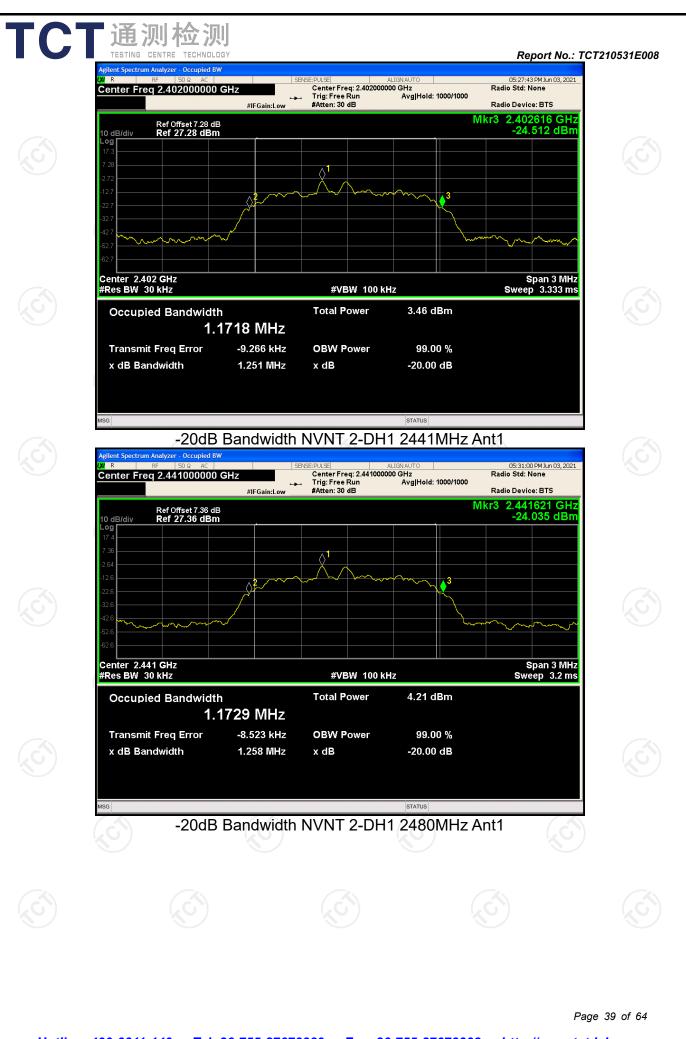



Appendix A: Test Result of Conducted Test

Maximum Conducted Output Power						
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	Ant1	-2.982	30	Pass
NVNT	1-DH1	2441	Ant1	-2.469	30	Pass
NVNT	1-DH1	2480	Ant1	-1.852	30	Pass
NVNT	2-DH1	2402	Ant1	-2.700	21	Pass
NVNT	2-DH1	2441	Ant1	-2.185	21	Pass
NVNT	2-DH1	2480	Ant1	-1.595	21	Pass

Power NVNT 1-DH1 2402MHz Ant1

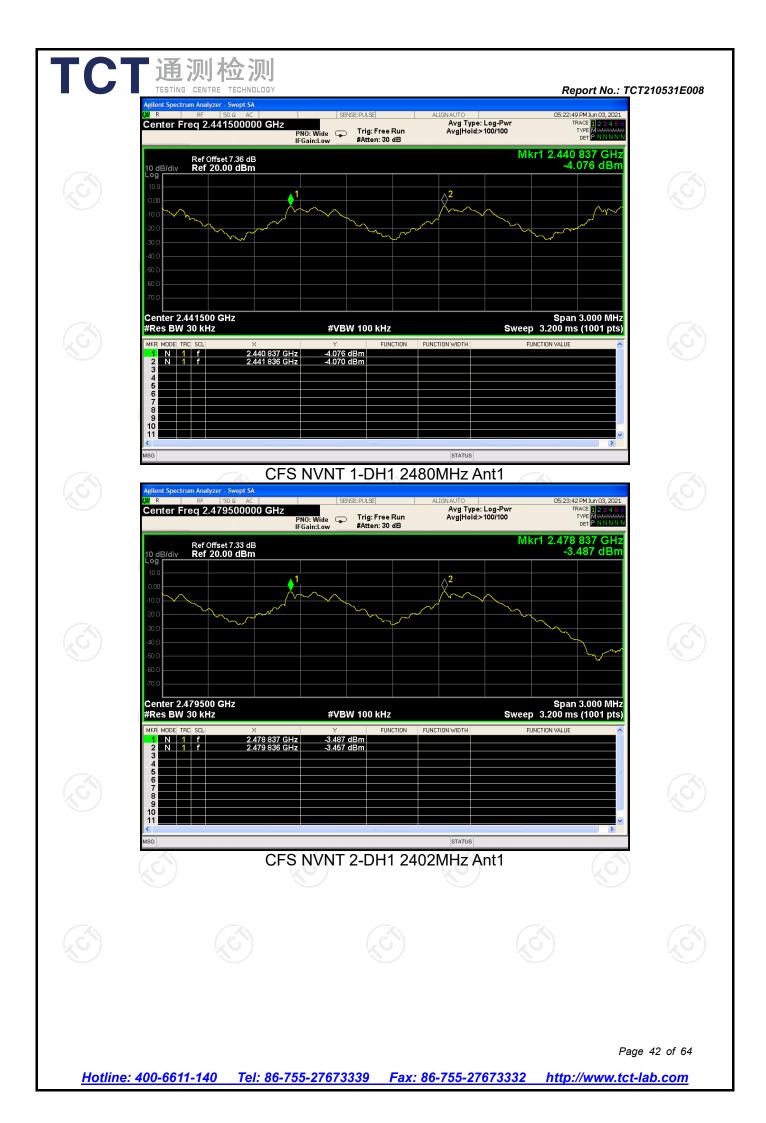


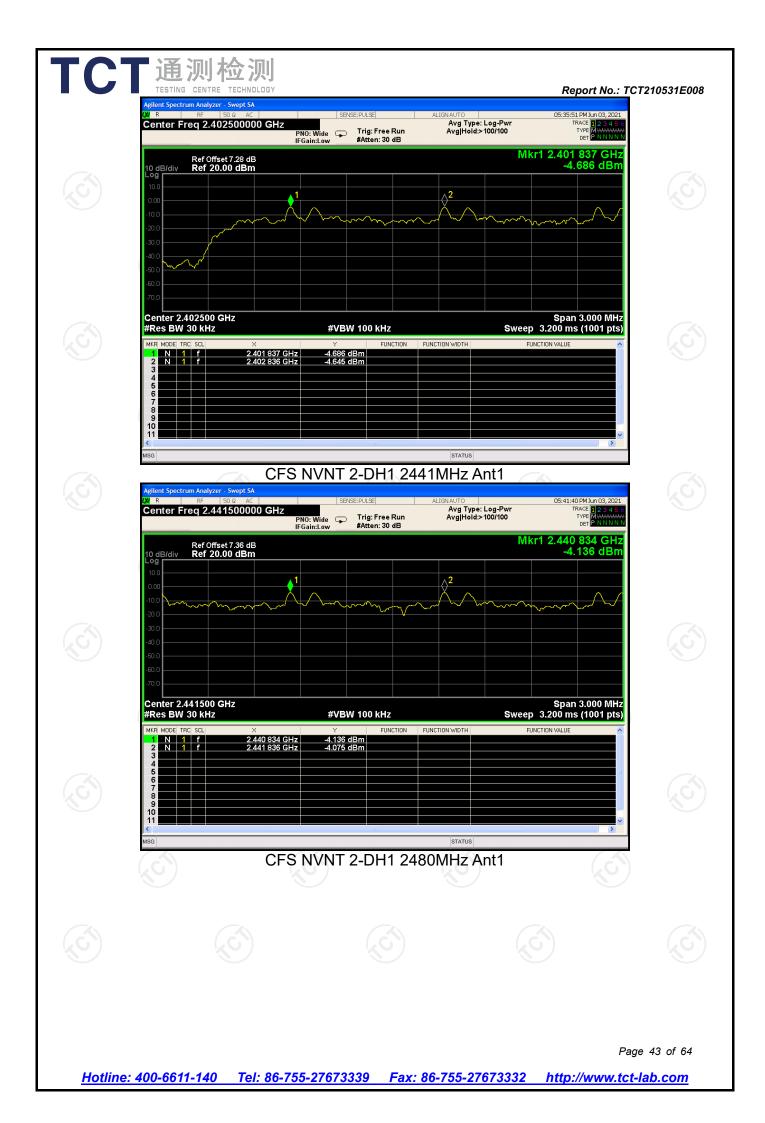


TC	通测检 TESTING CENTRE TECHN Agilent Spectrum Analyzer - Swept S			Report No.: TCT210531E008
	Center Freq 2.4800000	SENSE:PULSE 00 GHz PNO: Fast IFGain:Low #Atten: 30 dE	3	05:32:25 PMJun 03, 2021 TRACE 12:23 45 6 TYPE MANAGEMENT DET P.NNNNN 12.479 862 GHz
	Ref Offset 7.33 df 10 dB/div Ref 20.00 dBn 10.0 10.0 -10.0			-1.595 dBm
Ś	-20.0			
	-70.0 Center 2.480000 GHz #Res BW 2.0 MHz	#VBW 6.0 MHz		Span 6.000 MHz 1.000 ms (1001 pts)
	MSG	Ŕ	STATUS	
Ś				
Ś				
Ś				
<u>Hotline</u>	e: 400-6611-140 Te	l: 86-755-27673339 F	ax: 86-755-27673332	Page 36 of 64 <u>http://www.tct-lab.com</u>

TOT	■ :呂 :						
TC1					Report	No.: TCT21)531E00
	_		0dB Band	width	noport		
Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwid	th (MHz)	Verdict	
NVNT	1-DH1	2402	Ant1	0.877		Pass	
NVNT	1-DH1	2441	Ant1	0.874		Pass	
NVNT	1-DH1	2480	Ant1	0.877	<u>c</u>)	Pass	- (.c)
NVNT	2-DH1	2402	Ant1	1.251		Pass	
NVNT NVNT	2-DH1 2-DH1	2441 2480	Ant1 Ant1	1.258 1.256		Pass Pass	-
	2-011	2400	AIIU	1.230		Fass	
		-20dB Bandwidt	h NVNT 1-	DH1 2402MHz A	nt1		
		Analyzer - Occupied BW RF 50 Ω AC					
		α 2.402000000 GHz	SENSE:PULSE Center Freq: 2. Trig: Free Run	ALIGNAUTO 402000000 GHz Avg Hold: 1000/1000	05:08:13 PM Jun Radio Std: None	103, 2021	
		#IFGain:Low	#Atten: 30 dB	M	Radio Device: BTS		
	10 dB/div	Ref Offset 7.28 dB Ref 27.28 dBm			-25.466		
	Log 17.3						
	7.28 -2.72						
	-12.7			3			
	-22.7 -32.7						
	-42.7						
	-52.7 -62.7					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	Center 2.40	2 GHz			Span 3	3 MHz	
	#Res BW 3) kHz	#VBW	100 kHz	Sweep 3	3.2 ms	
	Occupie	ed Bandwidth	Total Powe	er 4.01 dBm			
		819.54 kHz		00.00.%			
	x dB Ban	Freq Error -6.633 kHz dwidth 876.6 kHz		er 99.00 % -20.00 dB			
	MSG			STATUS			
		-20dB Bandwidt	h NVNT 1-	DH1 2441MHz A	.nt1		

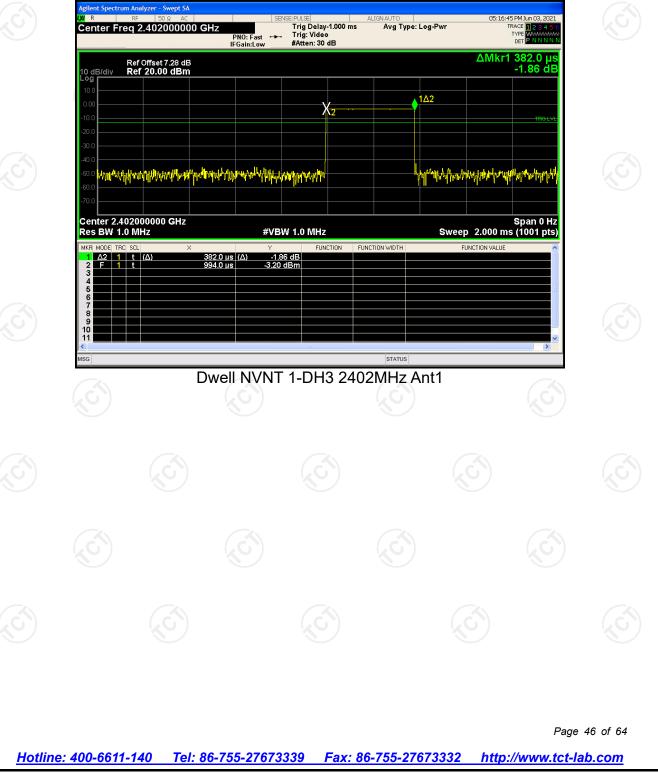


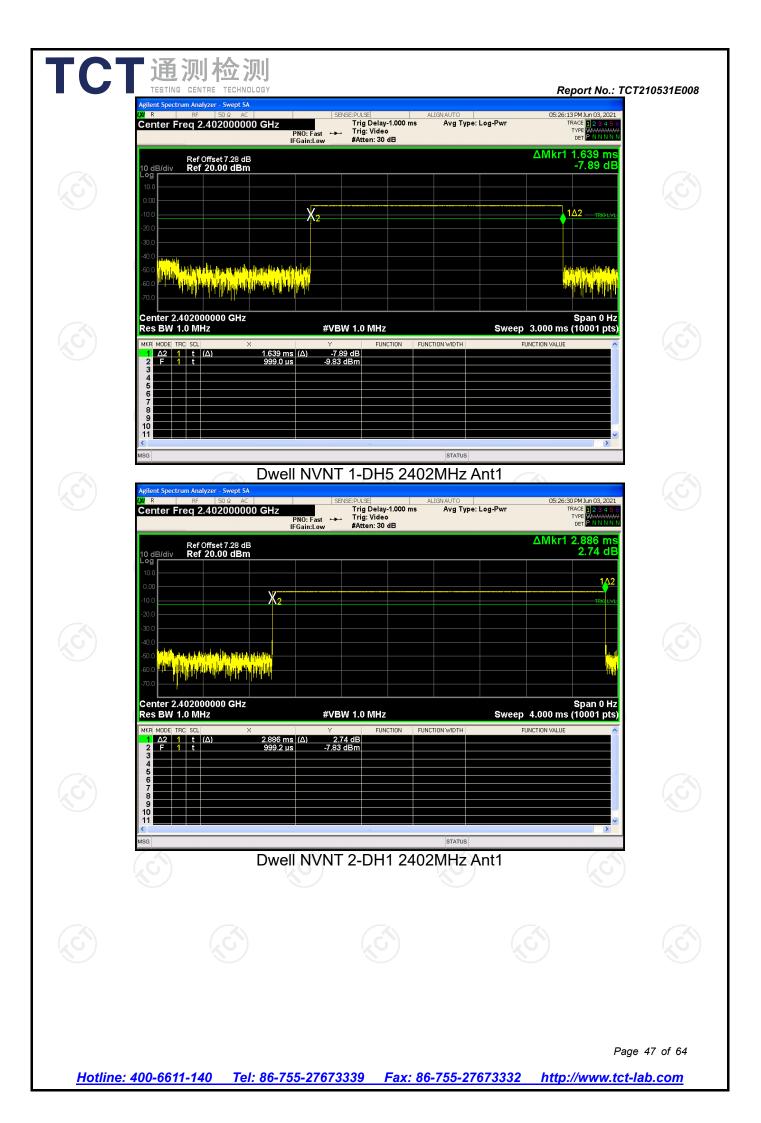


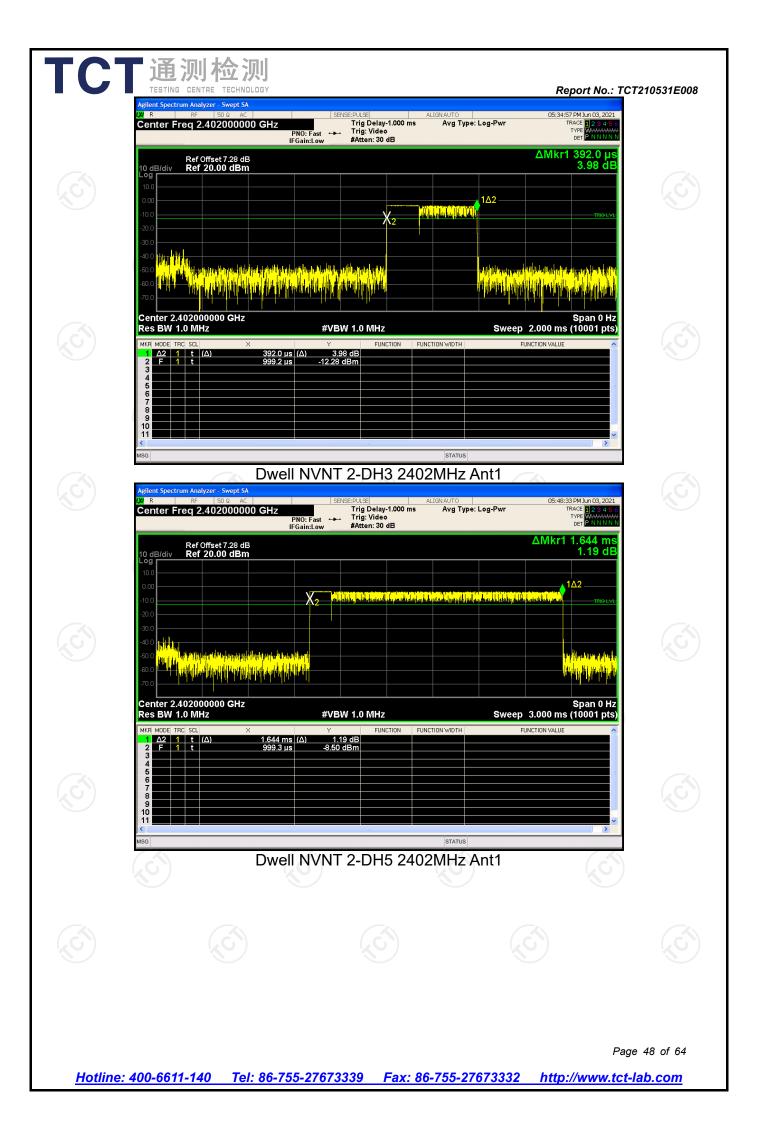

TC	通测检测 TESTING CENTRE TECHNOL				Report No	: TCT210531E008
	Agilent Spectrum Analyzer - Occupied E UM R RF 50.2 AC Center Freq 2.480000000) GHz #IFGain:Low	Center Freq: 2.480000	ALIGNAUTO 0000 GHz Avg Hold: 1000/1000	05:32:35 PMJun 03, 20 Radio Std: None Radio Device: BTS Mkr3 2,48062 GH	
	Ref Offset 7.33 dBr 10 dB/div Ref 27.33 dBr 17.3	n 			-23.183 dB	
	Center 2.48 GHz #Res BW 30 kHz		#VBW 100 H		Span 3 Mi Sweep 3.2 n	12 15
	Occupied Bandwidf 1. Transmit Freq Error x dB Bandwidth	h 1732 MHz -8.070 kHz 1.256 MHz	Total Power OBW Power x dB	4.84 dBm 99.00 % -20.00 dB		
	MSG		Ś	STATUS	Ś	
<u>Hotlin</u>	e: 400-6611-140 Tel:	<u>86-755-2767</u>	3339 Fax: 8	6-755-276733	32 http://www	Page 40 of 64 .tct-lab.com

TC1	通》	则检测												
	Report No.: TCT210531E008													
Condition	Mode	Antenna	Hopping	Hopping	HFS	Limit	Verdict							
			Freq1 (MHz)	Freq2 (MHz)	(MHz)	(MHz)								
NVNT	1-DH1	Ant1	2401.837	2402.836	0.999	0.877	Pass							
NVNT	1-DH1	Ant1	2440.837	2441.836	0.999	0.874	Pass							
NVNT	1-DH1	Ant1	2478.837	2479.836	0.999	0.877	Pass							
NVNT	2-DH1	Ant1	2401.837	2402.836	0.999	0.834	Pass							
NVNT	2-DH1	Ant1	2440.834	2441.836	1.002	0.839	Pass							
NVNT	2-DH1	Ant1	2478.84	2479.836	0.996	0.837	Pass							

CFS NVNT 1-DH1 2402MHz Ant1

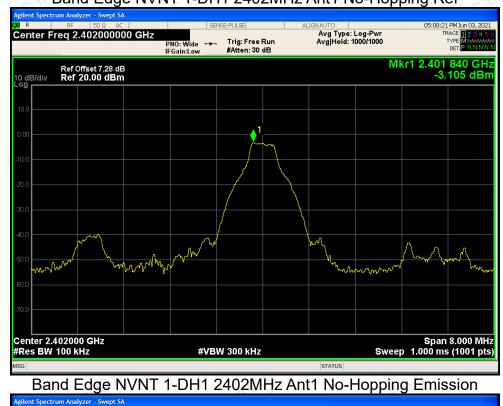

LXI R	n Analyzer - Swept SA RF 50 Ω AC eq 2.479500000 G		ENSE:PULSE Trig: Free Run #Atten: 30 dB	ALIGNAUTO Avg Type: Log- Avg Hold:>100/1	05:4 Pwr 00	2:32 PM Jun 03, 2021 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NINNN	
10.0	Ref Offset 7.33 dB Ref 20.00 dBm	▲ 1			Mkr1 2.47	78 840 GHz 3.591 dBm	
0.00 -10.0 -20.0 -30.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	
-40.0							
Center 2.47 #Res BW 3	0 kHz	#VE	W 100 kHz	FUNCTION WIDTH	Sp Sweep 3.200		
1 N 1 2 N 1 3 4 5 5 6	f 2.478 8	40 GHz -3.591	dBm dBm		PONCHON VALC		
7 8 9 9 10 11						~	
MSG			<i>(č</i>)	STATUS	<i>...</i> (1)		

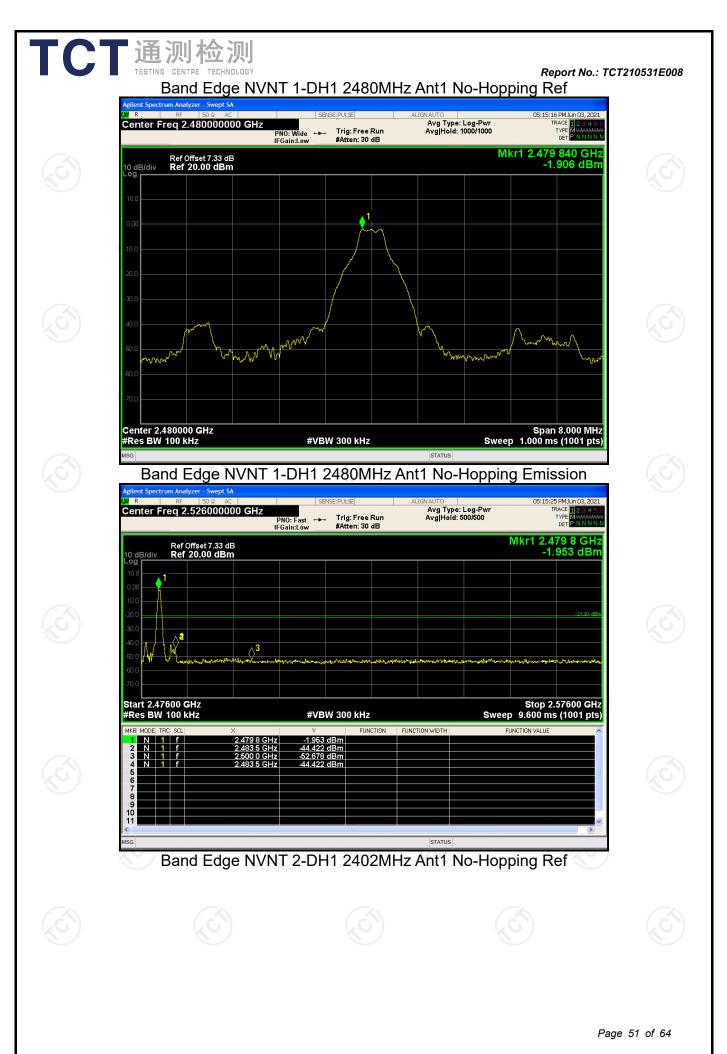

	Condition	Nı Mode	Imber of F Antenna		Channel Number	Limit	Verdict	
	NVNT	1-DH1	Antenna Ant1		'9	15	Pass	
	NVNT	2-DH1	Ant1		'9	15	Pass	
		Hopping	No. NVN	[1-DH1 2	402MHz /	Ant1		
LXI	ilent Spectrum Analyzer - Sv R RF 50 9 enter Freq 2.4417	vept SA Ω AC	SENSE:PUL		LIGN AUTO Avg Type: Log-P Avg Hold: 8000/80	wr	05:20:03 PM Jun 03, 2021 TRACE 123456 TYPE MWWWWW	
	Ref Offset 7		IFGain:Low #At	ten: 30 dB		Mkr1 2.4	01 837 0 GHz	
L	0 dB/div Ref 20.00	dBm					-3.099 dBm	
0 -1 -2 -3 -4 -5 -6								
	tart 2.40000 GHz Res BW 100 kHz		#VBW 30	0 kHz			top 2.48350 GHz 00 ms (1001 pts)	
	KR MODE TRC SCL 1 N 1 F 2 N 1 F	× 2.401 837 0 GH 2.479 993 0 GH		FUNCTION FUN	CTION WIDTH	FUNCTION	VALUE	
	3							
	6 7 8 8							
	9 0 1						→	
MSI	G			III.	STATUS			
	ilent Spectrum Analyzer - Sv		No. NVN	2-DH1 2	402MHz /	Ant1		
LXI	R RF 509 enter Freq 2.4417	2 AC	SENSE:PUL	g: Free Run	LIGNAUTO Avg Type: Log-P Avg Hold: 8000/80		05:39:48 PM Jun 03, 2021 TRACE 1 2 3 4 5 6	
				ten: 30 dB	Avginola. 000000			
	Ref Offset 7 0 dB/div Ref 20.00	.28 dB dBm					-3.149 dBm	
	0.0							
		W WWW		AAAAAAAAA		NNNNNN		
-3	0.0							
	0.0 <mark>M^f</mark>						Wh	
	0.0							
	tart 2.40000 GHz Res BW 100 kHz		#VBW 30				top 2.48350 GHz 00 ms (1001 pts)	
м	KES BW TOO KHZ KR MODE TRC SCL 1 N 1 f	×	Y		TION WIDTH	FUNCTION		
	2 N 1 f	2.401 837 0 GH 2.479 993 0 GH	z -3.149 dBm z -2.807 dBm					
	4 5 6							
	8							
	9							

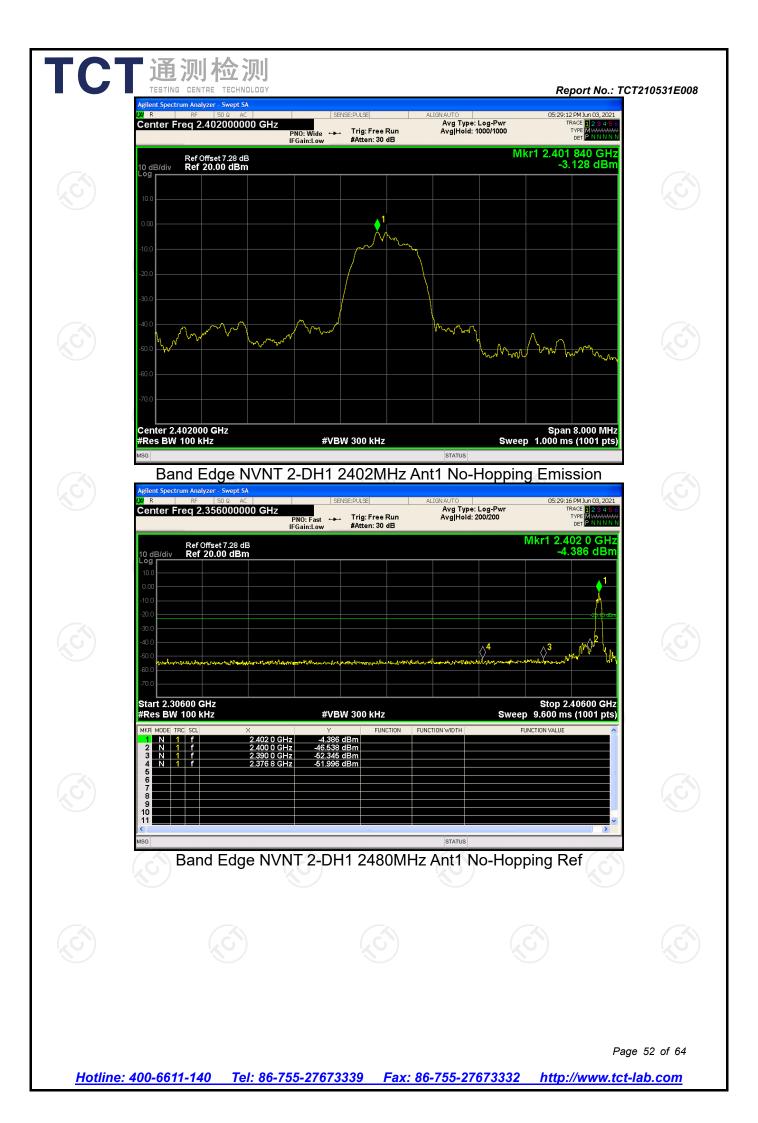

Page 45 of 64

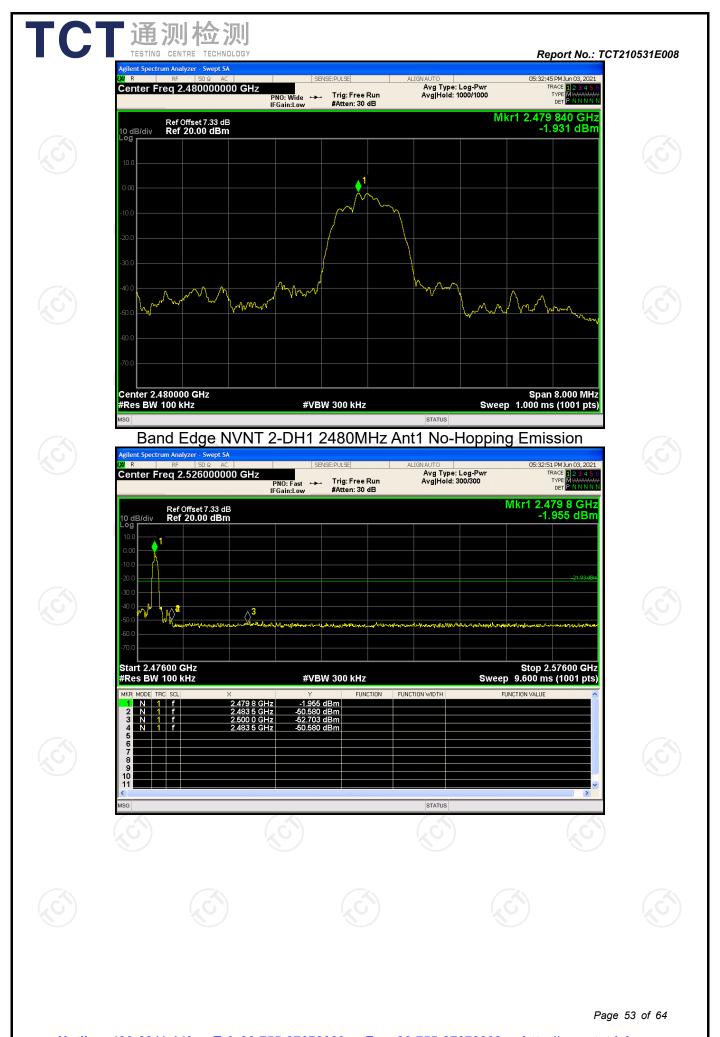
TC1	通测	则检测				-		105015000
	TESTING C	ENTRE TECHNOLOGY	Dwe	ell Time		Report	NO.: 1C12	10531E008
		Frequency		Pulse	Total	Period	Limit	
Condition	Mode	(MHz)	Antenna	Time	_ Dwell	Time	(ms)	Verdict
		()		(ms)	Time (ms)	(ms)	. ,	
NVNT	1-DH1	2402	Ant1	0.382	122.240	31600	400	Pass
NVNT	1-DH3	2402	Ant1	1.639	262.240	31600	400	Pass
NVNT	1-DH5	2402	Ant1	2.886	307.840	31600	400	Pass
NVNT	2-DH1	2402	Ant1	0.392	125.440	31600	400	Pass
NVNT	2-DH3	2402	Ant1	1.644	263.040	31600	400	Pass
NVNT	2-DH5	2402	Ant1	2.893	308.587	31600	400	Pass

Dwell NVNT 1-DH1 2402MHz Ant1



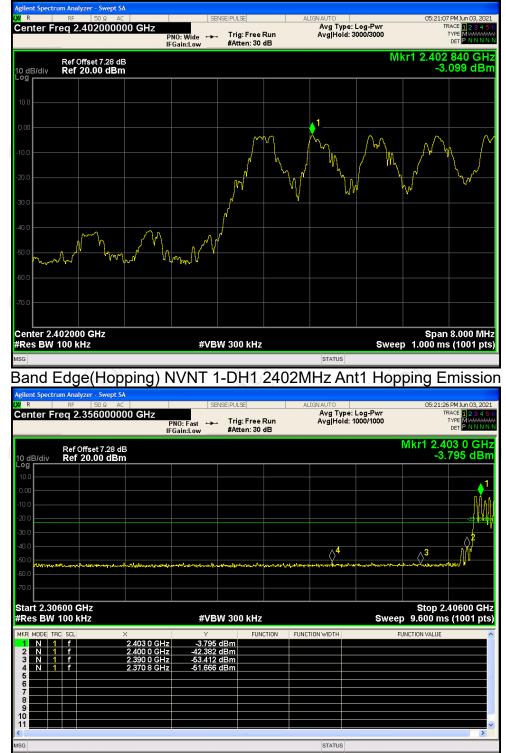

10 dB/div Log	Ref Offset 7.28 dB Ref 20.00 dBm				ΔMkr1	2.893 ms -11.34 dB	
-10.0 -20.0 -30.0		X ₂	er hone y alb le joule 3 may 17 Januar 2 mil		a ling y and y and y and starting of the start, size of the form to	1 <u>42</u>	
-40.0 -60.0 <mark>alimit yayya</mark> -60.0 <mark>ali yayaana</mark>	Heinstein ^{ie} n statische Alber Reisensteinen Statische Alber					telep: 	
Center 2.40 Res BW 1.0			BW 1.0 MHz	FUNCTION WIDTH	Sweep 4.000 ms		
$\begin{array}{c c} 1 & \Delta 2 & 1 \\ 2 & F & 1 \\ 3 & & \\ 4 & & \\ 5 & & \\ 6 & & \end{array}$		2.893 ms (Δ) -11. 999.2 μs -11.90	34 dB D dBm	FUNCTION WIDTH	FUNCTION VALUE		
7 8 9 10 11						×	
MSG			<i>(</i> 5)	STATUS			

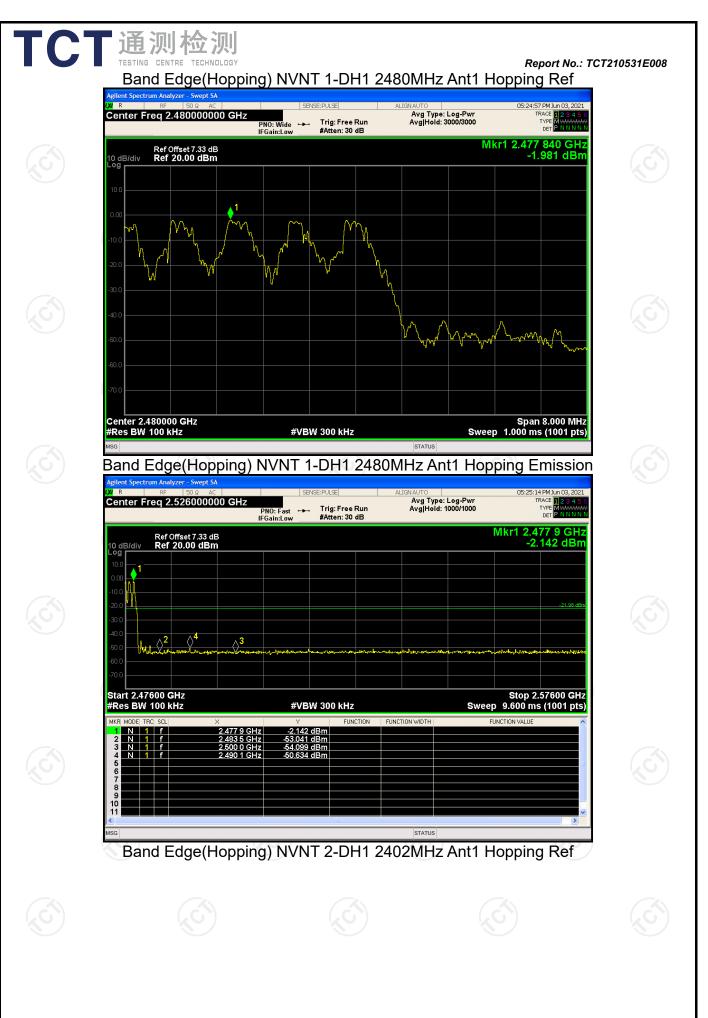

	TESTING C	则检测			Rep	ort No.: TCT2	210531E008
			Band	Edge			
Condition	Mada	Frequency	Antonno	Hopping	Max Value	Limit	\/a naliat
Condition	Mode	(MHz)	Antenna	Mode	(dBc)	(dBc)	Verdict
NVNT	1-DH1	2402	Ant1	No-Hopping	-47.96	-20	Pass
NVNT	1-DH1	2480	Ant1	No-Hopping	-42.51	-20	Pass
NVNT	2-DH1	2402	Ant1	No-Hopping	-48.86	-20	Pass
NVNT	2-DH1	2480	Ant1	No-Hopping	-48.64	-20	Pass



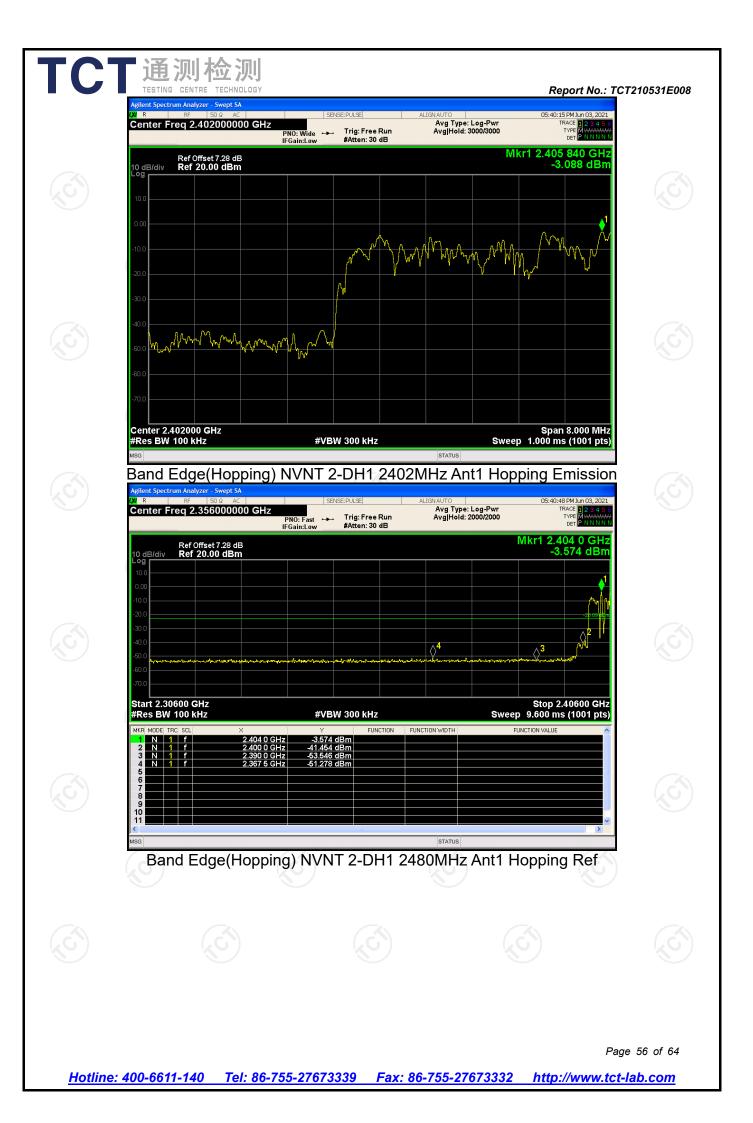
	req 2	2.35600000	F	PNO: Fast ↔ Gain:Low	. Trig: Fre #Atten: 3			rpe: Log-Pwr Id: 1000/1000		TRACE 1234 TYPE MWWWW DET PNNN
0 dB/div		Offset 7.28 dE 20.00 dBm								401 8 GH 3.149 dBr
og 10.0										
0.00										∮ ¹
10.0										
20.0										-23.11 dE
30.0										
40.0					^	4			×3	1.2
50.0 		-		higherhoundfuller	andresson		un aloga and a solar and	- Hattanka hallowed	3	unal VV
50.0										
70.0										
				#VE	SW 300 kH	z		Sw	Stop eep 9.600 n	2.40600 GH ns (1001 pt:
Res BW	100 RC SCL	kHz	×	Y	FL	Z	FUNCTION WIDTH	Sw		ns (1001 pt
Res BW	100 I RC SCL 1 f 1 f	kHz	2.401 8 GHz 2.400 0 GHz	۲ -3.149 -53.161	dBm dBm		FUNCTION WIDTH	Sw	eep 9.600 n	ns (1001 pt
Res BW	100 I RC SCL 1 f 1 f 1 f	kHz	2.401 8 GHz	۲ -3.149) dBm dBm) dBm		FUNCTION WIDTH	Sw	eep 9.600 n	ns (1001 pt
Res BW KR MODE TR 1 N 1 2 N 1 3 N 1	100 I RC SCL 1 f 1 f 1 f	kHz	2.401 8 GHz 2.400 0 GHz 2.390 0 GHz	-3.149 -53.161 -54.099) dBm dBm) dBm		FUNCTION WIDTH	Sw	eep 9.600 n	ns (1001 pt
2 N 1 3 N 1 4 N 1	100 I RC SCL 1 f 1 f 1 f	kHz	2.401 8 GHz 2.400 0 GHz 2.390 0 GHz	-3.149 -53.161 -54.099) dBm dBm) dBm		FUNCTION WIDTH	Sw	eep 9.600 n	ns (1001 pt
Res BW KR MODE TF 1 N 1 2 N 1 3 N 1 4 N 1 5 6 7	100 I RC SCL 1 f 1 f 1 f	kHz	2.401 8 GHz 2.400 0 GHz 2.390 0 GHz	-3.149 -53.161 -54.099) dBm dBm) dBm		FUNCTION WIDTH	Sw	eep 9.600 n	ns (1001 pt

Page 50 of 64



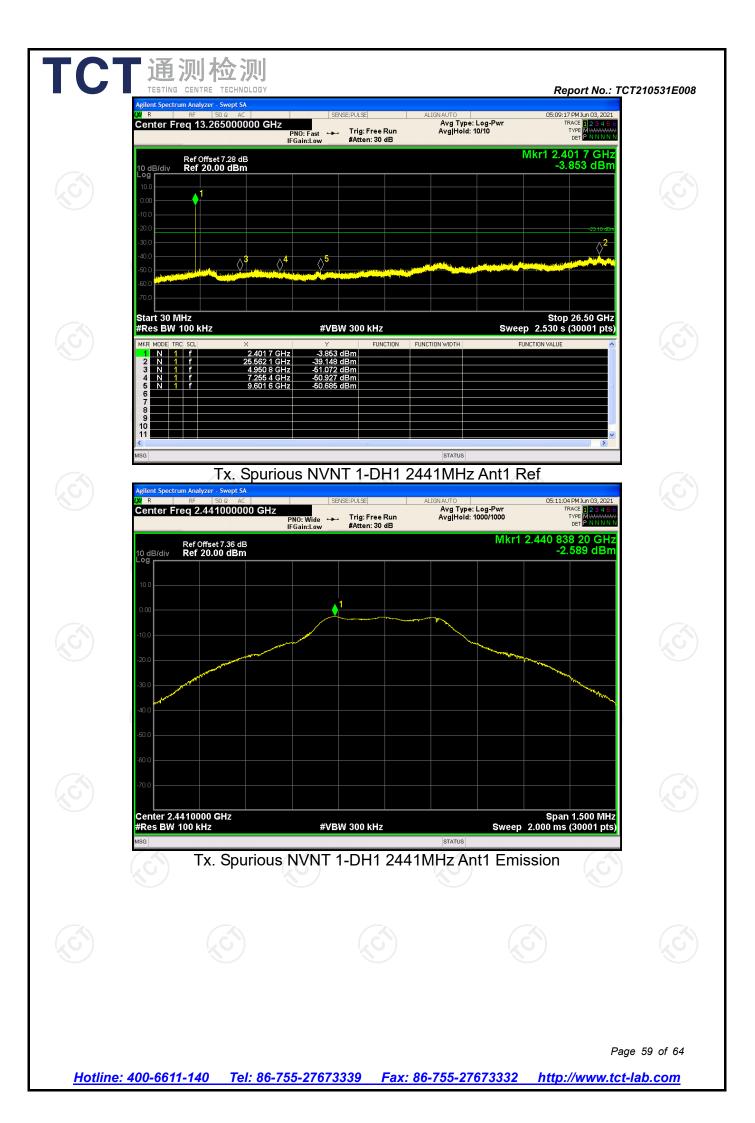


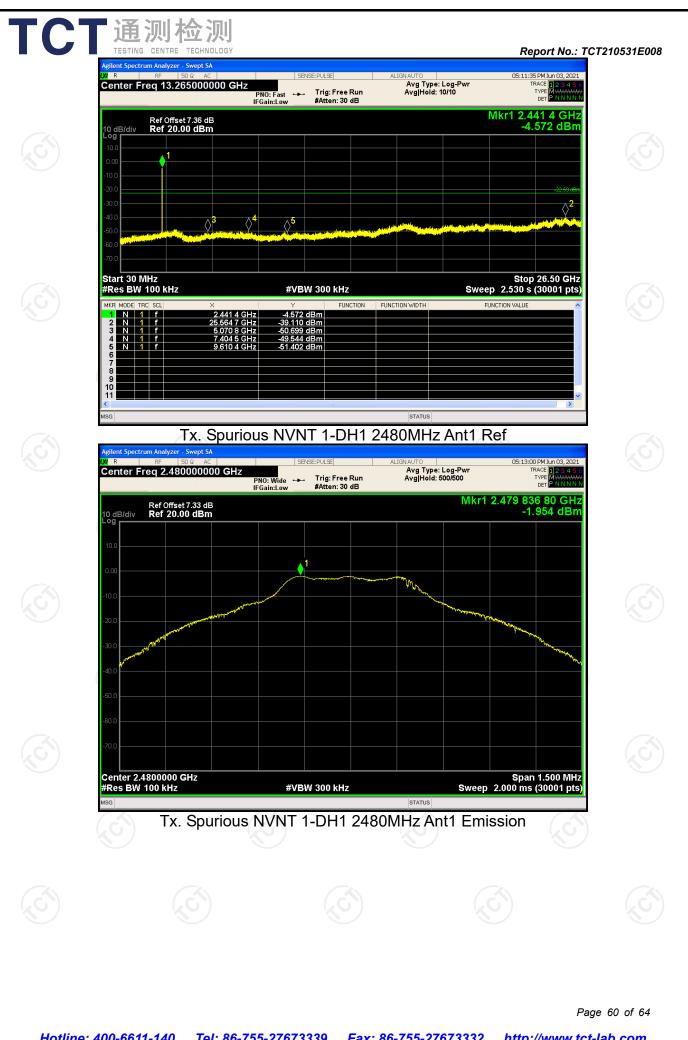
TC1		则检测			Rec	oort No.: TCT2	210531E008
	_		Band Edge	(Hopping)	,		
Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	Ant1	Hopping	-48.56	-20	Pass
NVNT	1-DH1	2480	Ant1	Hopping	-48.65	-20	Pass
NVNT	2-DH1	2402	Ant1	Hopping	-48.18	-20	Pass
NVNT	2-DH1	2480	Ant1	Hopping	-48.33	-20	Pass

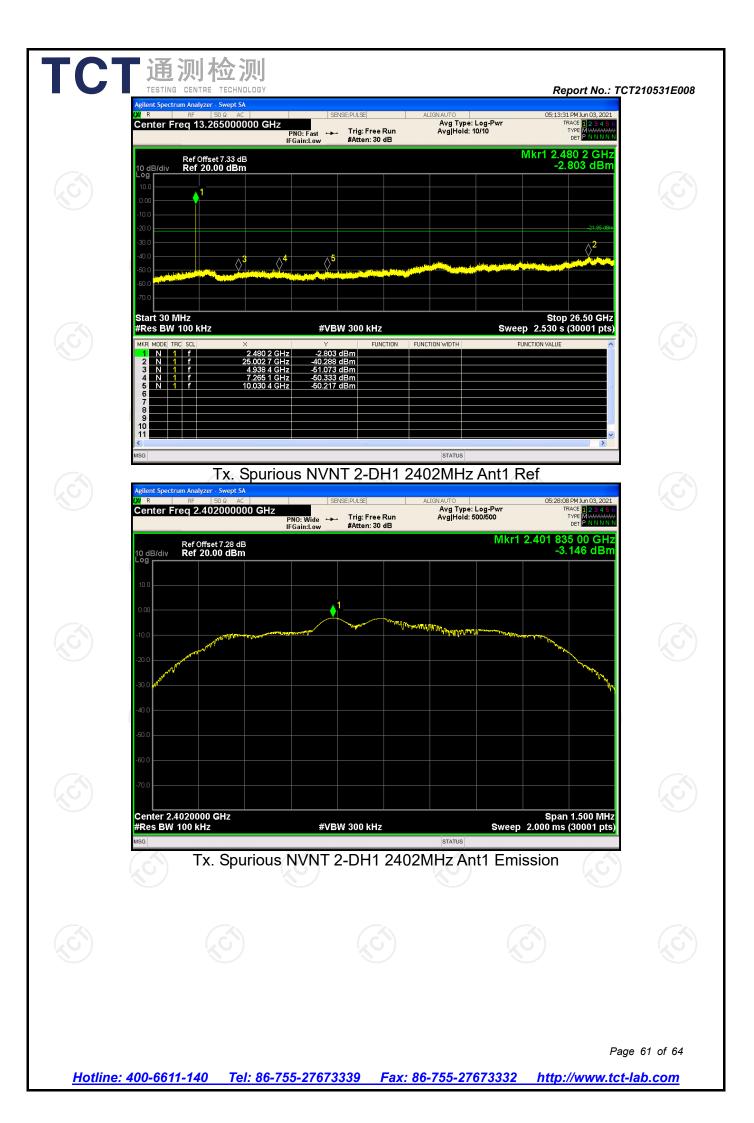

Band Edge(Hopping) NVNT 1-DH1 2402MHz Ant1 Hopping Ref

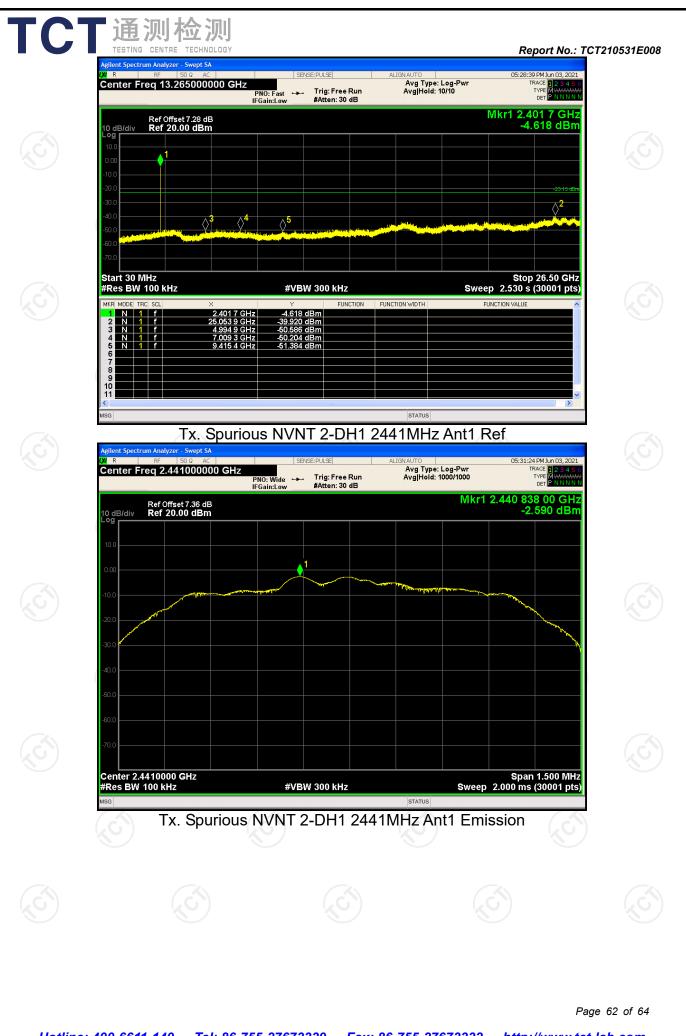
Page 54 of 64

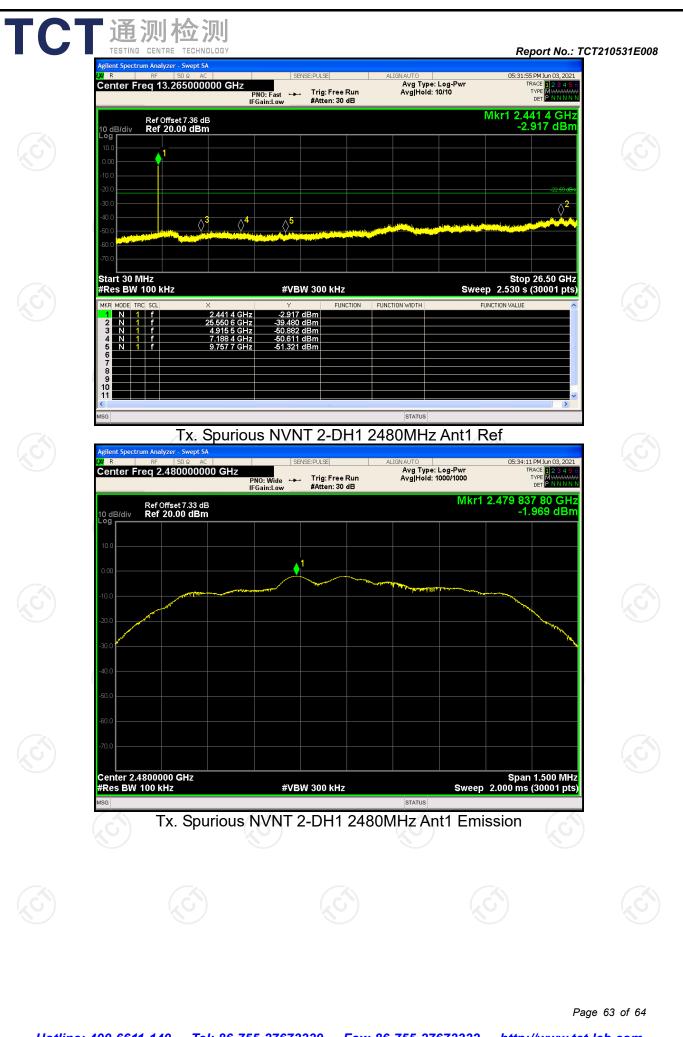

Page 55 of 64

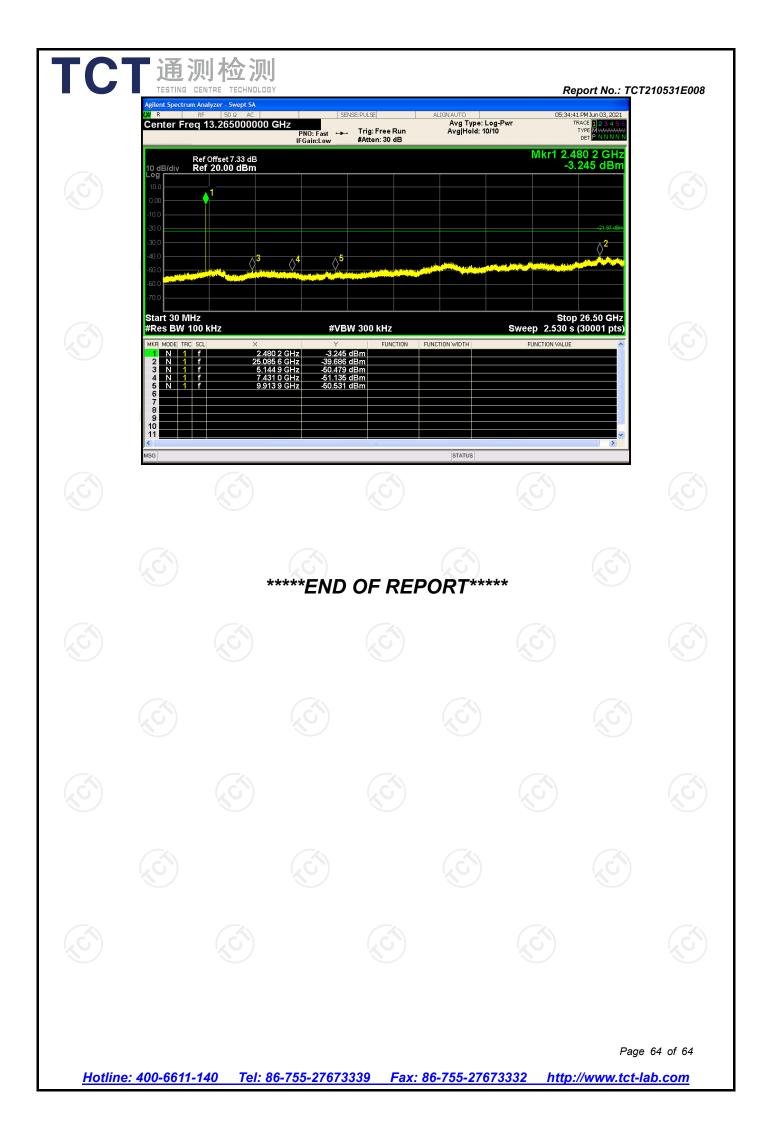

Page 57 of 64


٦	ГСТ	通测	 检测				
		TESTING CEN	TRE TECHNOLOGY			Report No.: TC1	210531E008
			Conducted	RF Spurio	us Emission		
	Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
	NVNT	1-DH1	2402	Ant1	-36.04	-20	Pass
	NVNT	1-DH1	2441	Ant1	-36.52	-20	Pass
	NVNT	1-DH1	2480	Ant1	-38.33	-20	Pass
	NVNT	2-DH1	2402	Ant1	-36.77	-20	Pass
	NVNT	2-DH1	2441	Ant1	-36.88	-20	Pass
	NVNT	2-DH1	2480	Ant1	-37.71	-20	Pass




Tx. Spurious NVNT 1-DH1 2402MHz Ant1 Emission





Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

