

RADIO TEST REPORT FCC ID: 2AJOT-BH405

Product: Power Earbuds Lite Trade Mark: N/A Model No.: BH-405 Serial Model: N/A Report No.: S20081103504002 Issue Date: 29 Aug.2020

Prepared for

HMD Global Oy Bertel Jungin aukio 9, 02600 Espoo, Finland

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

1	TES	ST RESULT CERTIFICATION	3
2	SUN	MMARY OF TEST RESULTS	5
3	FAC	CILITIES AND ACCREDITATIONS	6
	3.1	FACILITIES	6
	3.2	LABORATORY ACCREDITATIONS AND LISTINGS	
	3.3	MEASUREMENT UNCERTAINTY	
4	GEI	NERAL DESCRIPTION OF EUT	7
5	DES	SCRIPTION OF TEST MODES	9
6	SET	TUP OF EQUIPMENT UNDER TEST	10
	6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
	6.2	SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	11
	6.3	-	
7	TES	ST REQUIREMENTS	14
	7.1	CONDUCTED EMISSIONS TEST	14
	7.2	RADIATED SPURIOUS EMISSION	
	7.3	6DB BANDWIDTH	
	7.4	PEAK OUTPUT POWER	
	7.5	POWER SPECTRAL DENSITY	
	7.6	CONDUCTED BAND EDGE MEASUREMENT.	
	7.7	SPURIOUS RF CONDUCTED EMISSIONS.	
	7.8	ANTENNA APPLICATION	37

NTEK北测

1 TEST RESULT CERTIFICATION

Applicant's Name:	HMD Global Oy	
Address:	Bertel Jungin aukio 9, 02600 Espoo, Finland	
Manufacturer's Name:	HMD Global Oy	
Address:	Bertel Jungin aukio 9, 02600 Espoo, Finland	
Manufacturing plant's Name:	DONGGUAN EQ ELECTRONIC ENTERPRISE LIMITED	
Address:	No.8 road,No.2 industry zone,Fulong,Shipai town,Dongguan City,Guangdong	
Product description		
Product name:	Power Earbuds Lite	
Model and/or type reference:	BH-405	
Serial Model:	N/A	

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J	
FCC 47 CFR Part 15, Subpart C	
KDB 174176 D01 Line Conducted FAQ v01r01	Complied
ANSI C63.10-2013	
KDB 558074 D01 15.247 Meas Guidance v05r02	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	: 11 Aug.2020 ~ 29 Aug.2020
Testing Engineer	:(Mary Hu)
Technical Manager	Jasonchen
Authorized Circotom	(Jason Chen)
Authorized Signatory	(Alex Li)

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C							
Standard Section Test Item Verdict Rer							
15.207	Conducted Emission	PASS					
15.247 (a)(2)	6dB Bandwidth	PASS					
15.247 (b) Peak Output Power		PASS					
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS					
15.247 (e)	Power Spectral Density	PASS					
15.247 (d) Band Edge Emission		PASS					
15.247 (d) Spurious RF Conducted Emission		PASS					
15.203 Antenna Requirement PASS		PASS					

Remark:

- 1. "N/A" denotes test is not applicable in this Test Report.
- 2. All test items were verified and recorded according to the standards and without any deviation during the test.
- 3. There are left and right ear plugs on the EUT. Both have been tested.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification					
Equipment	Power Earbuds Lite				
Trade Mark	N/A				
FCC ID	2AJOT-BH405				
Model No.	BH-405				
Serial Model	N/A				
Model Difference	N/A				
Operating Frequency	2402MHz~2480MHz				
Modulation	GFSK				
Number of Channels	40 Channels				
Bluetooth Version	BT V5.0				
Antenna Type	Ceramic Antenna				
Antenna Gain	2 dBi				
	DC supply:				
Power supply	Earphone: DC 3.7V from Battery or DC 5V form Charging case Charging case: DC 3.7V from Battery or DC 5V from Adapter.				
	Adapter supply:				
SN	209C018310				
HW Version	V6				
SW Version	V0.1				

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

Report No.	Version	Description	Issued Date
S20081103504002	Rev.01	Initial issue of report	29 Aug.2020

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+k×2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases					
Test Item	Data Rate/ Modulation				
Test item	BT V5.0 / GFSK				
AC Conducted Emission	Mode 1: Charging				
	Mode 2: normal link mode				
Radiated Test	Mode 3: Bluetooth Tx Ch00_2402MHz_1Mbps				
Cases	Mode 4: Bluetooth Tx Ch19_2440MHz_1Mbps				
	Mode 5: Bluetooth Tx Ch39_2480MHz_1Mbps				
Conducted Test	Mode 3: Bluetooth Tx Ch00_2402MHz_1Mbps				
Conducted Test	Mode 4: Bluetooth Tx Ch19_2440MHz_1Mbps				
Cases	Mode 5: Bluetooth Tx Ch39_2480MHz_1Mbps				

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

2. AC power line Conducted Emission was tested under maximum output power.

3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

4. EUT is set to continuous transmission mode. duty cycle greater than 98%.

5. EUT built-in battery-powered, the battery is fully-charged.

SETUP OF EQUIPMENT UNDER TEST 6 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM For AC Conducted Emission Mode AC PLUG C-1 E-1 AE-1 EUT Adapter For Radiated Test Cases EUT For Conducted Test Cases Measurement C-2 EUT Instrument Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	0.32m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		estequipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2020.7.13	2021.7.12	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2020.05.11	2021.05.10	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2020.08.07	2021.08.06	1 year
4	Test Receiver	R&S	ESPI7	101318	2020.05.11	2021.05.10	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2020.04.11	2021.04.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2018.04.08	2021.04.07	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2019.11.18	2020.11.17	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2020.7.13	2021.7.12	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2019.11.18	2020.11.17	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2020.7.13	2021.7.12	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.6.28	2022.6.27	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2019.6.28	2022.6.27	3 year
16	Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period	
1	Test Receiver	R&S	ESCI	101160	2020.05.11	2021.05.10	1 year	
2	LISN	R&S	ENV216	101313	2020.05.11	2021.05.10	1 year	
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2020.05.11	2021.05.10	1 year	
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year	
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year	
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2019.6.28	2022.6.27	3 year	
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year	

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

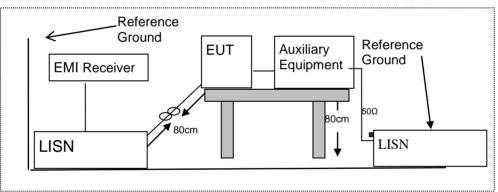
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted	d Emission Limit
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56*	56-46*
0.5-5.0	56	46
5.0-30.0	60	50

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

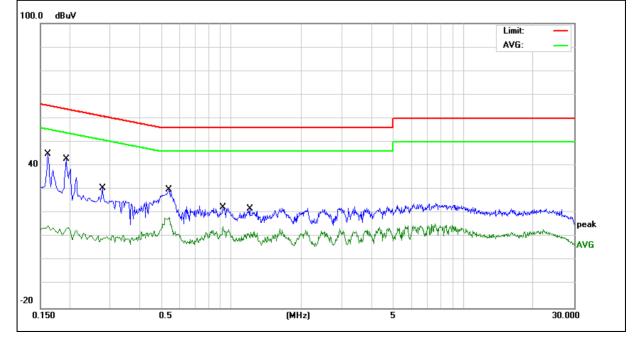
The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

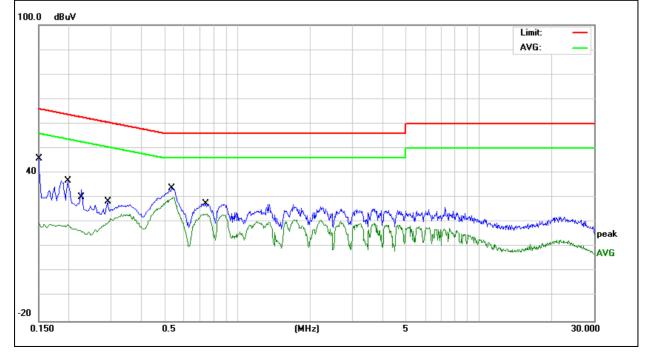

7.1.6 Test Results

EUT:		Power E	arbuds Lite	Model Name	:	BH-405		
Temperature: 22 °C			Relative Hum	Relative Humidity: 52%				
Pressure: 1010hPa		1	Phase :	Phase : L		L		
		DC 5V fr AC 120V	om Adapter //60Hz	Test Mode:		Mode	1	
			1					
Frequency	Read	ding Level	Correct Factor	Measure-ment	Lim	nits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dB	μV)	(dB)	Remain
0.1620	:	35.29	9.76	45.05	65.	36	-20.31	QP
0.1620		4.98	9.76	14.74	55.	36	-40.62	AVG
0.1940		33.13	9.76	42.89	63.	86	-20.97	QP
0.1940		4.36	9.76	14.12	53.	86	-39.74	AVG
0.2779		20.79	9.75	30.54	60.	88	-30.34	QP
0.2779		0.04	9.75	9.79	50.	88	-41.09	AVG
0.5380		20.18	9.74	29.92	56.	00	-26.08	QP
0.5380		8.46	9.74	18.20	46.	00	-27.80	AVG
0.9220		12.66	9.74	22.40	56.	00	-33.60	QP
0.9220		4.48	9.74	14.22	46.	00	-31.78	AVG
1.1980		12.22	9.74	21.96	56.	00	-34.04	QP
1.1980		2.40	9.74	12.14	46.	00	-33.86	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.



EUT:		Power Ea	er Earbuds Lite		Model Name :		BH-405	
Temperature	:	22 °C	Relative H		lumidity:	52%		
Pressure:		1010hPa			Phase :		N	
Test Voltage	:	DC 5V fr AC 120V	om Adapter //60Hz	Test Mode: Mod		Mode 1	lode 1	
						.		
Frequency	Rea	ding Level	Correct Factor	Meas	sure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)		(dBµV)	(dBµV)	(dB)	
0.1500		36.07	9.74		45.81	65.99	-20.18	QP
0.1500		10.11	9.74		19.85	55.99	-36.14	AVG
0.1980		27.17	9.73		36.90	63.69	-26.79	QP
0.1980		9.14	9.73		18.87	53.69	-34.82	AVG
0.2220		23.60	9.73		33.33	62.74	-29.41	QP
0.2220		7.06	9.73		16.79	52.74	-35.95	AVG
0.2899		18.61	9.74		28.35	60.52	-32.17	QP
0.2899		11.68	9.74		21.42	50.52	-29.10	AVG
0.5340		24.01	9.75		33.76	56.00	-22.24	QP
0.5340		20.47	9.75		30.22	46.00	-15.78	AVG
0.7378		17.87	9.75		27.62	56.00	-28.38	QP
0.7378		13.60	9.75		23.35	46.00	-22.65	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 00 1 art 10.20								
MHz	MHz	MHz	GHz					
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15					
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46					
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75					
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5					
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2					
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5					
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7					
6.26775-6.26825	123-138	2200-2300	14.47-14.5					
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2					
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4					
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12					
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0					
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8					
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5					
12.57675-12.57725	322-335.4	3600-4400	(2)					
13.36-13.41								

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74	54	

Remark: 1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

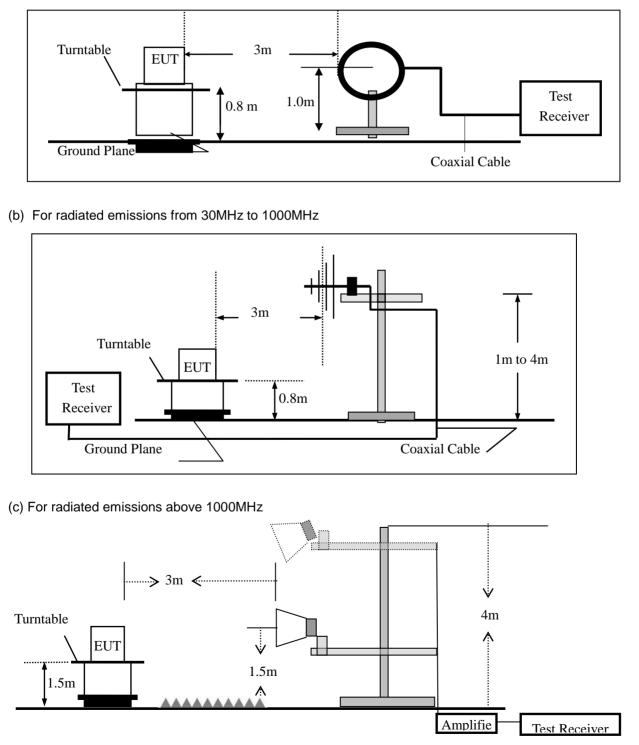
3. Limit line=Specific limits(dBuV) + distance extrapolation factor.

a) At frequencies at or above 30 MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

b) At frequencies below 30 MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting	
Attenuation	Auto	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average	

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:						
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth			
30 to 1000	QP	120 kHz	300 kHz			
Ab aug 4000	Peak	1 MHz	1 MHz			
Above 1000	Average	1 MHz	10 Hz			

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Power Earbuds Lite	Model No.:	BH-405
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode3/Mode4/Mode5	Test By:	Mary Hu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

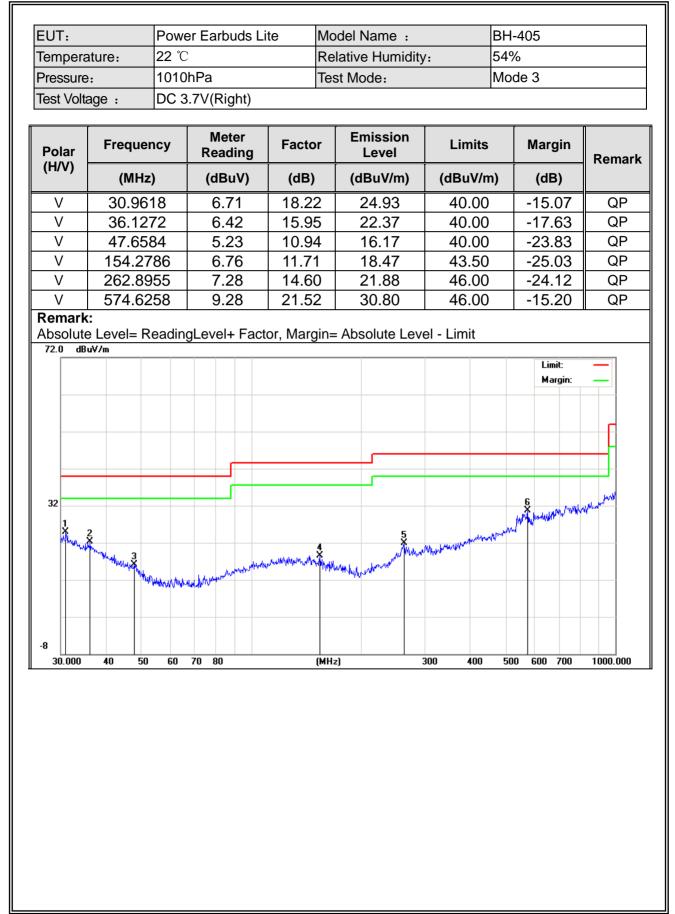
Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

■ Spurious Emission below 1GHz (30MHz to 1GHz)

All the modulation modes have been tested, and the worst result was report as below:

EUT:	Power Earbuds Lite	Model Name :	BH-405
Temperature:	22 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Test Mode:	Mode 3
Test Voltage :	DC 3.7V		

Po		Fre	quei	ncy			eter ding	F	actor	E	nissio Level	on	Lir	nits		Mai	gin		Rer	nark
(H/	v)	(MHz)		(dB	uV)		(dB)	(0	BuV/n	n)	(dBı	ıV/m	I)	(d	B)		-	
V	/	12	7.21	76		6.	16		12.50		18.66		40	.00		-21	.34		C)P
V	/	28	0.02	37		5.	14		16.10		21.24		47	.00		-25	.76		C)P
V	/	41	9.10	80		6.	93		18.53		25.46		47	.00		-21	.54		C	۱P
V	/	55	8.73	01		6.	31		22.38		28.69		47	.00		-18	.31		C	۱P
V	/	76	8.74	81		6.	99		24.88		31.87		47	.00		-15	.13		C)P
V	/	96	5.54	21		7.	01		28.28		35.29		47	.00		-11	.71		C	۱P
			el= R	lead	ingL	eve	l+ Fa	actor,	Margi	in= Ab	solute	Lev	el - Lir	nit						
																	.imit: 1 argiı	n:		
							-													
32	Malhart								1			2	nthermonial	3	ANHUN+120	4 X	an a	5	6	
	***4k	M. M. Martin	White way	mand	alina a	when	philohand	whenewhen	× http://www.	nanandaya	and management	uthyithu	http://www.							
-8	.000	40	50	60	70	80				Hz)			300	400	50) 600) 70		1000.	000



Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Ttoman
Н	106.7587	7.13	11.44	18.57	43.50	-24.93	QP
Н	169.0054	7.25	10.54	17.79	43.50	-25.71	QP
Н	281.9946	6.86	15.35	22.21	46.00	-23.79	QP
Н	552.8832	6.67	22.54	29.21	46.00	-16.79	QP
Н	758.0407	7.60	25.01	32.61	46.00	-13.39	QP
Н	962.1621	7.77	28.24	36.01	54.00	-17.99	QP
72.0 dBu	J¥7m					Limit: Margin:	
32		Munnersonner	yrtynlutlev ⁿ strudtstand	Alle wanthrow and and a	NIX-Spinlassen	A market	
-8	40 50 60	70 80	(MHz		300 400 50	0 600 700	1000.000

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remar
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	34.5172	7.17	16.62	23.79	40.00	-16.21	QP
Н	41.1319	6.71	13.29	20.00	40.00	-20.00	QP
Н	132.2206	5.53	12.54	18.07	43.50	-25.43	QP
Н	262.8955	6.67	14.60	21.27	46.00	-24.73	QP
Н	550.9479	6.73	22.60	29.33	46.00	-16.67	QP
Н	952.0937	7.44	28.20	35.64	46.00	-10.36	QP
						Limit: Margin:	
32	Multi		lan manana an		and a second sec	Jan	
-8	40 50 60	70 80	(MH:	z)	300 400 50	0 600 700	1000.000

 Spurious 	Emissio	n Above	1GHz (10	Hz to	250	GHz)							
EUT:		Power	Earbuds Li	ite	Мо	del No.:		ВH	-405				
Temperature	:	20 ℃			Re	lative Humi	dity:	48	%				
Test Mode:		Mode3/	Mode2/Mo	ode5	Tes	st By:		Ma	ary Hu				
						,			,				
Left													
Frequency	Read Level	Cable loss	Antenna Factor	Prear Fact		Emission Level	Limits	5	Margin	Remark	Comment		
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/ı	m)	(dB)				
			Low Ch	annel	(240	02 MHz)(GFS	SK)Abo	ve 1	IG				
4804.10	67.12	5.21	35.59	44.3	80	63.62	74.00)	-10.38	Pk	Vertical		
4804.10	43.49	5.21	35.59	44.3	80	39.99	54.00)	-14.01	AV	Vertical		
7206.96	63.86	6.48	36.27	44.6	60	62.01	74.00)	-11.99	Pk	Vertical		
7206.96	42.32	6.48	36.27	44.6	60	40.47	54.00)	-13.53	AV	Vertical		
4804.50	61.50	5.21	35.55	44.3	80	57.96	74.00)	-16.04	Pk	Horizontal		
4804.50	41.33	5.21	35.55	44.3	80	37.79	54.00)	-16.21	AV	Horizontal		
7206.57	59.57	6.48	36.27	44.5	52	57.80	74.00)	-16.20	Pk	Horizontal		
7206.57	42.19	6.48	36.27	44.5	52	40.42	54.00)	-13.58	AV	Horizontal		
	Mid Channel (2440 MHz)(GFSK)Above 1G												
4880.42	67.34	5.21	35.66	44.2	20	64.01	74.00)	-9.99	Pk	Vertical		
4880.42	43.24	5.21	35.66	44.2	20	39.91	54.00)	-14.09	AV	Vertical		
7320.99	63.09	7.10	36.50	44.4	3	62.26	74.00)	-11.74	Pk	Vertical		
7320.99	43.01	7.10	36.50	44.4	3	42.18	54.00)	-11.82	AV	Vertical		
4880.45	60.37	5.21	35.66	44.2	20	57.04	74.00)	-16.96	Pk	Horizontal		
4880.45	40.73	5.21	35.66	44.2	20	37.40	54.00)	-16.60	AV	Horizontal		
7320.08	61.77	7.10	36.50	44.4	3	60.94	74.00)	-13.06	Pk	Horizontal		
7320.08	42.72	7.10	36.50	44.4	-	41.89	54.00		-12.11	AV	Horizontal		
			High Ch	annel	(248	30 MHz)(GFS	SK) Abo	ove	1G				
4959.45	65.58	5.21	35.52	44.2	21	62.10	74.00)	-11.90	Pk	Vertical		
4959.45	43.54	5.21	35.52	44.2	21	40.06	54.00)	-13.94	AV	Vertical		
7439.77	63.07	7.10	36.53	44.6	60	62.10	74.00)	-11.90	Pk	Vertical		
7439.77	42.09	7.10	36.53	44.6	60	41.12	54.00)	-12.88	AV	Vertical		
4960.08	63.02	5.21	35.52	44.2	21	59.54	74.00)	-14.46	Pk	Horizontal		
4960.08	41.44	5.21	35.52	44.2	21	37.96	54.00)	-16.04	AV	Horizontal		
7440.85	62.97	7.10	36.53	44.6	60	62.00	74.00)	-12.00	Pk	Horizontal		
7440.85	40.97	7.10	36.53	44.6	60	40.00	54.00)	-14.00	AV	Horizontal		

Right									
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
			Low Ch	annel (240	2 MHz)(GFS	SK)Above '	IG		
4804.70	67.46	5.21	35.59	44.30	63.96	74.00	-10.0437	Pk	Vertical
4804.70	43.30	5.21	35.59	44.30	39.80	54.00	-14.203713	AV	Vertical
7206.46	64.31	6.48	36.27	44.60	62.46	74.00	-11.543623	Pk	Vertical
7206.46	43.71	6.48	36.27	44.60	41.86	54.00	-12.137056	AV	Vertical
4804.04	61.14	5.21	35.55	44.30	57.60	74.00	-16.40164	Pk	Horizontal
4804.04	43.45	5.21	35.55	44.30	39.91	54.00	-14.085314	AV	Horizontal
7206.70	62.51	6.48	36.27	44.52	60.74	74.00	-13.258988	Pk	Horizontal
7206.70	43.21	6.48	36.27	44.52	41.44	54.00	-12.555019	AV	Horizontal
		-	Mid Ch	annel (244	0 MHz)(GFS	SK)Above 1	G		
4880.35	64.41	5.21	35.66	44.20	61.08	74.00	-12.92	Pk	Vertical
4880.35	43.31	5.21	35.66	44.20	39.98	54.00	-14.02	AV	Vertical
7320.63	60.60	7.10	36.50	44.43	59.77	74.00	-14.23	Pk	Vertical
7320.63	43.21	7.10	36.50	44.43	42.38	54.00	-11.62	AV	Vertical
4880.63	60.69	5.21	35.66	44.20	57.36	74.00	-16.64	Pk	Horizontal
4880.63	43.63	5.21	35.66	44.20	40.30	54.00	-13.70	AV	Horizontal
7320.38	60.97	7.10	36.50	44.43	60.14	74.00	-13.86	Pk	Horizontal
7320.38	41.66	7.10	36.50	44.43	40.83	54.00	-13.17	AV	Horizontal
		-	High Ch	annel (248	80 MHz)(GFS	SK) Above	1G		
4959.82	68.00	5.21	35.52	44.21	64.52	74.00	-9.48	Pk	Vertical
4959.82	43.26	5.21	35.52	44.21	39.78	54.00	-14.22	AV	Vertical
7439.62	62.22	7.10	36.53	44.60	61.25	74.00	-12.75	Pk	Vertical
7439.62	42.29	7.10	36.53	44.60	41.32	54.00	-12.68	AV	Vertical
4960.71	61.91	5.21	35.52	44.21	58.43	74.00	-15.57	Pk	Horizontal
4960.71	43.34	5.21	35.52	44.21	39.86	54.00	-14.14	AV	Horizontal
7440.74	61.16	7.10	36.53	44.60	60.19	74.00	-13.81	Pk	Horizontal
7440.74	43.97	7.10	36.53	44.60	43.00	54.00	-11.00	AV	Horizontal

Note: (1) All Readings are Peak Value (VBW=3MHz) and AV Value (VBW=10Hz).
(2) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor
(3)All other emissions more than 20dB below the limit.

EUT:		Power E	arbuds Li	te	Mode	el No.:		BH-	405			
Cemperature	e:	20 °C			Relat	ive Humic	lity:	48%	/ 0			
est Mode:		Mode3/	Mode5		Test By: Mary Hu							
.eft	Motor	Cabla	Antenna	Dream	~~	Emission						
Frequency	Meter Reading	Cable Loss	Factor	Prear Fact		Level	Limi	ts	Margin	Detector	Commen	
(MHz)	(dBµV)	(dB)	dB/m	(dB	5) ((dBµV/m)	(dBµ∖	′/m)	(dB)	Туре		
					C	GFSK						
2310.00	51.58	2.97	27.80	43.8	80	38.55	74		-35.452371	Pk	Horizonta	
2310.00	44.76	2.97	27.80	43.8	80	31.73	54		-22.274274	AV	Horizonta	
2310.00	50.72	2.97	27.80	43.8	80	37.69	74		-36.305855	Pk	Vertical	
2310.00	43.91	2.97	27.80	43.8	80	30.88	54		-23.122581	AV	Vertical	
2390.00	51.46	3.14	27.21	43.8	80	38.01	74		-35.994395	Pk	Vertical	
2390.00	42.00	3.14	27.21	43.8	80	28.55	54		-25.45259	AV	Vertical	
2390.00	52.03	3.14	27.21	43.8	80	38.58	74		-35.41904	Pk	Horizonta	
2390.00	42.13	3.14	27.21	43.8	80	28.68	54		-25.315765	AV	Horizonta	
2483.50	53.50	3.58	27.70	44.0	00	0 40.78			-33.22373	Pk	Vertical	
2483.50	41.38	3.58	27.70	44.0	00	28.66	54		-25.344782	AV	Vertical	
2483.50	51.63	3.58	27.70	44.0	00	38.91	74		-35.091406	Pk	Horizonta	
2483.50	42.71	3.58	27.70	44.0	00	29.99	54		-24.007333	AV	Horizonta	
light												
	Meter	Cable	Antenn	a Pr	eamp	Emissio	n					
Frequency	Reading		Factor		actor	Level	" L	imits	Margin	Detector	Commen	
(MHz)	(dBµV)	(dB)	dB/m	((dB)	(dBµV/m	n) (dE	βµV/m	i) (dB)	Туре		
			ł		0	GFSK			- I			
2310.00	53.37	2.97	27.80	4	3.80	40.34		74	-33.66	Pk	Horizonta	
2310.00	43.43	2.97	27.80	4	3.80	30.40		54	-23.60	AV	Horizonta	
2310.00	54.04	2.97	27.80	4	3.80	41.01		74	-32.99	Pk	Vertical	
2310.00	42.68	2.97	27.80	4	3.80	29.65		54	-24.35	AV	Vertical	
2390.00	54.72	3.14	27.21		3.80	41.27		74	-32.73	Pk	Vertical	
2390.00	41.28	3.14	27.21		3.80	27.83		54	-26.17	AV	Vertical	
2390.00	51.19	3.14	27.21		3.80	37.74		74	-36.26	Pk	Horizonta	
2390.00	41.11	3.14	27.21		3.80	27.66		54	-26.34	AV	Horizonta	
2483.50	51.46	3.58	27.70		4.00	38.74		74	-35.26	Pk	Vertical	
2483.50	40.03	3.58	27.70		4.00	27.31		54	-26.69	AV	Vertical	
2483.50	52.88	3.58	27.70		4.00	40.16		74	-33.84	Pk	Horizonta	
2483.50	40.48	3.58	27.70		4.00	27.76		54	-26.24	AV	Horizonta	

Note: (1) All other emissions more than 20dB below the limit.

EUT:		Power Ea	arbuds Lite	Mode	el No.:	BH-4	05		
Temperature	:	20 °C		Rela	ive Humidity	/: 48%			
Test Mode:		Mode3/ N	lode5	Test	est By: Mary Hu				
_eft									
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
3260	60.10	4.04	29.57	44.70	49.01	74	-24.99	Pk	Vertical
3260	45.90	4.04	29.57	44.70	34.81	54	-19.19	AV	Vertical
3260	57.16	4.04	29.57	44.70	46.07	74	-27.93	Pk	Horizonta
3260	47.46	4.04	29.57	44.70	36.37	54	-17.63	AV	Horizonta
3332	60.18	4.26	29.87	44.40	49.91	74	-24.09	Pk	Vertical
3332	47.03	4.26	29.87	44.40	36.76	54	-17.24	AV	Vertical
3332	63.57	4.26	29.87	44.40	53.30	74	-20.70	Pk	Horizonta
3332	43.46	4.26	29.87	44.40	33.19	54	-20.81	AV	Horizonta
17797	50.00	10.99	43.95	43.50	61.44	74	-12.56	Pk	Vertical
17797	36.01	10.99	43.95	43.50	47.45	54	-6.55	AV	Vertical
17788	56.16	11.81	43.69	44.60	67.06	74	-6.94	Pk	Horizonta
17788	34.37	11.81	43.69	44.60	45.27	54	-8.73	AV	Horizonta
Right							•		
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Commen
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
3260	59.58	4.04	29.57	44.70	48.49	74	-25.51	Pk	Vertical
3260	49.15	4.04	29.57	44.70	38.06	54	-15.94	AV	Vertical
3260	56.62	4.04	29.57	44.70	45.53	74	-28.47	Pk	Horizonta
3260	45.89	4.04	29.57	44.70	34.80	54	-19.20	AV	Horizonta
3332	64.93	4.26	29.87	44.40	54.66	74	-19.34	Pk	Vertical
3332	43.20	4.26	29.87	44.40	32.93	54	-21.07	AV	Vertical
3332	60.36	4.26	29.87	44.40	50.09	74	-23.91	Pk	Horizonta
3332	47.92	4.26	29.87	44.40	37.65	54	-16.35	AV	Horizonta
17797	50.58	10.99	43.95	43.50	62.02	74	-11.98	Pk	Vertical
17797	37.07	10.99	43.95	43.50	48.51	54	-5.49	AV	Vertical
17788	54.28	11.81	43.69	44.60	65.18	74	-8.82	Pk	Horizonta
17788	37.19	11.81	43.69	44.60	48.09	54	-5.91	AV	Horizonta

Note: (1) All other emissions more than 20dB below the limit.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \ge 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Power Earbuds Lite	Model No.:	BH-405
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode3/Mode4/Mode5	Test By:	Mary Hu

7.4 PEAK OUTPUT POWER

7.4.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.4.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.4.6 Test Results

EUT:	Power Earbuds Lite	Model No.:	BH-405
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode3/Mode4/Mode5	Test By:	Mary Hu

7.5 POWER SPECTRAL DENSITY

7.5.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.5.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

a) Set analyzer center frequency to DTS channel center frequency.

- b) Set the span to 1.5*DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- \dot{g}) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.5.6 Test Results

EUT:	Power Earbuds Lite	Model No.:	BH-405
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode3/Mode4/Mode5	Test By:	Mary Hu

7.6 CONDUCTED BAND EDGE MEASUREMENT

7.6.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.6.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.6.6 Test Results

EUT:	Power Earbuds Lite	Model No.:	BH-405
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode3/Mode5	Test By:	Mary Hu

7.7 SPURIOUS RF CONDUCTED EMISSIONS

7.7.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.7.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.3 Test Setup

Please refer to Section 6.1 of this test report.

7.7.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.7.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

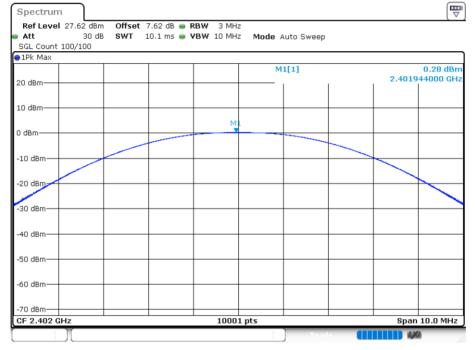
7.8 ANTENNA APPLICATION

7.8.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.8.2 Result

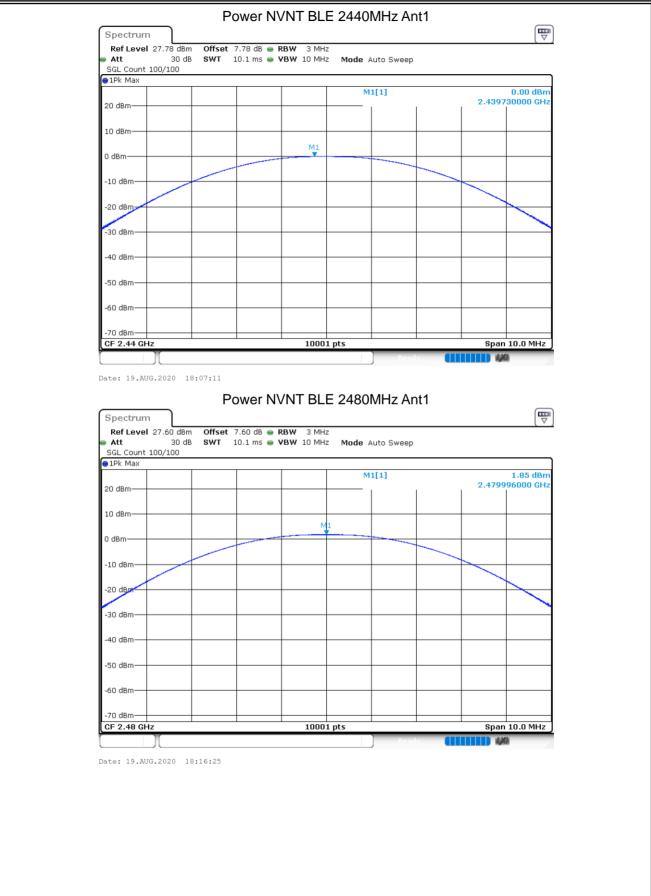
The EUT antenna is permanent attached Ceramic Antenna (Gain: 2dBi) It comply with the standard requirement.


8 TEST RESULTS

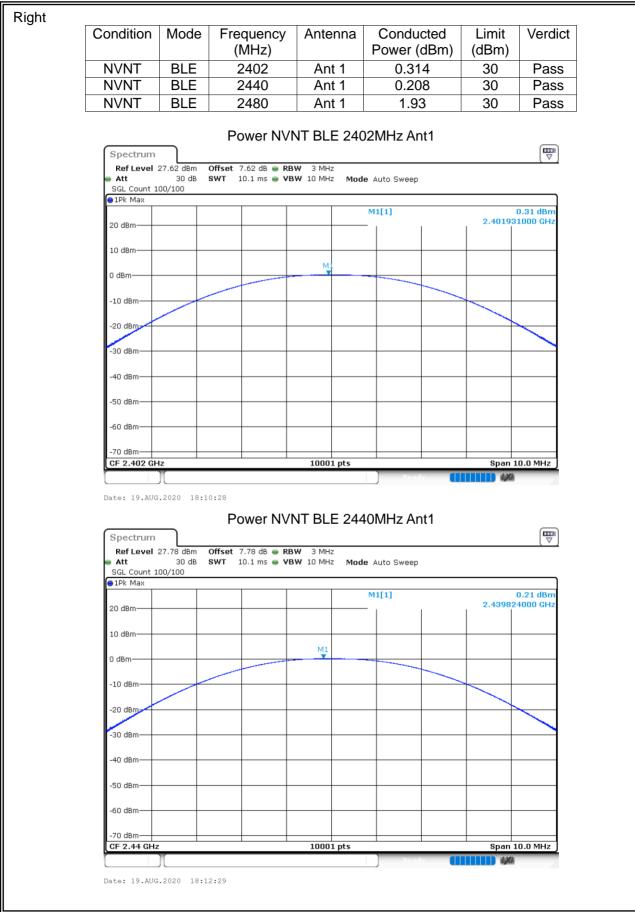
8.1 MAXIMUM CONDUCTED OUTPUT POWER

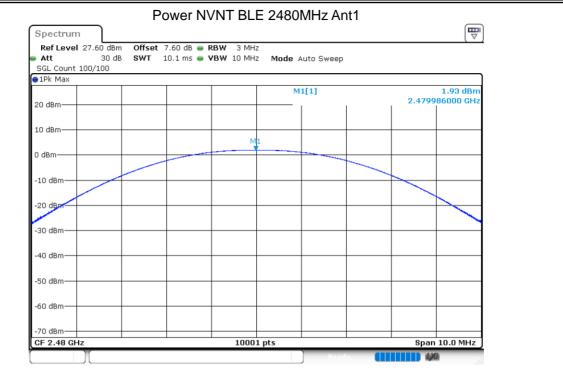
Left

Cond	lition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NV	NT	BLE	2402	Ant 1	0.278	30	Pass
NV	NT	BLE	2440	Ant 1	0.002	30	Pass
NV	NT	BLE	2480	Ant 1	1.848	30	Pass

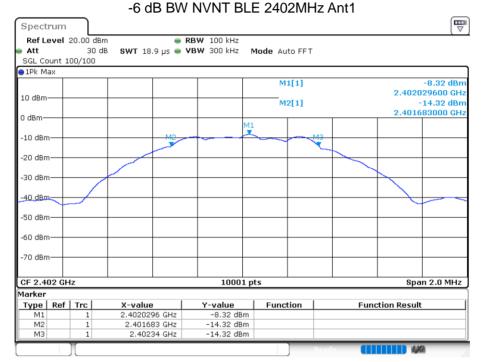

Power NVNT BLE 2402MHz Ant1

Date: 19.AUG.2020 18:08:27





Date: 19.AUG.2020 18:13:52



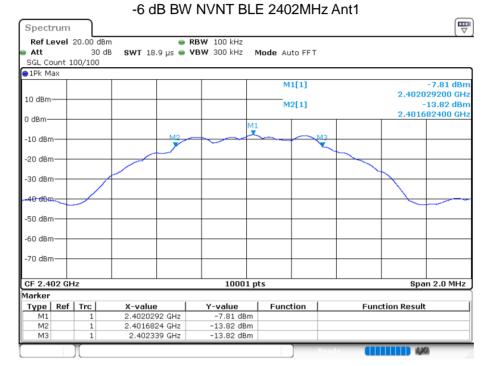
8.2 OCCUPIED CHANNEL BANDWIDTH

Left

en						
Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant 1	0.657	0.5	Pass
NVNT	BLE	2440	Ant 1	0.6748	0.5	Pass
NVNT	BLE	2480	Ant 1	0.6612	0.5	Pass

Date: 19.AUG.2020 18:08:39

-6 dB BW NVNT BLE 2440MHz Ant1 ₩ Spectrum Ref Level 20.00 dBm 🔵 RBW 100 kHz Att 30 dB SWT 18.9 µs 👄 VBW 300 kHz Mode Auto FFT SGL Count 100/100 ⊖1Pk Max M1[1] 8.86 dBr 2.440259170 GH 10 dBm -14.86 dBn 2.439679200 GH M2[1] 0 dBm-М1 -10 dBm . -20 dBm -30 dBm 48 dBm -50 dBm -60 dBm--70 dBm-Span 2.0 MHz CF 2.44 GHz 10001 pts Marker Type | Ref | Trc | Y-value Function Function Result X-value 2.44025917 GHz 2.4396792 GHz M1 M2 -8.86 dBm 1 -14.86 dBm 1 2.440354 GHz ΜЗ -14.85 dBm Date: 19.AUG.2020 18:07:25 -6 dB BW NVNT BLE 2480MHz Ant1 ₩ Spectrum Ref Level 20.00 dBm RBW 100 kHz Att 30 dB 🛛 SWT 18.9 μs 👄 VBW 300 kHz 🛛 Mode Auto FFT SGL Count 500/500 ⊖1Pk Max M1[1] -6.41 dBr 2.480029600 GHz 10 dBm -12.42 dBn M2[1] 2.479682200 GHz 0 dBm ÷ -10 dBm -20 dBm -30 dBm -40 dBm--50 dBm -60 dBm -70 dBm-Span 2.0 MHz CF 2.48 GHz 10001 pts Marker Type | Ref | Trc X-value Y-value Function Function Result M1 1 2.4800296 GHz -6.41 dBm M2 2.4796822 GHz -12.42 dBm 1 МЗ 2.4803434 GHz -12.41 dBm


Date: 19.AUG.2020 18:05:48

Right

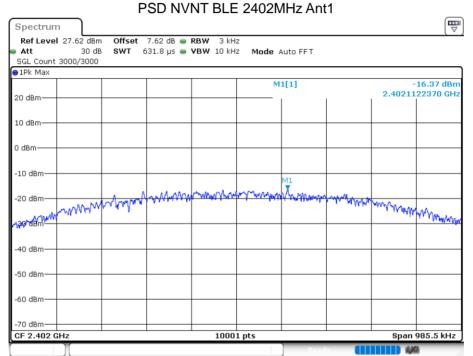
R	ight						
	Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
			(MHz)		(MHz)	Bandwidth (MHz)	
	NVNT	BLE	2402	Ant 1	0.6566	0.5	Pass
	NVNT	BLE	2440	Ant 1	0.7276	0.5	Pass
	NVNT	BLE	2480	Ant 1	0.659	0.5	Pass

Date: 19.AUG.2020 18:10:40

-6 dB BW NVNT BLE 2440MHz Ant1 ₩ Spectrum Ref Level 20.00 dBm 🔵 RBW 100 kHz Att 30 dB SWT 18.9 µs 👄 VBW 300 kHz Mode Auto FFT SGL Count 100/100 ⊖1Pk Max M1[1] -8.57 dBn 2.440011000 GHz 10 dBm -14.58 dBm 2.439643000 GHz M2[1] 0 dBm--10 dBm . . -20 dBm -30 dBm 40 dBm -50 dBm -60 dBm--70 dBm Span 2.0 MHz CF 2.44 GHz 10001 pts Marker Type | Ref | Trc | Y-value Function Function Result X-value 2.440011 GHz M1 M2 -8.57 dBm 1 2,439643 GHz -14.58 dBm 1 ΜЗ 2.4403706 GHz -14.57 dBm 1 Date: 19.AUG.2020 18:12:40 -6 dB BW NVNT BLE 2480MHz Ant1 ₩ Spectrum Ref Level 20.00 dBm RBW 100 kHz Att 30 dB 🛛 SWT 18.9 μs 👄 VBW 300 kHz 🛛 Mode Auto FFT SGL Count 500/500 ⊖1Pk Max -5.95 dBm 2.480026800 GHz M1[1] 10 dBm -11.95 dBn M2[1] 2.479683200 GHz 0 dBm MS мэ -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm-Span 2.0 MHz CF 2.48 GHz 10001 pts Marker Type | Ref | Trc X-value Y-value Function Function Result 2.4800268 GHz M1 1 -5.95 dBm M2 2.4796832 GHz -11.95 dBm 1 ΜЗ 2.4803422 GHz -11.94 dBm

Date: 19.AUG.2020 18:14:01

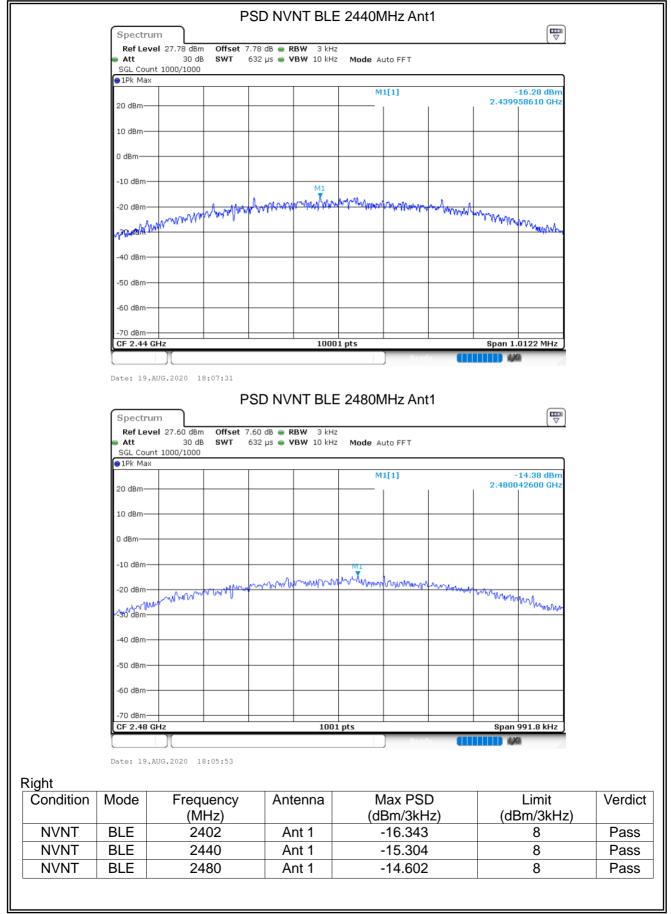
8.3 MAXIMUM POWER SPECTRAL DENSITY LEVEL


Left

Len						
Condition	Mode	Frequency	Antenna	Max PSD	Limit	Verdict
		(MHz)		(dBm/3kHz)	(dBm/3kHz)	
NVNT	BLE	2402	Ant 1	-16.37	8	Pass
NVNT	BLE	2440	Ant 1	-16.28	8	Pass
NVNT	BLE	2480	Ant 1	-14.38	8	Pass

ACCREDITED

Certificate #4298.01

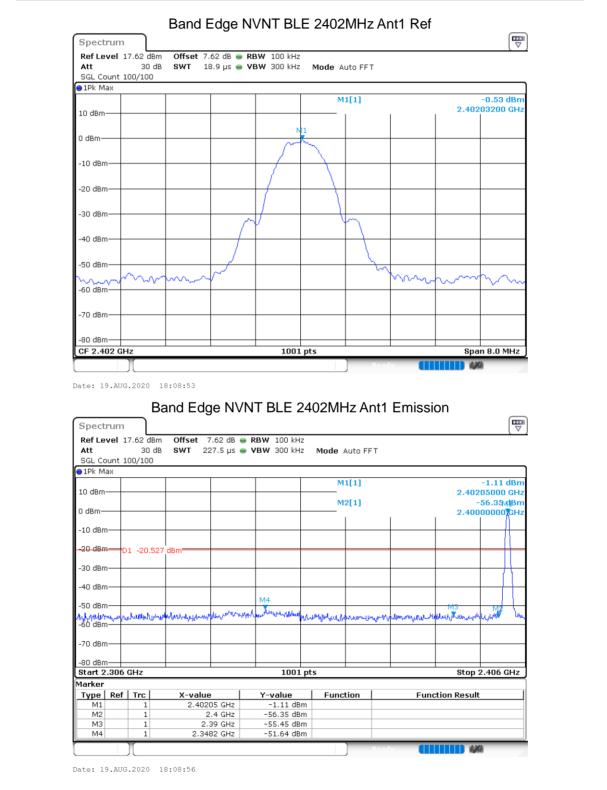

ac.M

Date: 19.AUG.2020 18:08:50

😑 1Pk Max	000/3000								
00.40					м	1[1]			16.34 dBm 20700 GHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
						M1			
-20 dBm	www.www	mlan + A	-W-WWW		a t an Ardrech	han yanage	a short a fraction	m when the	. 0.1 o
J30'eBm	M 1 (-							ny in Allowing and and
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
CF 2.402 GH	Iz			1000	1 pts			Span	984.9 kHz
Spectrum	.2020 18:10	PS				/Hz Ant	:1		
Spectrum Ref Level	27.78 dBm 0 30 dB s	PS	B dB 👄 R	NT BLE BW 3 kHz BW 10 kHz			:1		
Spectrum Ref Level	27.78 dBm 0 30 dB s	PS	B dB 👄 R	BW 3 kHz	Mode A	uto FFT	:1		
Spectrum Ref Level : Att SGL Count 1	27.78 dBm 0 30 dB s	PS	B dB 👄 R	BW 3 kHz	Mode A		1		(₩ 7 15.30 dBm 37210 GHz
Spectrum Ref Level Att SGL Count 1 1Pk Max 20 dBm	27.78 dBm 0 30 dB s	PS	B dB 👄 R	BW 3 kHz	Mode A	uto FFT	:1		15.30 dBm
Spectrum Ref Level : • Att SGL Count 1 • 1Pk Max	27.78 dBm 0 30 dB s	PS	B dB 👄 R	BW 3 kHz	Mode A	uto FFT	:1 		15.30 dBm
Spectrum Ref Level Att SGL Count 1 1Pk Max 20 dBm	27.78 dBm 0 30 dB s	PS	B dB 👄 R	BW 3 kHz	Mode A	uto FFT	:1		15.30 dBm
Spectrum Ref Level Att SGL Count 1 PIPK Max 20 dBm 10 dBm -10 dBm	27.78 dBm 0 30 dB S 000/1000	PS	8 dB • R 2 µs • V	BW 3 kHz BW 10 kHz	Mode A	uto FF T		2.4400	15.30 dBm 37210 GHz
Spectrum Ref Level Att SGL Count 1 1Pk Max 20 dBm 10 dBm -10 dBm	27.78 dBm 0 30 dB S 000/1000	PS	8 dB • R 2 µs • V	BW 3 kHz BW 10 kHz	Mode A	uto FF T		2.4400	15.30 dBm 37210 GHz
Spectrum Ref Level Att SGL Count 1 1Pk Max 20 dBm 10 dBm -10 dBm	27.78 dBm 0 30 dB S 000/1000	PS	8 dB • R 2 µs • V	BW 3 kHz BW 10 kHz	Mode A	uto FF T		2.4400	15.30 dBm 37210 GHz
Spectrum Ref Level Att SGL Count 1 1Pk Max 20 dBm 10 dBm -10 dBm	27.78 dBm 0 30 dB s	PS	8 dB • R 2 µs • V	BW 3 kHz BW 10 kHz	Mode A	uto FF T		2.4400	15.30 dBm 37210 GHz
Spectrum Ref Level Att SGL Count 1 1Pk Max 20 dBm 10 dBm -10 dBm	27.78 dBm 0 30 dB S 000/1000	PS	8 dB • R 2 µs • V	BW 3 kHz BW 10 kHz	Mode A	uto FF T		2.4400	15.30 dBm 37210 GHz
Spectrum Ref Level Att SGL Count 1 PIPK Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	27.78 dBm 0 30 dB S 000/1000	PS	8 dB • R 2 µs • V	BW 3 kHz BW 10 kHz	Mode A	uto FF T		2.4400	15.30 dBm 37210 GHz
Spectrum Ref Level Att SGL Count 1 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	27.78 dBm 0 30 dB S 000/1000	PS	8 dB • R 2 µs • V	BW 3 kHz BW 10 kHz	Mode A	uto FF T		2.4400	15.30 dBm 37210 GHz
Spectrum Ref Level Att SGL Count 1 PIPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	27.78 dBm 0 30 dB S 000/1000	PS	8 dB • R 2 µs • V	BW 3 kHz BW 10 kHz	Mode A	uto FF T		2.4400	15.30 dBm 37210 GHz
Spectrum Ref Level Att SGL Count 1 PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm	27.78 dBm 0 30 dB 8 000/1000	PS	8 dB • R 2 µs • V	BW 3 kHz BW 10 kHz	Mode Ar	uto FF T		2.4400	15.30 dBm 37210 GHz

Ref Level 27.60 0 Att 30 SGL Count 1000/10) dB SWT 631.9	IdB ● RBW 3 kH 9µs ● VBW 10 kH			
SGL Count 1000/10 1Pk Max	100				
20 dBm			M1[1]		14.60 dBm 25680 GHz
10 dBm					
0 dBm					
-10 dBm					
-20 dBm	Morningena	Marymon	mi An Anna Mana ann an Anna ann an Anna ann an Anna Anna Anna Anna	www.www.www.www.	há ba
-30 dBm					Mundun
-40 dBm					
-50 dBm					
-60 dBm					
-70 dBm					

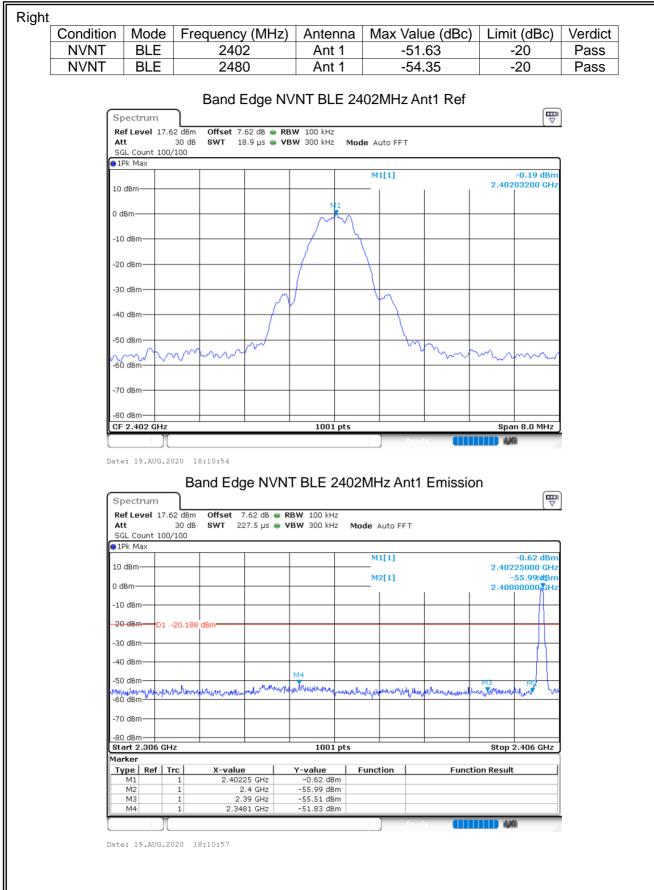
Date: 19.AUG.2020 18:14:06



8.4 BAND EDGE

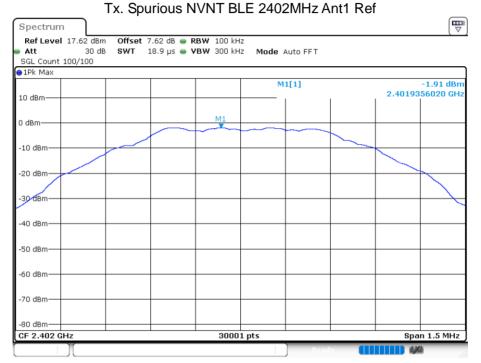
Left

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-51.11	-20	Pass
NVNT	BLE	2480	Ant 1	-54.58	-20	Pass



Ref Level 1 Att	7.60 dBm. 30 dB			BW 100 kHz BW 300 kHz		uto FFT			
SGL Count 1 9 1Pk Max	.00/100								
∎тык мах					M	1[1]			1.25 dBm
10 dBm							1	2.48	002400 GHz
				M	1				
0 dBm				m	\sim				
-10 dBm									
10 0.0									
-20 dBm				$\left \right $					
-30 dBm									
-30 dBm			1	γ	1	m			
-40 dBm			<u> </u>			\vdash			
						$ \rangle$			
-50 dBm	a	I man	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			1 V	mar	0 - 00	
-60 dBm		v. wv						v mv m	www
-70 dBm									
-80 dBm									
CF 2.48 GHz	z			1001	pts			Spa	an 8.0 MHz
ate: 19.AUG		and Edge	e NVN	IT BLE 2	2480MF) Rear Hz Ant1	Emissi	on	
Spectrum Ref Level 1	Ba .7.60 dBm	offset 7.0	60 dB 👄 I	RBW 100 kH:	z		Emissi	on	
Spectrum	Ba .7.60 dBm 30 dB	offset 7.0	60 dB 👄 I		z		Emissi	on	
Spectrum Ref Level 1 Att	Ba .7.60 dBm 30 dB	offset 7.0	60 dB 👄 I	RBW 100 kH:	z z Mode	Auto FFT	Emissi	on	
Spectrum Ref Level 1 Att SGL Count 1	Ba .7.60 dBm 30 dB	offset 7.0	60 dB 👄 I	RBW 100 kH:	z z Mode		Emissi		0.45 dBm 025000 GHz
Spectrum Ref Level 1 Att SGL Count 1 1Pk Max 10 dBm M1	Ba .7.60 dBm 30 dB	offset 7.0	60 dB 👄 I	RBW 100 kH:	z Mode	Auto FFT	Emissi	2.48	0.45 dBm 025000 GHz -55.49 dBm
Spectrum Ref Level 1 Att SGL Count 1 1Pk Max 10 dBm M1 0 dBm	Ba .7.60 dBm 30 dB	offset 7.0	60 dB 👄 I	RBW 100 kH:	z Mode	Auto FFT	Emissi	2.48	0.45 dBm 025000 GHz
Spectrum Ref Level 1 Att SGL Count 1 • 1Pk Max 10 dBm -10 dBm -10 dBm	Ba .7.60 dBm 30 dB .00/100	offset 7.1 swr 227	60 dB 👄 I	RBW 100 kH:	z Mode	Auto FFT	Emissi	2.48	0.45 dBm 025000 GHz -55.49 dBm
Spectrum Ref Level 1 Att SGL Count 1 • 1Pk Max 10 dBm -10 dBm -10 dBm	Ba .7.60 dBm 30 dB	offset 7.1 swr 227	60 dB 👄 I	RBW 100 kH:	z Mode	Auto FFT	Emissi	2.48	0.45 dBm 025000 GHz -55.49 dBm
Spectrum Ref Level 1 Att SGL Count 1 • 1Pk Max 10 dBm -10 dBm -10 dBm	Ba .7.60 dBm 30 dB .00/100	offset 7.1 swr 227	60 dB 👄 I	RBW 100 kH:	z Mode	Auto FFT	Emissi	2.48	0.45 dBm 025000 GHz -55.49 dBm
Ref Level 1 Att SGL Count 1 • 1Pk Max 10 dBm -10 dBm -20 dBm C	Ba .7.60 dBm 30 dB .00/100	offset 7.1 swr 227	60 dB 👄 I	RBW 100 kH:	z Mode	Auto FFT	Emissi	2.48	0.45 dBm 025000 GHz -55.49 dBm
Spectrum Ref Level 1 Att SGL Count 1 • 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Ba .7.60 dBm 30 dB .00/100	dBm	60 dB ● 1	RBW 100 kH VBW 300 kH 	z Mode Mode	Auto FF T		2.48	0.45 dBm 025000 GHz -55.49 dBm 350000 GHz
Spectrum Ref Level 1 Att SGL Count 1 • 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm2	Ba .7.60 dBm 30 dB .00/100	offset 7.1 swr 227	60 dB ● 1	RBW 100 kH VBW 300 kH 	z Mode Mode	Auto FF T		2.48	0.45 dBm 025000 GHz -55.49 dBm 350000 GHz
Spectrum Ref Level 1 Att SGL Count 1 9 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm2 -60 dBm	Ba .7.60 dBm 30 dB .00/100	dBm	60 dB ● 1	RBW 100 kH VBW 300 kH 	z Mode Mode	Auto FF T		2.48	0.45 dBm 025000 GHz -55.49 dBm 350000 GHz
Spectrum Ref Level 1 Att SGL Count 1 • 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm2	Ba .7.60 dBm 30 dB .00/100	dBm	60 dB ● 1	RBW 100 kH VBW 300 kH 	z Mode Mode	Auto FF T		2.48	0.45 dBm 025000 GHz -55.49 dBm 350000 GHz
Spectrum Ref Level 1 Att SGL Count 1 9 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm2 -50 dBm2 -70 dBm -70 dBm	Ba .7.60 dBm 30 dB .00/100	dBm	60 dB ● 1	RBW 100 kHz	2 2 Mode M M M	Auto FF T		2.48 2.48	0.45 dBm 025000 GHz -55.49 dBm 350000 GHz
Spectrum Ref Level 1 Att SGL Count 1 9 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80 dBm	Ba .7.60 dBm 30 dB .00/100	dBm	60 dB ● 1	RBW 100 kH VBW 300 kH 	2 2 Mode M M M	Auto FF T		2.48 2.48	0.45 dBm 025000 GHz -55.49 dBm 350000 GHz
Spectrum Ref Level 1 Att SGL Count 1 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -70 dBm -80 dBm	Ba .7.60 dBm 30 dB .00/100	dBm	60 dB • 1 ⁷ .5 μs • ¹	RBW 100 kH VBW 300 kH	z Mode M M M J M M M M M M M M M M M M M M M	Auto FF T		2.48 2.48	0.45 dBm 025000 GHz -55.49 dBm 350000 GHz
Spectrum Ref Level 1 Att SGL Count 1 9 IPk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm -80 dBm Start 2.476 Marker	Ba .7.60 dBm 30 dB .00/100	dBm	60 dB • 1 7.5 µs • 1 	RBW 100 kH VBW 300 kH 300 kH 1001	2 Mode M M M M M M M M M M M M M M M M M M M	Auto FF T		2.48 2.48	0.45 dBm 025000 GHz -55.49 dBm 350000 GHz
Spectrum Ref Level 1 Att SGL Count 1 9 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm -70 dBm Type Ref M1	Br 7.60 dBm 30 dB 00/100 01 -18.749 01 -18.749 01 -18.749 01 -18.749 01 -18.749 01 -18.749 01 -18.749	And Edge Offset 7,4 SWT 227 dBm dBm dBm dBm dBm dBm dBm d	60 dB ● 1 7.5 μs ● 1 7.5 μ	RBW 100 kH; VBW 300 kH;	2 T Mode M M M M M M M Func m m m	Auto FF T		2.48 2.48	0.45 dBm 025000 GHz -55.49 dBm 350000 GHz

Ref Le	vel	17.60 dBr		_	RBW 100 kHz					
Att	ount	30 d 100/100	B SWT 1	8.9 µs 👄	VBW 300 kHz	Mode 4	uto FFT			
●1Pk M		100/100								
10 dBm						M	11[1]		2.480	1.65 dBm 002400 GHz
10 000	·				N	1				
0 dBm-	-				~~~	-				
-10 dBr	n									
-20 dBr	n_					\rightarrow				
-30 dBr	n_									
				/	γγ		Ϋ́́			
-40 dBn	n—									
-50 dBr	n-+	^		~~			- m	n		
-60 dBr	~~^ n	~~~~~	1 mm					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	um.	~~~~
-70 dBr	n									
-80 dBr										
CF 2.4		z	1	1	1001	pts	1		Spa	in 8.0 MHz
ate: 1	9.AU		18:14:10					Fariasi		
Spect	rum	E	and Edg		NT BLE 2		Hz Ant1	Emissi	on	
Spect Ref Le Att	rum vel	17.60 dBr 30 d	and Edg	7.60 dB 🧉	NT BLE 2 RBW 100 kH VBW 300 kH	z		Emissi	on	
Spect Ref Le Att	rum vel	17.60 dBr	and Edg	7.60 dB 🧉	• RBW 100 kH	z		Emissi	on	
Spect Ref Le Att SGL Co 9 1Pk M	evel ount	17.60 dBr 30 d	and Edg	7.60 dB 🧉	• RBW 100 kH	z Iz Mode		Emissi		0.86 dBm
Spect Ref Le SGL Co 1Pk M 10 dBm M1	evel ount	17.60 dBr 30 d	and Edg	7.60 dB 🧉	• RBW 100 kH	z z Mode	Auto FFT	Emissio	2.480	0.86 dBm 025000 GHz -56.80 dBm
Spect Ref Le Att SGL Co 1Pk M	evel ount	17.60 dBr 30 d	and Edg	7.60 dB 🧉	• RBW 100 kH	z z Mode	Auto FFT	Emissio	2.480	0.86 dBm)25000 GHz
Spect Ref Le SGL Co 1Pk M 10 dBm M1	ount	17.60 dBr 30 d	and Edg	7.60 dB 🧉	• RBW 100 kH	z z Mode	Auto FFT	Emissio	2.480	0.86 dBm 025000 GHz -56.80 dBm
Spect Ref Le Att SGL CC 1Pk M 10 dBm M1 0 dBm-	ount n	17.60 dBr 30 d	and Edg	7.60 dB 🧉	• RBW 100 kH	z z Mode	Auto FFT	Emissie	2.480	0.86 dBm 025000 GHz -56.80 dBm
Spect Ref Le Att SGL CC 1Pk M 10 dBm 10 dBm -10 dBm	n n	E 17.60 dBr 30 d 100/100	and Edg	7.60 dB 🧉	• RBW 100 kH	z z Mode	Auto FFT	Emissie	2.480	0.86 dBm 025000 GHz -56.80 dBm
Spect Ref Le Att SGL Co IPk M 10 dBm -10 dBm -20 cBm	n	E 17.60 dBr 30 d 100/100	and Edg	7.60 dB 🧉	• RBW 100 kH	z z Mode	Auto FFT	Emissi	2.480	0.86 dBm 025000 GHz -56.80 dBm
Spect Ref Le Att SGL CC 1Pk M 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -30 dBm	n	E 17.60 dBr 30 d 100/100	2 dBm	7.60 dB 27.5 µs 	RBW 100 kH	z Mode	Auto FFT		2.480	0.86 dBm 125000 GHz -56.80 dBm 150000 GHz
Spect Ref Le Att SGL CC • 1Pk M 10 dBm M1 0 dBm -10 dBm -20 cBm -30 dBm	rum vel ount lax n n n n N 0 12 vv pu,	E 17.60 dBr 30 d 100/100	2 dBm	7.60 dB 27.5 µs 	• RBW 100 kH	z Mode	Auto FFT		2.480	0.86 dBm 125000 GHz -56.80 dBm 150000 GHz
Spect Ref Le Att SGL CC • 1Pk M 10 dBm -10 dBm -20 cBm -30 dBm -30 dBm -30 dBm -30 dBm	rum svel ount n n n n N N N N	E 17.60 dBr 30 d 100/100	2 dBm	7.60 dB 27.5 µs 	RBW 100 kH	z Mode	Auto FFT		2.480	0.86 dBm 125000 GHz -56.80 dBm 150000 GHz
Spect Ref Le Att SGL Co • 1Pk M 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	n n n n n n n n n n n n n n n n n n n	D1 -18.35	2 dBm	7.60 dB 27.5 µs 	RBW 100 kH VBW 300 kH	z Mode	Auto FFT		2.480 2.483	0.86 dBm 125000 GHz -56.80 dBm 550000 GHz
Spect Ref Le Att SGL CC 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm	n n n n n n n n n n n n n n n n n n n	D1 -18.35	2 dBm	7.60 dB 27.5 µs 	RBW 100 kH	z Mode	Auto FFT		2.480 2.483	0.86 dBm 125000 GHz -56.80 dBm 150000 GHz
Spect Ref Le Att SGL CC • 1Pk M 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -70 dBm	n n n n n n n n n n n n n n n n n n n	E 17.60 dBr 30 d 100/100 01 -18.35 01 -18.35 GHz	2 dBm	7.60 dB = 27.5 μs =	RBW 100 kH	2 Z Mode	Auto FFT	l l l l l l l l l l l l l l l l l l l	2.480 2.483	0.86 dBm 125000 GHz 56.80 dBm 150000 GHz
Spect Ref Le Att SGL CC 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm -80 dBm Start 2 Marker	n n n n n n n n n n n n n n n n n n n	E 17.60 dBr 30 d 100/100 D1 -18.35	2 dBm M4 M4 X-value 2.480	7.60 dB 27.5 μs 27.5 μs	RBW 100 kH	2 Mode	Auto FFT	l l l l l l l l l l l l l l l l l l l	2.480 2.483	0.86 dBm 125000 GHz 56.80 dBm 150000 GHz
Spect Ref Le Att SGL CC • 1Pk M 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -70 dBm -80 dBm Start 2 Marker Type M1 M2 M3	n n n n n n n n n n n n n n n n n n n	E 17.60 dBr 30 d 100/100 D1 -18.35 GHz GHz 1 1 1 1	And Edg	2.5 GHz 25 GHz 25 GHz 25 GHz 25 GHz 2.5 GHz 2.5 GHz 2.5 GHz 2.5 GHz	RBW 100 kH VBW 300 kH	2 z Mode	Auto FFT	l l l l l l l l l l l l l l l l l l l	2.480 2.483	0.86 dBm 125000 GHz 56.80 dBm 150000 GHz
Spect Ref Le Att SGL CC • 1Pk M 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70	n n n n n n n n n n n n n n n n n n n	GHz	And Edg	7.60 dB 27.5 μs 27.5 μs 27.5 μs 27.5 μs 25 GHz 25 GHz	RBW 100 kH	2 z Mode	Auto FFT		2.480 2.483	0.86 dBm 125000 GHz 56.80 dBm 150000 GHz 150000 GHz 2.576 GHz



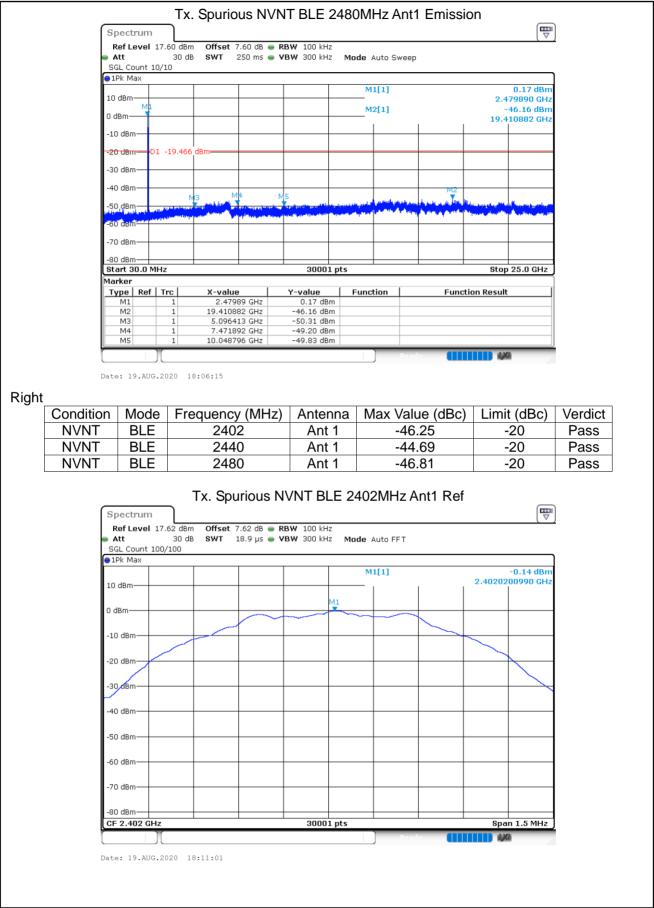
8.5 CONDUCTED RF SPURIOUS EMISSION

Left

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-43.98	-20	Pass
NVNT	BLE	2440	Ant 1	-45.01	-20	Pass
NVNT	BLE	2480	Ant 1	-46.68	-20	Pass

Date: 19.AUG.2020 18:09:00

●1Pk Max					M1	[1]			-2.35 dBm	
10 dBm-			-		M2	[1]			402490 GHz -45.90 dBm	
0 dBm			_				1		657155 GHz	
-10 dBm—										
-20 dBm—	D1 -21.	912 dBm								
-30 dBm—										
-40 dBm—		M3 M	4	M5		alt inter	1912			
-50 dBm—				and the second sec	deserve and sold and the set	and the second secon				
-60 dsm										
-70 dBm—										
-80 dBm— Start 30.0) MHz			3000	1 pts			Sto	p 25.0 GHz	
Marker Type R	of Teo	v!	1	Y-value	Funct	ion I	F	ction Resul	+	
M1	1)249 GHz	-2.35 dB	m		Fun	COOT RESUL	·	
M2 M3	1	4.693	7155 GHz 3564 GHz	-45.90 dB -49.22 dB	m					
M4 M5	1		9899 GHz 3534 GHz	-49.47 dB -50.60 dB						
Spectru	m al 17.78 30	dBm Offset)dB SWT	7.78 dB 🔵	NVNT BL	z z Mode A	uto FFT	Ant1 Re	.f	-0.73 dBm	
Spectru Ref Leve Att SGL Coun	m al 17.78 30	Tx. Sp	7.78 dB 🔵	RBW 100 kH:	z z Mode A 		Ant1 Re		-0.73 dBm 381490 GHz	
Spectrui Ref Levi Att SGL Coun PIPk Max	m al 17.78 30	Tx. Sp	7.78 dB 🔵	RBW 100 kH:	z z Mode A	uto FFT	Ant1 Re		-0.73 dBm	
Spectrui Ref Leve Att SGL Coun 1Pk Max	m al 17.78 30	Tx. Sp	7.78 dB 🔵	RBW 100 kH:	z z Mode A 	uto FFT	Ant1 Re		-0.73 dBm	
Spectrui Ref Levi Att SGL Coun 1Pk Max 10 dBm	m al 17.78 30	Tx. Sp	7.78 dB 🔵	RBW 100 kH:	z z Mode A 	uto FFT	Ant1 Re		-0.73 dBm	
Spectrum Ref Leve Att SGL Coun 1Pk Max 10 dBm- 0 dBm-	m al 17.78 30	Tx. Sp	7.78 dB 🔵	RBW 100 kH:	z z Mode A 	uto FFT	Ant1 Re		-0.73 dBm	
Spectrui Ref Levi Att SGL Coun 1Pk Max 10 dBm	m al 17.78 30	Tx. Sp	7.78 dB 🔵	RBW 100 kH:	z z Mode A 	uto FFT	Ant1 Re		-0.73 dBm	
Spectrui Ref Levi Att SGL Coun 1Pk Max 10 dBm- -10 dBm- -20 dBm-	m al 17.78 30	Tx. Sp	7.78 dB 🔵	RBW 100 kH:	z z Mode A 	uto FFT	Ant1 Re		-0.73 dBm	
Spectru Ref Levi Att SGL Coun 1Pk Max 10 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -40 dBm-	m al 17.78 30	Tx. Sp	7.78 dB 🔵	RBW 100 kH:	z z Mode A 	uto FFT	Ant1 Re		-0.73 dBm	
Spectru Ref Levi Att SGL Coun 1Pk Max 10 dBm- -0 dBm- -20 dBm- -30 dBm-	m al 17.78 30	Tx. Sp	7.78 dB 🔵	RBW 100 kH:	z z Mode A 	uto FFT	Ant1 Re		-0.73 dBm	
Spectru Ref Levi Att SGL Coun 1Pk Max 10 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -40 dBm-	m al 17.78 30	Tx. Sp	7.78 dB 🔵	RBW 100 kH:	z z Mode A 	uto FFT	Ant1 Re		-0.73 dBm	
Spectru Ref Levo Att SGL Coun 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm- -50 dBm-	m al 17.78 30	Tx. Sp	7.78 dB 🔵	RBW 100 kH:	z z Mode A 	uto FFT	Ant1 Re		-0.73 dBm	
Spectru Ref Levi SGL Coun 1Pk Max 10 dBm- -10 dBm- -20 dBm- -30 dBm- -50 dBm- -50 dBm- -70 dBm-	m al 17.78 30	Tx. Sp	7.78 dB 🔵	RBW 100 kH:	z z Mode A 	uto FFT	Ant1 Re		-0.73 dBm	
Spectrui Ref Levi Att SGL Coun 10 dBm	m	Tx. Sp	7.78 dB 🔵	RBW 100 kH:	Z Mode A	uto FFT	Ant1 Re	2.4400	-0.73 dBm	
Spectrui Ref Levi Att SGL Coun 1Pk Max 10 dBm- -10 dBm- -20 dBm- -30 dBm- -50 dBm- -50 dBm- -70 dBm- -70 dBm-	m	Tx. Sp	7.78 dB 🔵	RBW 100 kH	Z Mode A	uto FFT	Ant1 Re	2.4400	-0.73 dBm 381490 GHz	



⊖1Pk M	ax					644 F 4 3			1.61.45	
10 dBm	+					M1[1]			-1.61 dBm 39940 GHz	
0 dBm-	ML					M2[1]			45.74 dBm 92856 GHz	
-10 dBr	n_									
-20 dBr	ᆋ	1 -20.	734 dBm							
-30 dBr	n_									
-40 dBr	n_									
-50 dBr	2	Januar	MB	M4	M5	and the second second second		الألادية والسبعة	and surgery	
-60 aer		a set of the	Change of the second se	Sur alline and	ter (ber benne fijn bende bester die de	and the second		a. a mental failer, e		
-70 dBr	n- -									
Start 3 Marker	0.0 M	Hz			30001 p	ts		Stop	25.0 GHz	
Туре	Ref		X-va		Y-value	Function	Fun	ction Result		
M1 M2		1	14.9	43994 GHz 92856 GHz	-1.61 dBm -45.74 dBm					
M3 M4		1		46593 GHz 76054 GHz	-48.93 dBm -49.68 dBm					
M5		1		60766 GHz	-49.88 dBm					
Spect	rum evel	17.60 3	dBm Offse IdB SWT	et 7.60 dB	NVNT BLE RBW 100 kHz VBW 300 kHz	E 2480MH		f		
Spect Ref L SGL CO	rum evel	17.60 3	Tx. S	et 7.60 dB	RBW 100 kHz				0.53 dBm	
Spect Ref L SGL CO	rum evel ount 1 ax	17.60 3	Tx. S	et 7.60 dB 18.9 μs	RBW 100 kHz	Mode Auto FF				
Spect Ref L SGL Co 9 1Pk M	rum evel ount 1 ax	17.60 3	Tx. S	et 7.60 dB	RBW 100 kHz	Mode Auto FF			0.53 dBm	
Spect Ref L Att SGL Co PPk M 10 dBm 0 dBm-	rum evel ount 1 ax	17.60 3	Tx. S	et 7.60 dB 18.9 μs	RBW 100 kHz	Mode Auto FF			0.53 dBm	
Spect Ref L Att SGL Co P1Pk M	rum evel ount 1 ax	17.60 3	Tx. S	et 7.60 dB 18.9 μs	RBW 100 kHz	Mode Auto FF			0.53 dBm	
Spect Ref L Att SGL Co PPk M 10 dBm 0 dBm-	rum evel ount 1 ax	17.60 3	Tx. S	et 7.60 dB 18.9 μs	RBW 100 kHz	Mode Auto FF			0.53 dBm	
Spect Ref L SGL Co PIPk M 10 dBm 0 dBm-	rum evel ount 1 ax	17.60 3	Tx. S	et 7.60 dB 18.9 μs	RBW 100 kHz	Mode Auto FF			0.53 dBm	
Spect Ref L • Att SGL CC • 1Pk M 10 dBm -10 dBm -20 dBm -38 dBm	rum evel ount 1 ax	17.60 3	Tx. S	et 7.60 dB 18.9 μs	RBW 100 kHz	Mode Auto FF			0.53 dBm	
Spect Ref L Att SGL CC IPk M 10 dBm -10 dBm -20 dBm	rum evel ount 1 ax	17.60 3	Tx. S	et 7.60 dB 18.9 μs	RBW 100 kHz	Mode Auto FF			0.53 dBm	
Spect Ref L • Att SGL CC • 1Pk M 10 dBm -10 dBm -20 dBm -38 dBm	rum evel bunt 1 ax	17.60 3	Tx. S	et 7.60 dB 18.9 μs	RBW 100 kHz	Mode Auto FF			0.53 dBm	
Spect Ref L • Att SGL CC • 1Pk M 10 dBm -10 dBm -20 dBm -20 dBm -38 dBm -40 dBm	rum evel ount 1 ax	17.60 3	Tx. S	et 7.60 dB 18.9 μs	RBW 100 kHz	Mode Auto FF			0.53 dBm	
Spect Ref L SGL Cc PIPk M 10 dBm 0 dBm- -10 dBm -20 dBm -38 dBm -40 dBm -50 dBm	rum evel ount 1 ax	17.60 3	Tx. S	et 7.60 dB 18.9 μs	RBW 100 kHz	Mode Auto FF			0.53 dBm	
Spect Ref L SGL Cc PIPk M 10 dBm 0 dBm- -10 dBm -20 dBm -38 dBm -40 dBm -50 dBm	rum evel	17.60 3	Tx. S	et 7.60 dB 18.9 μs	RBW 100 kHz	Mode Auto FF			0.53 dBm	
Spect Ref L SGL Co PIPK M 10 dBm- -10 dBm- -20 dBm- -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	rum evel ax	17.60 3	Tx. S	et 7.60 dB 18.9 μs	RBW 100 kHz	Mode Auto FF			0.53 dBm	
Spect Ref L • Att SGL CC • 1Pk M 10 dBm - 10 dBm - 20 dBm - 20 dBm - 30 dBm - 40 dBm - 50 dBm - 50 dBm - 50 dBm - 70 dBm	rum evel ax		Tx. S	et 7.60 dB 18.9 μs	RBW 100 kHz	Mode Auto FF		2.47977	0.53 dBm 19580 GHz	
Spect Ref L 9 Att SGL CC 9 1Pk M 10 dBm - 10 dBm - 20 dBm - 20 dBm - 30 dBm - 30 dBm - 50 dBm - 60 dBm - 70 dBm - 70 dBm	rum evel ax		Tx. S	et 7.60 dB 18.9 μs	RBW 100 kHz VBW 300 kHz	Mode Auto FF		2.47977	0.53 dBm 19580 GHz	
Spect Ref L SGL CC PIPk M 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -39 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm	rum evel ax		Tx. S	et 7.60 dB 18.9 μs	RBW 100 kHz VBW 300 kHz	Mode Auto FF		2.47977	0.53 dBm 19580 GHz	

●1Pk Max 10 dBm					M1[1	1			-1.11 dBm +02490 GHz
0 dBm					M2[1	1			-46.39 dBm
-10 dBm								19.	745480 GHz
	1 -20.145	dBm							
-30 dBm									
-40 dBm							M		
-50 dBm	м	3 M4	M		and the second	المتحد المتعاد	NIZ STREET		aller an and
-60 dBm	and the second	and a standard standa		and the product of the second s	and provide and an operators in the second		handaa pipanka	far an the second s	a starting and the start
-70 dBm									
-80 dBm									
Start 30.0 M	1Hz			3000	1 pts			Sto	25.0 GHz
Marker Type Ref	Trc	X-value		Y-value	Function	n	Fund	ction Result	t]
M1 M2	1		49 GHz	-1.11 dB -46.39 dB	Bm				
M3	1	4.9599	91 GHz	-50.31 dB	Bm				
M4 M5	1	7.31208		-49.09 dB -49.58 dB					
Spectrum Ref Level Att	17.78 dBm 30 dB	Offset 7	.78 dB 👄	RBW 100 kH			nt1 Rei	f	
Ref Level Att SGL Count 1 1Pk Max	17.78 dBm 30 dB	Offset 7	.78 dB 👄	RBW 100 kH	Iz) FFT	nt1 Rei		-1.61 dBm 864520 GHz
Ref Level Att SGL Count 1 PIPk Max 10 dBm	17.78 dBm 30 dB	Offset 7	.78 dB 👄	RBW 100 kH VBW 300 kH	iz Iz Mode Auto) FFT	nt1 Rel		-1.61 dBm
Ref Level Att SGL Count 1 1Pk Max	17.78 dBm 30 dB	Offset 7	.78 dB 👄	RBW 100 kH	iz Iz Mode Auto) FFT	nt1 Ref		-1.61 dBm
Ref Level Att SGL Count 1 PIPk Max 10 dBm	17.78 dBm 30 dB	Offset 7	.78 dB 👄	RBW 100 kH VBW 300 kH	iz Iz Mode Auto) FFT	nt1 Ref		-1.61 dBm
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm	17.78 dBm 30 dB	Offset 7	.78 dB 👄	RBW 100 kH VBW 300 kH	iz Iz Mode Auto) FFT	nt1 Rei		-1.61 dBm
Ref Level Att SGL Count 1 PR Max 10 dBm 0 dBm -10 dBm -20 dBm	17.78 dBm 30 dB	Offset 7	.78 dB 👄	RBW 100 kH VBW 300 kH	iz Iz Mode Auto) FFT	nt1 Ref		-1.61 dBm
Ref Level Att SGL Count 1 SGL Count 1 PR Max 10 dBm 0 dBm -10 dBm	17.78 dBm 30 dB	Offset 7	.78 dB 👄	RBW 100 kH VBW 300 kH	iz Iz Mode Auto) FFT	nt1 Rei		-1.61 dBm
Ref Level Att SGL Count 1 PR Max 10 dBm 0 dBm -10 dBm -20 dBm	17.78 dBm 30 dB	Offset 7	.78 dB 👄	RBW 100 kH VBW 300 kH	iz Iz Mode Auto) FFT			-1.61 dBm
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	17.78 dBm 30 dB	Offset 7	.78 dB 👄	RBW 100 kH VBW 300 kH	iz Iz Mode Auto) FFT	nt1 Rei		-1.61 dBm
Ref Level Att SGL Count 1 SGL Count 1 Phy Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm	17.78 dBm 30 dB	Offset 7	.78 dB 👄	RBW 100 kH VBW 300 kH	iz Iz Mode Auto) FFT			-1.61 dBm
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm	17.78 dBm 30 dB	Offset 7	.78 dB 👄	RBW 100 kH VBW 300 kH	iz Iz Mode Auto) FFT			-1.61 dBm
Ref Level Att SGL Count 1 SGL Count 1 Phy Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm	17.78 dBm 30 dB	Offset 7	.78 dB 👄	RBW 100 kH VBW 300 kH	iz Iz Mode Auto) FFT			-1.61 dBm
Ref Level Att SGL Count 1 SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	17.78 dBm 30 dB	Offset 7	.78 dB 👄	RBW 100 kH VBW 300 kH	iz Iz Mode Auto) FFT			-1.61 dBm
Ref Level Att SGL Count 1 SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	17.78 dBm 30 dB 00/100	Offset 7	.78 dB 👄	RBW 100 kH VBW 300 kH	IZ Mode Auto) FFT	nt1 Rei	2.4399:	-1.61 dBm 364520 GHz
Ref Level Att SGL Count 1 SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -80 dBm	17.78 dBm 30 dB 00/100	Offset 7	.78 dB 👄	RBW 100 kH	IZ Mode Auto) FFT		2.4399:	-1.61 dBm 364520 GHz

⊖1Pk Max									
10 dBm				M	1[1]		2.4	-1.78 dBm 39940 GHz	
				M	2[1]		-	46.30 dBm 97107 GHz	
-10 dBm							17.0	197107 GH2	
-30 dBm	L.613 dBm								
-40 dBm									
	MB M	14 M.	5		الم المعالية ال		Million and a late	A CONTRACTOR	
-50 dBm	and any set of the set	alan Santaganan Pantanan katat			and the second	a frank a provide	and the second		
-60 dBm									
-70 dBm									
Start 30.0 MHz			30001	1 pts			Stop	25.0 GHz	
Marker	1	1							
Type Ref Trc M1 1		994 GHz	<u>Y-value</u> -1.78 dBi	Func m	tion	Fund	ction Result	:	
M2 1	17.6971	107 GHz	-46.30 dB	m					
M3 1 M4 1		569 GHz 234 GHz	-50.01 dB -50.26 dB						
M5 1		554 GHz	-50.39 dB						
					Rea	dy 👘		a //	
SGL Count 100/10	Tx. Spi	7.60 dB 👄	NVNT BL	z		Ant1 Rei	f		
Spectrum Ref Level 17.60 Att	Tx. Spi	7.60 dB 👄	RBW 100 kH:	z z Mode		Ant1 Rei		0.71 dBm]
Spectrum Ref Level 17.60 Att SGL Count 100/10	Tx. Spi	7.60 dB 👄	RBW 100 kH:	z z Mode	Auto FFT 1[1]	Ant1 Rei			
Spectrum Ref Level 17.60 Att SGL Count 100/11 1Pk Max 10 dBm	Tx. Spi	7.60 dB 👄	RBW 100 kH:	z z Mode	Auto FFT	Ant1 Rei		0.71 dBm	
Spectrum Ref Level 17.60 Att SGL Count 100/10 1Pk Max	Tx. Spi	7.60 dB 👄	RBW 100 kH:	z z Mode	Auto FFT	Ant1 Rei		0.71 dBm	
Spectrum Ref Level 17.60 Att SGL Count 100/11 1Pk Max 10 dBm	Tx. Spi	7.60 dB 👄	RBW 100 kH:	z z Mode	Auto FFT	Ant1 Rei		0.71 dBm	
Spectrum Ref Level 17.60 Att SGL Count 100/11 1Pk Max 10 dBm 0 dBm	Tx. Spi	7.60 dB 👄	RBW 100 kH:	z z Mode .	Auto FFT	Ant1 Rei		0.71 dBm	
Spectrum Ref Level 17.60 Att SGL Count 100/10 1Pk Max 10 dBm 0 dBm 0 dBm -10 dBm -20 dBm	Tx. Spi	7.60 dB 👄	RBW 100 kH:	z z Mode .	Auto FFT	Ant1 Rei		0.71 dBm	
Spectrum Ref Level 17.60 Att 5GL Count 100/10 1Pk Max 10 dBm 10 dBm 0 dBm -10 dBm -10 dBm	Tx. Spi	7.60 dB 👄	RBW 100 kH:	z z Mode .	Auto FFT	Ant1 Rei		0.71 dBm	
Spectrum Ref Level 17.60 Att SGL Count 100/10 1Pk Max 10 dBm 0 dBm 0 dBm -10 dBm -20 dBm	Tx. Spi	7.60 dB 👄	RBW 100 kH:	z z Mode .	Auto FFT	Ant1 Rei		0.71 dBm	
Spectrum Ref Level 17.60 Att SGL Count 100/10 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	Tx. Spi	7.60 dB 👄	RBW 100 kH:	z z Mode .	Auto FFT	Ant1 Rei		0.71 dBm	
Spectrum Ref Level 17.60 Att SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Tx. Spi	7.60 dB 👄	RBW 100 kH:	z z Mode .	Auto FFT			0.71 dBm	
Spectrum Ref Level 17.60 Att SGL Count 100/10 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	Tx. Spi	7.60 dB 👄	RBW 100 kH:	z z Mode .	Auto FFT			0.71 dBm	
Spectrum Ref Level 17.60 Att SGL Count 100/11 1Pk Max 10 10 10 dBm - - - -10 dBm - - - -20 dBm - - - -30 dBm - - - -50 dBm - - - -60 dBm - - -	Tx. Spi	7.60 dB 👄	RBW 100 kH:	z z Mode .	Auto FFT			0.71 dBm	
Spectrum Ref Level 17.60 Att 5GL Count 100/11 1Pk Max 10 0 dBm 0 dBm - - -10 dBm - - -20 dBm - - -30 dBm - - -50 dBm - -	Tx. Spi	7.60 dB 👄	RBW 100 kH:	z z Mode .	Auto FFT			0.71 dBm	
Spectrum Ref Level 17.60 Att SGL Count 100/10 SGL Count 100/10 10 10 dBm 0 0 0 10 dBm 0 0 0 -10 dBm -0 0 0 -20 dBm -0 0 0 -30 dBm -0 0 0 -50 dBm -0 0 0 -70 dBm -0 0 0 -80 dBm -0 0 0	Tx. Spi	7.60 dB 👄	RBW 100 kH VBW 300 kH	Z Mode .	Auto FFT		2.48025	0.71 dBm	
Spectrum Ref Level 17.60 Att SGL Count 100/10 SGL Count 100/11 10 ID dBm 0 dBm 0 10 dBm -0 dBm -0 -20 dBm -30 dBm -0 -0 -50 dBm -60 dBm -70 dBm -70 dBm	Tx. Spi	7.60 dB 👄	RBW 100 kH:	Z Mode .	Auto FFT		2.48025	0.71 dBm	
Spectrum Ref Level 17.60 Att SGL Count 100/10 1Pk Max 10 dBm 10 dBm 0 dBm -10 dBm - - -20 dBm - - -30 dBm - - -50 dBm - - -60 dBm - - -70 dBm - - -80 dBm - -	Tx. Spi	7.60 dB 👄	RBW 100 kH VBW 300 kH	Z Mode .	Auto FFT	Ant1 Rei	2.48025	0.71 dBm	
Spectrum Ref Level 17.60 Att SGL Count 100/11 1Pk Max 10 10 10 dBm 0 0 10 -10 dBm -0 0 0 -20 dBm -0 0 0 -30 dBm -0 0 0 -20 dBm -0 0 0 -30 dBm -0 0 0 -70 dBm -60 dBm -70 dBm -80 dBm -80 dBm -20 -20 -20	Tx. Spi	7.60 dB 👄	RBW 100 kH VBW 300 kH	Z Mode .	Auto FFT		2.48025	0.71 dBm	
Spectrum Ref Level 17.60 Att SGL Count 100/10 SGL Count 100/10 10 10 dBm 0 0 0 10 dBm 0 0 0 -10 dBm -0 0 0 -20 dBm -0 0 0 -30 dBm -0 0 0 -50 dBm -0 0 0 -70 dBm -0 0 0 -80 dBm -0 0 0	Tx. Spi	7.60 dB 👄	RBW 100 kH VBW 300 kH	Z Mode .	Auto FFT		2.48025	0.71 dBm	
Spectrum Ref Level 17.60 Att SGL Count 100/11 1Pk Max 10 10 10 dBm 0 0 10 -10 dBm -0 0 0 -20 dBm -0 0 0 -30 dBm -0 0 0 -20 dBm -0 0 0 -30 dBm -0 0 0 -70 dBm -60 dBm -70 dBm -80 dBm -80 dBm -20 -20 -20	Tx. Spi	7.60 dB 👄	RBW 100 kH VBW 300 kH	Z Mode .	Auto FFT		2.48025	0.71 dBm	

	l 17.60 dBn	n Offset 7.60 dB	RBW 100 kHz						
Att	30 dE		VBW 300 kHz	Mode Auto Sv	/eep				
GL Count	10/10								
1Pk Max									
					0.15 dBn				
0 dBm		+					79890 GHz		
dBm	P			M2[1]		-46.11 dBm			
ubili					1	15.429831 GH			
10 dBm—	L	<u> </u>							
20 dBm	D1 -19.289) dBm							
30 dBm									
Jo abiii									
40 dBm—				1/12					
	N	M3 M4	MS	The second second	ويحدقن الأربينية	children and			
0 dBm—	a de la bababababa		The second s	and the second second second	Alexandra States and the				
) dem	and the second		and the second se		-	-			
	<u> </u>	+							
0 dBm—									
70 dBm— 30 dBm—	MHz		30001 n	<u>د</u>		Stor	25.0 GHz		
30 dBm— tart 30.0	MHz		30001 p	s		Stop	25.0 GHz		
30 dBm		X-value				•			
0 dBm	MHz	X-value 2.47989 GHz	30001 pt	Function	Fi	Stop			
30 dBm— tart 30.0 arker Type Re	ef Trc	X-value 2.47989 GHz 15.429831 GHz	Y-value			•			
0 dBm— tart 30.0 arker Type Re M1	ef Trc 1	2.47989 GHz	Y-value 0.15 dBm		Fi	•			
30 dBm	ef Trc	2.47989 GHz 15.429831 GHz	Y-value 0.15 dBm -46.11 dBm		Fi	•			

Date: 19.AUG.2020 18:14:29

END OF REPORT