FCC §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 1.1310, 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure									
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)					
0.3-1.34	614	1.63	*(100)	30					
1.34-30	824/f	2.19/f	*(180/f²)	30					
30-300	27.5	0.073	0.2	30					
300-1500	/		f/1500	30					
1500-100,000	/		1.0	30					

f = frequency in MHz; * = Plane-wave equivalent power density

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4 \pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} \leq 1$$

Report No.: RSHA200724008-00B

Calculated Data:

Mode	Frequency Range	Antenna Gain		Tune-up Output Power		Evaluation Distance	Power Density	MPE Limit (mW/cm²)
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm ²)	(/ / / / / / / / / / / / / / / / / /
BLE	2402-2480	1.0	1.26	5.50	3.55	20	0.0009	1.00
LTE Band 5	824.0-849.0	0.6	1.15	23.50	223.87	20	0.0511	0.55
LTE Band 41	2555.0-2655.0	3.0	2.00	24.00	251.19	20	0.0997	1.00

Note: LTE and BLE can transmit simultaneously; the worst condition is below:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} = 0.0009/1.00 + 0.0997/1.00 = 0.1006 < 1.0$$

Result: The device meet FCC MPE at 20 cm distance.

Report No.: RSHA200724008-00B