Page 1 of 84 ### APPLICATION CERTIFICATION FCC Part 15C On Behalf of Hunan GM Innovation Technology Co., Ltd. ### Vaxis wireless video system Model No.: Vaxis Atom 500, Vaxis Atom500 pro, Vaxis Atom 500 DS, Vaxis Atom 600, Vaxis Atom 600 pro, Vaxis Atom 600 DS FCC ID: 2AJOF-ATOM500-TX Prepared for : Hunan GM Innovation Technology Co., Ltd. Address : No.46, Jiefang East Road, Furong District, Changsha City, Hunan Province, China Prepared by : Shenzhen Accurate Technology Co., Ltd. Address : 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: (0755) 26503290 Fax: (0755) 26503396 Report No. : ATE20191739 Date of Test : Dec. 06, 2019-Dec. 23, 2019 Date of Report : Dec. 24, 2019 Report No.: ATE20191739 Page 2 of 84 ### **TABLE OF CONTENTS** | Description | Pag | |-------------|------| | Description | i ug | | CSt ICC | eport Certification | | |--|--|--| | GE | NERAL INFORMATION | | | 1.1. | Description of Device (EUT) | | | 1.2. | Special Accessory and Auxiliary Equipment | | | 1.3. | Model difference declaration | | | | | | | | | | | ME | | | | 2.1. | | | | 2.2. | The Equipment Used to Measure Conducted Disturbance (L.I.S.N) | 9 | | OP | ERATION OF EUT DURING TESTING | 10 | | 3.1. | Test setups | 10 | | 3.2. | Configuration and peripherals | | | | | | | TE | ST PROCEDURES AND RESULTS | 11 | | 6D] | B OCCUPIED BANDWIDTH TEST | | | | | | | 5.2. | | | | 5.3. | Operating Condition of EUT | | | 5.4. | Test Procedure | 13 | | 5.5. | Test Result | 12 | | 26I | OB OCCUPIED BANDWIDTH TEST | 16 | | 201 | | | | 6.1. | Block Diagram of Test Setup | | | 6.1.
6.2. | Block Diagram of Test Setup EUT Configuration on Measurement | 16 | | 6.1.
6.2.
6.3. | Block Diagram of Test Setup EUT Configuration on Measurement Operating Condition of EUT | 16
16 | | 6.1.
6.2.
6.3.
6.4. | Block Diagram of Test Setup EUT Configuration on Measurement Operating Condition of EUT Test Procedure | | | 6.1.
6.2.
6.3.
6.4.
6.5. | Block Diagram of Test Setup. EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result | | | 6.1.
6.2.
6.3.
6.4.
6.5. | Block Diagram of Test Setup. EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result BANDWIDTH MEASUREMENT | | | 6.1. 6.2. 6.3. 6.4. 6.5. 99% 7.1. | Block Diagram of Test Setup EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result BANDWIDTH MEASUREMENT Block Diagram of Test Setup | | | 6.1. 6.2. 6.3. 6.4. 6.5. 99% 7.1. 7.2. | Block Diagram of Test Setup. EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result BANDWIDTH MEASUREMENT Block Diagram of Test Setup. The Requirement For Section 15.407 | | | 6.1.
6.2.
6.3.
6.4.
6.5.
99 %
7.1.
7.2.
7.3. | Block Diagram of Test Setup EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result *BANDWIDTH MEASUREMENT Block Diagram of Test Setup The Requirement For Section 15.407 EUT Configuration on Measurement | | | 6.1. 6.2. 6.3. 6.4. 6.5. 99% 7.1. 7.2. 7.3. 7.4. | Block Diagram of Test Setup EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result **BANDWIDTH MEASUREMENT** Block Diagram of Test Setup The Requirement For Section 15.407 EUT Configuration on Measurement Operating Condition of EUT | | | 6.1. 6.2. 6.3. 6.4. 6.5. 99% 7.1. 7.2. 7.3. 7.4. 7.5. | Block Diagram of Test Setup. EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result Manda Bandwidth Measurement Block Diagram of Test Setup. The Requirement For Section 15.407 EUT Configuration on Measurement Operating Condition of EUT Test Procedure | | | 6.1. 6.2. 6.3. 6.4. 6.5. 99% 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. | Block Diagram of Test Setup. EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result. **BANDWIDTH MEASUREMENT** Block Diagram of Test Setup. The Requirement For Section 15.407 EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result. | | | 6.1. 6.2. 6.3. 6.4. 6.5. 99% 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. | Block Diagram of Test Setup. EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result Management For Section 15.407 EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Procedure Test Result TY CYCLE MEASUREMENT | | | 6.1. 6.2. 6.3. 6.4. 6.5. 99% 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. DU 8.1. | Block Diagram of Test Setup. EUT Configuration on Measurement Operating Condition of EUT. Test Procedure. Test Result. **BANDWIDTH MEASUREMENT** Block Diagram of Test Setup. The Requirement For Section 15.407. EUT Configuration on Measurement Operating Condition of EUT. Test Procedure. Test Result. **TY CYCLE MEASUREMENT** Block Diagram of Test Setup. | | | 6.1. 6.2. 6.3. 6.4. 6.5. 99% 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. | Block Diagram of Test Setup EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result **BANDWIDTH MEASUREMENT Block Diagram of Test Setup The Requirement For Section 15.407 EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result **TY CYCLE MEASUREMENT Block Diagram of Test Setup EUT Configuration on Measurement EUT Configuration on Measurement | 20 20 20 22 24 24 24 24 24 24 | | 6.1. 6.2. 6.3. 6.4. 6.5. 99% 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. DU 8.1. 8.2. | Block Diagram of Test Setup. EUT Configuration on Measurement Operating Condition of EUT. Test Procedure. Test Result. **BANDWIDTH MEASUREMENT** Block Diagram of Test Setup. The Requirement For Section 15.407. EUT Configuration on Measurement Operating Condition of EUT. Test Procedure. Test Result. **TY CYCLE MEASUREMENT** Block Diagram of Test Setup. | | | 6.1. 6.2. 6.3. 6.4. 6.5. 99% 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. DU 8.1. 8.2. 8.3. | Block Diagram of Test Setup. EUT Configuration on Measurement Operating Condition of EUT Test Procedure. Test Result. **BANDWIDTH MEASUREMENT** Block Diagram of Test Setup. The Requirement For Section 15.407 EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result. **TY CYCLE MEASUREMENT** Block Diagram of Test Setup. EUT Configuration on Measurement Operating Condition of EUT Test Result. **TY CYCLE MEASUREMENT** Block Diagram of Test Setup. EUT Configuration on Measurement Operating Condition of EUT | 20 20 22 24 22 22 22 22 22 22 22 22 22 22 22 | | 6.1. 6.2. 6.3. 6.4. 6.5. 99% 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. DU 8.1. 8.2. 8.3. 8.4. 8.5. | Block Diagram of Test Setup EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result **BANDWIDTH MEASUREMENT** Block Diagram of Test Setup The Requirement For Section 15.407 EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result **TY CYCLE MEASUREMENT** Block Diagram of Test Setup EUT Configuration on Measurement Operating Condition of EUT Test Result **TY CYCLE MEASUREMENT** Block Diagram of Test Setup EUT Configuration on Measurement Operating Condition of EUT Test Procedure | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | | 6.1. 6.2. 6.3. 6.4. 6.5. 99% 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. DU 8.1. 8.2. 8.3. 8.4. 8.5. | Block Diagram of Test Setup EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result **BANDWIDTH MEASUREMENT** Block Diagram of Test Setup The Requirement For Section 15.407 EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result **TY CYCLE MEASUREMENT** Block Diagram of Test Setup. EUT Configuration on Measurement Operating Condition of EUT Test Result **TY CYCLE MEASUREMENT** Block Diagram of Test Setup. EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result **AXIMUM POWER SPECTRAL DENSITY TEST** | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | | 6.1. 6.2. 6.3. 6.4. 6.5. 99% 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. DU 8.1. 8.2. 8.3. 8.4. 8.5. | Block Diagram of Test Setup. EUT Configuration on Measurement Operating Condition of EUT. Test Procedure Test Result **BANDWIDTH MEASUREMENT** Block Diagram of Test Setup. The Requirement For Section 15.407 EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result **TY CYCLE MEASUREMENT** Block Diagram of Test Setup. EUT Configuration on Measurement Operating Condition of EUT Test Result **TY CYCLE MEASUREMENT** Block Diagram of Test Setup. EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result | 20
20 22 24 22 24 26 26 26 26 26 26 26 26 26 26 26 26 26 | | | GE 1.1. 1.2. 1.3. 1.4. 1.5. MI 2.1. 2.2. OP 3.1. 3.2. 3.3. TE 6D 5.1. 5.2. 5.3. 5.4. 5.5. | GENERAL INFORMATION 1.1. Description of Device (EUT) 1.2. Special Accessory and Auxiliary Equipment 1.3. Model difference declaration 1.4. Laboratory Accreditation and Relationship to Customer 1.5. Measurement Uncertainty MEASURING DEVICE AND TEST EQUIPMENT 2.1. For Radiated Emission Measurement 2.2. The Equipment Used to Measure Conducted Disturbance (L.I.S.N) OPERATION OF EUT DURING TESTING 3.1. Test setups 3.2. Configuration and peripherals 3.3. Test mode TEST PROCEDURES AND RESULTS 6DB OCCUPIED BANDWIDTH TEST 5.1. Block Diagram of Test Setup. 5.2. EUT Configuration on Measurement 5.3. Operating Condition of EUT 5.4. Test Procedure 5.5. Test Result | | 9.4. | Operating Condition of EUT | | |----------------|--|----| | 9.5. | Test Procedure | | | 9.6. | Test Result | 28 | | 10. MA | AXIMUM CONDUCTED (AVERAGE) OUTPUT POWER | 32 | | 10.1. | Block Diagram of Test Setup | 32 | | 10.2. | The Requirement For Section 15.407 | 32 | | 10.3. | EUT Configuration on Measurement | 32 | | 10.4. | Operating Condition of EUT | | | 10.5. | Test Procedure | | | 10.6. | Test Result | 33 | | 11. RA | DIATED SPURIOUS EMISSION TEST | 36 | | 11.1. | Block Diagram of Test Setup. | 36 | | 11.2. | Restricted bands of operation | | | 11.3. | Configuration of EUT on Measurement | | | 11.4. | The Limit For Section 15.407 | | | 11.5. | Operating Condition of EUT | | | 11.6. | Test Procedure | | | 11.7. | DATA SAMPLE | | | 11.8. | The Field Strength of Radiation Emission Measurement Results | | | | ND EDGE COMPLIANCE TEST | | | 12.1. | Block Diagram of Test Setup | | | 12.2. | The Requirement For Unwanted Emissions in the Restricted Bands | | | 12.3. | EUT Configuration on Measurement | | | 12.4. | Operating Condition of EUT | | | 12.5. | Test Procedure | | | 12.6. | Test Result | | | 13. IN | BAND EMISSION | | | 13.1. | Block Diagram of Test Setup | | | 13.2. | For transmitters operating in the 5.725-5.85 GHz band: | | | 13.3. | EUT Configuration on Measurement | | | 13.4. | Operating Condition of EUT | | | 13.5. | Test Procedure | | | 13.6. | Test Result | | | | EQUENCIES STABILITY | | | 14.1. | Block Diagram of Test Setup | | | 14.2. | EUT Configuration on Measurement | | | 14.3. | Operating Condition of EUT | | | 14.4. | Test Result | | | | WER LINE CONDUCTED MEASUREMENT | | | 15.1. | Block Diagram of Test Setup | | | 15.2. | Power Line Conducted Emission Measurement Limits | | | 15.3. | Configuration of EUT on Measurement | | | 15.4. | Operating Condition of EUT | | | 15.5. | Test Procedure | | | 15.6.
15.7. | DATA SAMPLE Power Line Conducted Emission Measurement Results | | | | | | | | TENNA REQUIREMENT | | | 16.1.
16.2. | The Requirement | | | | | | Report No.: ATE20191739 Page 4 of 84 ### **Test Report Certification** Applicant : Hunan GM Innovation Technology Co., Ltd. Address : No.46, Jiefang East Road, Furong District, Changsha City, Hunan Province, China Manufacturer : Hunan GM Innovation Technology Co., Ltd. Address : No.46, Jiefang East Road, Furong District, Changsha City, Hunan Province, China Product : Vaxis wireless video system Vaxis Atom 500, Vaxis Atom500 pro, Vaxis Atom 500 DS, Model No. Vaxis Atom 600, Vaxis Atom 600 pro, Vaxis Atom 600 DS Trade name : N/A Measurement Procedure Used: FCC Rules and Regulations Part 15 Subpart E Section 15.407 ANSI C63.10: 2013 KDB 789033 D02 General UNII Test Procedures New Rules v02r01 KDB 558074 D01 DTS Meas Guidance v05r02 KDB 662911 D01 Multiple Transmitter Output v02r01 The device described above is tested by SHENZHEN ACCURATE TECHNOLOGY CO., LTD. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart E Section 15.407 limits. The measurement results are contained in this test report and SHENZHEN ACCURATE TECHNOLOGY CO., LTD. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements. This report applies to above tested sample only. This report shall not be reproduced in part without written approval of SHENZHEN ACCURATE TECHNOLOGY CO., LTD. | Date of Test: | Dec. 06, 2019-Dec. 23, 2019 | |--------------------------------|-----------------------------| | Date of Report : | Dec. 24, 2019 | | Prepared by : | TECHNOLOGY | | | (Tin Approved er) | | Approved & Authorized Signer : | 4 emily | | | (Sean Liu. Manager) | Page 5 of 84 ### 1. GENERAL INFORMATION ### 1.1.Description of Device (EUT) EUT : Vaxis wireless video system Model Number : Vaxis Atom 500, Vaxis Atom 500 pro, Vaxis Atom 500 DS, Vaxis Atom 600, Vaxis Atom 600 pro, Vaxis Atom 600 DS IEEE 802.11 WLAN : 802.11a (20 MHz channel bandwidth), 802.11n (20 MHz channel bandwidth) Frequency Range : U-NII(5150-5250, 5725-5850MHz) Number of Channels : fc = 5000 MHz + N * 5 MHz, where: - fc = "Operating Frequency" in MHz, - N = "Channel Number". 5150-5250 MHz: N = 36 to 48 with step of 4 for the 20 MHz channel bandwidth. 5725-5850 MHz: N = 149 to 165 with step of 4 for the 20 MHz channel bandwidth. GANT MAX : ANT1:2.5 dBi (per antenna port, max.) ANT2:2.5 dBi(per antenna port, max.) Directional gain : 5.51 Note: If any transmit signals are correlated with each other, Directional gain=GANT+lolog(NANT) dBi Type of Antenna : SISO (for 802.11a/n) MIMO Antenna(for 802.11n) Power Supply : DC 7.4V via battery or DC 5V via adapter Modulation Type : BPSK/QPSK/16QAM/64QAM (OFDM) TPC : Not Supported Applicant : Hunan GM Innovation Technology Co., Ltd. Address : No.46, Jiefang East Road, Furong District, Changsha City, Hunan Province, China Page 6 of 84 Manufacturer : Hunan GM Innovation Technology Co., Ltd. Address : No.46, Jiefang East Road, Furong District, Changsha City, Hunan Province, China Date of sample received: Dec. 06, 2019 Date of Test : Dec. 06, 2019-Dec. 23, 2019 ### 1.2. Special Accessory and Auxiliary Equipment PC Manufacturer: LENOVO M/N: 4290-RT8 S/N: R9-FW93G 11/08 AC/DC Power Adapter: Model: MX12X6-0502000VU (provided by laboratory) INPUT: 100-240V~50/60Hz 0.35A OUTPUT: 5V/1A #### 1.3. Model difference declaration Vaxis Atom 500, Vaxis Atom 500 pro, Vaxis Atom 500 DS, Vaxis Atom 600, Vaxis Atom 600 pro, Vaxis Atom 600 DS are identical in interior structure, electrical circuits and components, and just model number is different for the marketing requirement. Page 7 of 84 ### 1.4.Laboratory Accreditation and Relationship to Customer EMC Lab : Recognition of accreditation by Federal Communications Commission (FCC) The Designation Number is CN1189 The Registration Number is 708358 Listed by Innovation, Science and Economic Development Canada (ISEDC) The Registration Number is 5077A-2 Accredited by China National Accreditation Service for Conformity Assessment (CNAS) The Registration Number is CNAS L3193 Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 4297.01 Name of Firm : Shenzhen Accurate Technology Co., Ltd. Site Location : 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China ### 1.5.Measurement Uncertainty Conducted Emission Expanded Uncertainty = 2.72dB, k=2 (Mains ports, 9kHz-30MHz) Radiated emission expanded uncertainty = 2.66dB, k=2 (9kHz-30MHz) Radiated emission expanded uncertainty = 4.28dB, k=2 (30MHz-1000MHz) Radiated emission expanded uncertainty = 4.98dB, k=2 (1G-18GHz) Radiated emission expanded uncertainty = 5.06dB, k=2 (18G-26.5GHz) ## 2. MEASURING DEVICE AND TEST EQUIPMENT ### 2.1.For Radiated Emission Measurement | Item | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | Cal. | | |------|---|-------------------------|--------------------------|------------|--------------|----------|--| | | | | | | | Interval | | | 1. | Spectrum Analyzer | Agilent | E7405A | MY45115511 | Jan.05, 2019 | 1 Year | | | 2. | Spectrum Analyzer | • | FSV40 | 101495 | Jan.05, 2019 | 1 Year | | | 3. | Test Receiver | Rohde&Schwarz | ESCS30 | 100307 | Jan.05, 2019 | 1 Year | | | 4. | Test Receiver | Rohde& Schwarz | ESPI | 100396/003 | Jan.05, 2019 | 1 Year | | | 5. | Test Receiver | Rohde& Schwarz | ESPI | 101526/003 | Jan.05, 2019 | 1 Year | | | 6. | Test Receiver | Rohde& Schwarz | ESR | 101817 | Jan.05, 2019 | 1 Year | | | 7. | Bilog Antenna | Schwarzbeck | VULB9163 | 9163-194 | Jan.05, 2019 | 1 Year | | | 8. | Bilog Antenna | Schwarzbeck | VULB9163 | 9163-323 | Jan.05, 2019 | 1 Year | | | 9. | LogPer.Antenna | Schwarzbeck | VUSLP
9111B | 9111B-074 | Jan.05, 2019 | 1 Year | | | 10. | Biconical Broad
Band Antenna | Schwarzbeck | VHBB
9124+BBA
9106 | 9124-617 | Jan.05, 2019 | 1 Year | | | 11. | Loop Antenna | Schwarzbeck | FMZB1516 | 1516131 | Jan.05, 2019 | 1 Year | | | 12. | Horn Antenna | Schwarzbeck | BBHA9120D | 9120D-655 | Jan.05, 2019 | 1 Year | | | 13. | Horn Antenna | Schwarzbeck | BBHA9120D | 9120D-1067 | Jan.05, 2019 | 1 Year | | | 14. | Vertical Active
Monopole Antenna | Schwarzbeck | VAMP 9243 | 9243-370 | Jan.05, 2019 | 1 Year | | | 15. | RF Switching Unit+PreAMP | Compliance
Direction | RSU-M2 | 38322 | Jan.05, 2019 | 1 Year | | | 16. | Pre-Amplifier | Agilent | 8447D | 294A10619 | Jan.05, 2019 | 1 Year | | | 17. | Pre-Amplifier | Rohde&Schwarz | CBLU11835
40-01 | 3791 | Jan.05, 2019 | 1 Year | | | 18. | 50 Coaxial Switch | Anritsu Corp | MP59B | 6200237248 | Jan.05, 2019 | 1 Year | | | 19. | 50 Coaxial Switch | Anritsu Corp | MP59B | 6200506474 | Jan.05, 2019 | 1 Year | | | 20. | RF Coaxial Cable | Schwarzbeck | N-5m | No.1 | Jan.05, 2019 | 1 Year | | | 21. | RF Coaxial Cable | Schwarzbeck | N-1m | No.6 | Jan.05, 2019 | 1 Year | | | 22. | RF Coaxial Cable | Schwarzbeck | N-1m
 No.7 | Jan.05, 2019 | 1 Year | | | 23. | RF Coaxial Cable | SUHNER | N-3m | No.8 | Jan.05, 2019 | 1 Year | | | 24. | RF Coaxial Cable | RESENBERGER | N-3.5m | No.9 | Jan.05, 2019 | 1 Year | | | 25. | RF Coaxial Cable | SUHNER | N-6m | No.10 | Jan.05, 2019 | 1 Year | | | 26. | RF Coaxial Cable | RESENBERGER | N-12m | No.11 | Jan.05, 2019 | 1 Year | | | 27. | RF Coaxial Cable | RESENBERGER | N-0.5m | No.12 | Jan.05, 2019 | 1 Year | | | 28. | RF Coaxial Cable | SUHNER | N-2m | No.13 | Jan.05, 2019 | 1 Year | | | 29. | RF Coaxial Cable | SUHNER | N-0.5m | No.15 | Jan.05, 2019 | 1 Year | | | 30. | RF Coaxial Cable | SUHNER | N-2m | No.16 | Jan.05, 2019 | 1 Year | | | 31. | RF Coaxial Cable | RESENBERGER | N-6m | No.17 | Jan.05, 2019 | 1 Year | | | Radi | Radiated Emission Measurement Software: EZ_EMC V1.1.4.2 | | | | | | | ## 2.2. The Equipment Used to Measure Conducted Disturbance (L.I.S.N) | Item | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | Cal. | | |------|--|-----------------|-----------|------------|--------------|----------|--| | 4 | Task Dassins | D-1-1- 0 0-1 | E00000 | 400007 | 1 05 0040 | Interval | | | 1. | Test Receiver | Rohde & Schwarz | | 100307 | Jan.05, 2019 | 1 Year | | | 2. | Test Receiver | Rohde & Schwarz | - | 100396/003 | Jan.05, 2019 | 1 Year | | | 3. | Test Receiver | Rohde & Schwarz | - | 101526/003 | Jan.05, 2019 | 1 Year | | | 4. | L.I.S.N. | Schwarzbeck | NLSK8126 | 8126431 | Jan.05, 2019 | 1 Year | | | 5. | L.I.S.N. | Rohde & Schwarz | | 100305 | Jan.05, 2019 | 1 Year | | | 6. | L.I.S.N. | Rohde & Schwarz | | 100310 | Jan.05, 2019 | 1 Year | | | 7. | L.I.S.N. | Rohde & Schwarz | | 100132 | Jan.05, 2019 | 1 Year | | | 8. | Pulse Limiter | Rohde & Schwarz | ESH3-Z2 | 100305 | Jan.05, 2019 | 1 Year | | | 9. | Pulse Limiter | Rohde & Schwarz | ESH3-Z2 | 100312 | Jan.05, 2019 | 1 Year | | | 10. | Pulse Limiter | Rohde & Schwarz | ESH3-Z2 | 100815 | Jan.05, 2019 | 1 Year | | | 11. | 50Ω Coaxial
Switch | Anritsu Corp | MP59B | 6200283936 | Jan.05, 2019 | 1 Year | | | 12. | 50Ω Coaxial
Switch | Anritsu Corp | MP59B | 6200283933 | Jan.05, 2019 | 1 Year | | | 13. | 50Ω Coaxial
Switch | Anritsu Corp | MP59B | 6200506474 | Jan.05, 2019 | 1 Year | | | 14. | VOLTAGE
PROBE | Schwarzbeck | TK9416 | N/A | Jan.05, 2019 | 1 Year | | | 15. | RF CURRENT
PROBE | Rohde & Schwarz | EZ-17 | 100048 | Jan.05, 2019 | 1 Year | | | 16. | 8-Wire
Impedance
Stabilisation
Network | Schwarzbeck | CAT5 8158 | 8158-0035 | Jan.05, 2019 | 1 Year | | | 17. | RF Coaxial
Cable | SUHNER | N-2m | No.2 | Jan.05, 2019 | 1 Year | | | 18. | RF Coaxial
Cable | SUHNER | N-2m | No.3 | Jan.05, 2019 | 1 Year | | | 19. | RF Coaxial
Cable | SUHNER | N-2m | No.14 | Jan.05, 2019 | 1 Year | | | Con | Conducted Emission Measurement Software: ES-K1 V1.71 | | | | | | | 3. OPERATION OF EUT DURING TESTING ### 3.1.Test setups ### 3.2. Configuration and peripherals Note: The EUT have two antenna(1 and 2), They can transmit simultaneously ### 3.3.Test mode | Test Mode | Test Modes Description | |-----------|---| | 11A | IEEE 802.11a with data rate of 6 Mbps using SISO mode. | | 11N20 | IEEE 802.11n with data date of MCS0 and bandwidth of 20 MHz | | | using SISO mode. | | 11N20m | IEEE 802.11n with data date of MCS8 and bandwidth of 20 MHz | | | using MIMO mode. | NOTE: Worst cases for each IEEE 802.11 mode are selected to perform tests. ## 4. TEST PROCEDURES AND RESULTS | Description of Test | Band | FCC Rules | Requirements | Result | |--|------------------------|--|--|-----------| | AC power Line
Conducted
Emission Test | 5150-5250
5725-5850 | 15.207 | N/A | Compliant | | Emission Test Emission 5150-5250 15.403(i), No limit. Bandwidth 15.407(a)(1) | | No limit. | Compliant | | | | 5725-5850 | 15.403(i),
15.407(e) | ≥ 500 kHz. | | | Occupied
Bandwidth | 5150-5250
5725-5850 | KDB 789033
§D | No limit | Compliant | | Duty Cycle | 5150-5250
5725-5850 | | No limit | Compliant | | Maximum
Conducted | 5150-5250 | 15.407(a)(1)
15.407(a)(4) | < 250mW (avg during transmission) | Compliant | | Output
Power | 5725-5850 | 15.407(a)(3) | < 1W (avg during transmission) | | | Peak Power
Spectral
Density | 5150-5250 | 15.407(a)(1)
15.407(a)(4) | FCC: For client devices in the 5.15-5.25 GHz band <11dBm/MHz (avg during transmission) | Compliant | | | 5725-5850 | 15.407(a)(3)
15.407(a)(4) | <30dBm/500KHz
(avg during transmission) | | | Unwanted
Emissions | 5150-5250 | 15.407(b)(1)
15.407(b)(6)
15.407(b)(7)
15.209 | F<1GHz:
§ 15.209/§7.2.5 limit (QP).
F≥1GHz & out-restricted:
<-27dBm/MHz PK e.i.r.p. (exl.
5.15-5.35 GHz).
F≥1GHz & in-restricted:
§ 15.209/§7.2.5 limit
(AV&PK). | | | | 5725-5850 | 15.407(b)(4)
15.407(b)(6)
15.407(b)(7)
15.209 | F<1GHz:
§ 15.209/§7.2.5 limit (QP).
All emissions shall be limited to
a level of -27 dBm/MHz at 75
MHz or more above or below
the band edge increasing linearly
to 10 dBm/MHz at 25 MHz
above or below the band edge,
and from 25 MHz above or
below the band edge increasing
linearly to a level of 15.6
dBm/MHz at 5 MHz above or | | | Frequence
Stability | 5150-5250
5725-5850 | 15.407(g) | below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge F≥1GHz & in-restricted: § 15.209/§7.2.5 limit (AV&PK). FCC Part 15.407(g) | Compliant | |------------------------|------------------------|---|--|-----------| | Antenna
Requirement | N/A | 15.203,
15.204(b),
15.204(c),
15.212(a),
2.929(b) | N/A | Compliant | 5. 6DB OCCUPIED BANDWIDTH TEST ### 5.1.Block Diagram of Test Setup (EUT: Vaxis wireless video system) ## 5.2.EUT Configuration on Measurement The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application. Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 kHz for the band 5.725-5.85 GHz ### 5.3. Operating Condition of EUT - 5.3.1. Setup the EUT and simulator as shown as Section 5.1. - 5.3.2. Turn on the power of all equipment. - 5.3.3.Let the EUT work in TX modes measure it. The transmit frequency are 5725-5850MHz. #### 5.4.Test Procedure - 5.4.1. The transmitter output was connected to the spectrum analyzer through a low loss cable. - 5.4.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz. - 5.4.3. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB. #### 5.5.Test Result | The test was performed with 802.11a | | | | | | |-------------------------------------|-----------------|------------------------------|-----------------------------|----------------|--| | Channel | Frequency (MHz) | 6dB Bandwidth
ANT 1 (MHz) | 6dB Bandwidth
ANT 2(MHz) | Limit
(MHz) | | | 149 | 5745 | 16.324 | 16.324 | > 0.5MHz | | | 165 | 5825 | 16.382 | 16.382 | > 0.5MHz | | | The test was performed with 802.11n20 | | | | | | |---------------------------------------|-----------------|------------------------------|-----------------------------|----------------|--| | Channel | Frequency (MHz) | 6dB Bandwidth
ANT 1 (MHz) | 6dB Bandwidth
ANT 2(MHz) | Limit
(MHz) | | | 149 | 5745 | 17.598 | 17.598 | > 0.5MHz | | | 165 | 5825 | 17.598 | 17.598 | > 0.5MHz | | The spectrum analyzer plots are attached as below. #### 6dB Bandwidth ANT 1(802.11A) ### ANT 2(802.11A) ANT 1(802.11N20) ### ANT 2(802.11N20) Page 16 of 84 ### 6. 26DB OCCUPIED BANDWIDTH TEST #### 6.1.Block Diagram of Test Setup (EUT: Vaxis wireless video system) ### 6.2.EUT Configuration on Measurement The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application. ### 6.3. Operating Condition of EUT - 6.3.1. Setup the EUT and simulator as shown as Section 6.1. - 6.3.2. Turn on the power of all equipment. - 6.3.3.Let the EUT work in TX modes measure it. The transmit frequency are 5150-5250MHz. #### 6.4. Test Procedure - 6.4.1.The transmitter output was connected to the spectrum analyzer through a low loss cable. - 6.4.2.Set Set RBW = approximately 1% of the emission bandwidth. - 6.4.3.Set the VBW > RBW. - 6.4.4.Detector = Peak. - 6.4.5.Trace mode = max hold. - 6.4.6.Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%. 6.5.Test Result | The test was performed with 802.11a | | | | | | | |-------------------------------------|-----------------|-------------------------------|------------------------------|--|--|--| | Channel | Frequency (MHz) | 26dB Bandwidth
ANT 1 (MHz) | 26dB Bandwidth
ANT 2(MHz) | | | | | 36 | 5180 | 21.823 | 21.823 | | | | | 48 | 5240 | 21.708 | 21.766 | | | | | The test was performed with 802.11n20 | | | | | | | | |
---|------|--------|--------|--|--|--|--|--| | Channel Frequency (MHz) 26dB Bandwidth ANT 1 (MHz) ANT 2(MHz) | | | | | | | | | | 36 | 5180 | 22.171 | 22.229 | | | | | | | 48 | 5240 | 22.229 | 22.055 | | | | | | The spectrum analyzer plots are attached as below. #### 26dB Bandwidth ### ANT 1(11A) ### ANT 2(11A) ANT 1(11N20) ### ANT 2(11N20) Page 20 of 84 ### 7. 99% BANDWIDTH MEASUREMENT #### 7.1.Block Diagram of Test Setup #### 7.2. The Requirement For Section 15.407 The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5 % of the total mean power of the given emission. Measurement of the 99% occupied bandwidth is required only as a condition for using the optional band-edge measurement techniques described in section II.G.3.d). Measurements of 99% occupied bandwidth may also optionally be used in lieu of the EBW to define the minimum frequency range over which the spectrum is integrated when measuring maximum conducted output power as described in section II.E. However, the EBW must be measured to determine bandwidth dependent limits on maximum conducted output power in accordance with 15.407(a). #### 7.3.EUT Configuration on Measurement The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application. ### 7.4. Operating Condition of EUT - 7.4.1. Setup the EUT and simulator as shown as Section 7.1. - 7.4.2. Turn on the power of all equipment. - 7.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 5150-5250 and 5725-5850MHz. #### 7.5.Test Procedure - 1. Set center frequency to the nominal EUT channel center frequency. - 2. Set span = 1.5 times to 5.0 times the OBW. - 3. Set RBW = 1 % to 5 % of the OBW. Set VBW \geq 3 * RBW - 4. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. - 5. Use the 99 % power bandwidth function of the instrument. Report No.: ATE20191739 Page 21 of 84 6. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies. #### 7.6.Test Result | The test was performed with 802.11a | | | | | | | | | |-------------------------------------|-----------------|------------------------------|-----------------------------|---------|--|--|--|--| | Channel | Frequency (MHz) | 99% Bandwidth
ANT 1 (MHz) | 99% Bandwidth
ANT 2(MHz) | Verdict | | | | | | 36 | 5180 | 17.192 | 17.192 | PASS | | | | | | 48 | 5240 | 17.192 | 17.192 | PASS | | | | | | 149 | 5745 | 17.250 | 17.192 | PASS | | | | | | 165 | 5825 | 17.192 | 17.250 | PASS | | | | | | The test was performed with 802.11n20 | | | | | | | | | |---------------------------------------|------|--|--------|---------|--|--|--|--| | Channel Frequency (MHz) | | 99% Bandwidth ANT 1 (MHz) 99% Bandwidth ANT 2(MHz) | | Verdict | | | | | | 36 | 5180 | 18.234 | 18.177 | PASS | | | | | | 48 | 5240 | 18.350 | 18.292 | PASS | | | | | | 149 | 5745 | 18.408 | 18.234 | PASS | | | | | | 165 | 5825 | 18.292 | 18.234 | PASS | | | | | The spectrum analyzer plots are attached as below. #### 99% Bandwidth ### ANT 1(11N20) ### ANT 2(11N20) Page 24 of 84 ### 8. DUTY CYCLE MEASUREMENT #### 8.1.Block Diagram of Test Setup ### 8.2.EUT Configuration on Measurement The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application. ### 8.3. Operating Condition of EUT - 8.3.1. Setup the EUT and simulator as shown as Section 8.1. - 8.3.2. Turn on the power of all equipment. - 8.3.3.Let the EUT work in TX modes measure it. The transmit frequency are 5150-5250 and 5725-5850MHz. #### 8.4. Test Procedure Measurements of duty cycle and transmission duration shall be performed using one of the following techniques: - 1. A diode detector and an oscilloscope that together have sufficiently short response time to permit accurate measurements of the on- and off-times of the transmitted signal. - 2. The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on- and off-times of the transmitted signal - a. Set the center frequency of the instrument to the centre frequency of the transmission - b. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value(10MHz). - c. Set detector = Peak or average. - d. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3MHz, then the zero-span method of measuring duty cycle shall not be used if T≤16.7 microseconds.) ### 8.5. Test Result | Test mode | Frequency (MHz) | Duty
cycle(%)
ANT 1 | Duty
cycle(%)
ANT 2 | 10log(1/x
)
ANT 1 | 10log(1/x
)
ANT 2 | |-----------|-----------------|---------------------------|---------------------------|-------------------------|-------------------------| | 802.11a20 | 5180 | 96.86 | 96.86 | 0.14 | 0.14 | | 802.11n20 | 5180 | 96.86 | 96.66 | 0.14 | 0.15 | Note: The duty cycle of other frequency points in the same mode is the same, so we select a frequency point to test for each mode. Duty cycle=x The spectrum analyzer plots are attached as below. #### 802.11a20 5180MHz #### 802.11n20 5180MHz ANT 1 ANT 2 9. MAXIMUM POWER SPECTRAL DENSITY TEST #### 9.1.Block Diagram of Test Setup ### 9.2. The Requirement For Section 15.407 Section 15.407: For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the band 5.725–5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. ### 9.3.EUT Configuration on Measurement The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application. ### 9.4. Operating Condition of EUT - 9.4.1. Setup the EUT and simulator as shown as Section 9.1. - 9.4.2. Turn on the power of all equipment. - 9.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 5150-5250 and 5725-5850MHz. Page 27 of 84 #### 9.5. Test Procedure 9.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable. #### 9.5.2. Measurement Procedure PKPSD: For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply: - 1. Set RBW \geqslant 1/T, where T is defined in section II.B.l.a). Set VBW \geqslant 3 RBW. - 2. If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10 log (500 kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement. - 3. If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10 log (1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement. - 4. Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle. - 5. Detector = RMS. - 6. Sweep time = auto couple. - 7. Trace mode = max hold. - 8. Allow trace to fully stabilize. - 9. Use the peak marker function to determine the maximum amplitude level. - 9.5.3.Measurement the maximum power spectral density. ### 9.6.Test Result | The test was performed with 802.11a(SISO) | | | | | | | | | |---|-----------------|--
--|---|-------|----------------|---------|--| | Channel | Frequency (MHz) | Power
Spectral
Density
ANT 1
(dBm) | Power
Spectral
Density
ANT 2
(dBm) | Final Power Spectral Density ANT 1 (dBm) Final Power Spectral Density ANT 2 (dBm) | | Limit
(dBm) | Verdict | | | 36 | 5180 | 2.54 | 2.53 | 2.68 | 2.67 | 11 | PASS | | | 48 | 5240 | 3.00 | 2.87 | 3.14 | 3.01 | 11 | PASS | | | 149 | 5745 | -2.55 | -2.72 | -2.41 | -2.68 | 30 | PASS | | | 165 | 5825 | -3.51 | -3.59 | -3.37 | -3.45 | 30 | PASS | | | The test was performed with 802.11 n20 (SISO) | | | | | | | | | |---|-----------------|--|--|--|--|-------------|---------|--| | Channel | Frequency (MHz) | Power
Spectral
Density
ANT 1
(dBm) | Power
Spectral
Density
ANT 2
(dBm) | Final Power
Spectral
Density
ANT 1
(dBm) | Final Power
Spectral
Density
ANT 2
(dBm) | Limit (dBm) | Verdict | | | 36 | 5180 | 2.73 | 2.92 | 2.87 | 3.07 | 11 | PASS | | | 48 | 5240 | 3.70 | 3.19 | 3.84 | 3.34 | 11 | PASS | | | 149 | 5745 | -2.42 | -2.85 | -2.28 | -2.70 | 30 | PASS | | | 165 | 5825 | -3.28 | -3.28 | -3.14 | -3.13 | 30 | PASS | | | The test wa | The test was performed with 802.11 n20 (MIMO) | | | | | | | | | | |-------------|---|--|--|--|--|---|----------------|--|--|--| | Channel | Frequency (MHz) | Power
Spectral
Density
ANT 1
(dBm) | Power
Spectral
Density
ANT 2
(dBm) | Final Power
Spectral
Density
ANT 1
(dBm) | Final Power Spectral Density ANT 2 (dBm) | Final Power Spectral Density Total(dBm) | Limit
(dBm) | | | | | 36 | 5180 | 3.42 | 2.84 | 3.56 | 2.99 | 6.29 | 11 | | | | | 48 | 5240 | 3.22 | 3.52 | 3.36 | 3.67 | 6.53 | 11 | | | | | 149 | 5745 | -2.31 | -2.61 | -2.17 | -2.46 | 0.70 | 30 | | | | | 165 | 5825 | -3.55 | -3.74 | -3.41 | -3.59 | -0.49 | 30 | | | | Note: Final Power Spectral Density ANT 1= Power Spectral Density ANT 1+10log(1/x) ANT 1 Final Power Spectral Density ANT 2= Power Spectral Density ANT 2+10log(1/x) ANT 2 The spectrum analyzer plots are attached as below. #### **TEST MODE:SISO** ## ANT 1(11A) # ANT 2(11A) FCC ID: 2AJOF-ATOM500-TX Shenzhen Accurate Technology Co., Ltd. ### ANT 2(11N20) #### **TEST MODE: MIMO** ### ANT 1(11N20) ### ANT 2(11N20) ### 10.MAXIMUM CONDUCTED (AVERAGE) OUTPUT POWER ### 10.1.Block Diagram of Test Setup ### 10.2. The Requirement For Section 15.407 Section 15.407: For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. For the band 5.725–5.825 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 1 W or 17 dBm + 10 log B, where B is the 26-dB emis-sion bandwidth in MHz. ### 10.3.EUT Configuration on Measurement The equipment is installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application. ### 10.4. Operating Condition of EUT - 10.4.1. Setup the EUT and simulator as shown as Section 10.1. - 10.4.2. Turn on the power of all equipment. - 10.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 5150-5250 and 5725-5850MHz. #### 10.5.Test Procedure - 10.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable. - 10.5.2.Set RBW = 1-5% of the OBW, VBW \geq 3 x RBW, Sweep time = auto, Set span to at least 1.5 times the OBW, Detector = RMS. - 10.5.3. Measurement the Maximum conducted (average) output power. Report No.: ATE20191739 Page 33 of 84 ### 10.6.Test Result Final Ave output power ANT 1= Ave output power ANT $1+10\log(1/x)$ ANT 1 Final Ave output power ANT 2= Ave output power ANT $2+10\log(1/x)$ ANT 2 | The test was performed with 802.11A | | | | | | | | | |-------------------------------------|--|-------|-------|------|------------------|--|--|--| | Channel | Channel Frequency (MHz) Ave output power Ave output power ANT 1(dBm) ANT 2 (dBm) | | | | 10log(1/x) ANT 2 | | | | | Low | 5180 | 15.05 | 15.00 | 0.14 | 0.14 | | | | | High | 5240 | 15.29 | 15.53 | 0.14 | 0.14 | | | | | Low | 5745 | 12.83 | 12.80 | 0.14 | 0.14 | | | | | High | 5825 | 11.48 | 11.08 | 0.14 | 0.14 | | | | | The test was performed with 802.11A | | | | | | | | | |-------------------------------------|-----------------|---|--|--|---|---------------|--|--| | Channel | Frequency (MHz) | Final Ave
output power
ANT 1(dBm) | Final Ave
output power
ANT 2 (dBm) | Final Ave
output power
ANT 1(mW) | Final Ave
output power
ANT 2 (mW) | Limits
dBm | | | | Low | 5180 | 15.19 | 15.14 | 33.04 | 32.66 | 24 dBm | | | | High | 5240 | 15.43 | 15.67 | 34.91 | 36.90 | 24 dBm | | | | Low | 5745 | 12.97 | 12.94 | 19.82 | 19.68 | 30 dBm | | | | High | 5825 | 11.62 | 11.22 | 14.52 | 13.24 | 30 dBm | | | | The test was performed with 802.11 N20 | | | | | | | | | |--|------|-------|-------|------------------|------------------|--|--|--| | Channel Frequency (MHz) Ave output power Ave output power ANT 1(dBm) ANT 2 (dBm) | | | | 10log(1/x) ANT 1 | 10log(1/x) ANT 2 | | | | | Low | 5180 | 16.41 | 16.51 | 0.14 | 0.15 | | | | | High | 5240 | 16.69 | 16.81 | 0.14 | 0.15 | | | | | Low | 5745 | 12.43 | 12.69 | 0.14 | 0.15 | | | | | High | 5825 | 11.61 | 11.51 | 0.14 | 0.15 | | | | | The test was performed with 802.11 N20 | | | | | | | | | |--|-----------------|---|--|------------------------------------|-----------------------------------|---------------|--|--| | Channel | Frequency (MHz) | Final Ave
output power
ANT 1(dBm) | Final Ave
output power
ANT 2 (dBm) | Ave output
Total power
(dBm) | Ave output
Total power
(mW) | Limits
dBm | | | | Low | 5180 | 16.55 | 16.66 | 19.62 | 91.53 | 24 dBm | | | | High | 5240 | 16.83 | 16.96 | 19.91 | 97.85 | 24 dBm | | | | Low | 5745 | 12.57 | 12.84 | 15.72 | 37.30 | 30 dBm | | | | High | 5825 | 11.75 | 11.66 | 14.72 | 29.62 | 30 dBm | | | The spectrum analyzer plots are attached as below. ### ANT 1(802.11A) ### ANT 2(802.11A) ### ANT 1(802.11N20) ### ANT 2(802.11 N20) 11. RADIATED SPURIOUS EMISSION TEST ### 11.1.Block Diagram of Test Setup 11.1.1.Block diagram of connection between the EUT and peripherals (EUT: Vaxis wireless video system) ### 11.1.2.Semi-Anechoic Chamber Test Setup Diagram (A) Radiated Emission Test Set-Up, Frequency below 30MHz (B) Radiated Emission Test Set-Up, Frequency below 1GHz #### Above 1GHz: 11.2.Restricted bands of operation 11.2.1.FCC Part 15.205 Restricted bands of operation (a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below: | perm | inited in any of the freque | ney builds listed below. | | |---|-----------------------------|--------------------------|---------------| | MHz | MHz | MHz | GHz | | 0.090-0.110 | 16.42-16.423 | 399.9-410 | 4.5-5.15 | | ¹ 0.495-0.505 | 16.69475-16.69525 | 608-614 | 5.35-5.46 | | 2.1735-2.1905 | 16.80425-16.80475 | 960-1240 | 7.25-7.75 | | 4.125-4.128 | 25.5-25.67 | 1300-1427 | 8.025-8.5 | | 4.17725-4.17775 | 37.5-38.25 | 1435-1626.5 | 9.0-9.2 | | 4.20725-4.20775 | 73-74.6 | 1645.5-1646.5 | 9.3-9.5 | | 6.215-6.218 | 74.8-75.2 | 1660-1710 | 10.6-12.7 | | 6.26775-6.26825 | 108-121.94 | 1718.8-1722.2 | 13.25-13.4 | | 6.31175-6.31225 | 123-138 | 2200-2300 | 14.47-14.5 | | 8.291-8.294 | 149.9-150.05 | 2310-2390 | 15.35-16.2 | | 8.362-8.366 | 156.52475-156.52525 | 2483.5-2500 | 17.7-21.4 | | 8.37625-8.38675 | 156.7-156.9 | 2690-2900 | 22.01-23.12 | | 8.41425-8.41475 | 162.0125-167.17 | 3260-3267 | 23.6-24.0 | | 12.29-12.293 | 167.72-173.2 | 3332-3339 | 31.2-31.8 | | 12.51975-12.52025 | 240-285 | 3345.8-3358 | 36.43-36.5 | | 12.57675-12.57725 | 322-335.4 | 3600-4400 | $\binom{2}{}$ | | 13.36-13.41 | | | | | 1 | .4 1 | 1 0 400 0 710 | | ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 (b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements. ## 11.3. Configuration of EUT on Measurement The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application. ²Above 38.6 Report No.: ATE20191739 Page 39 of 84 #### 11.4. The Limit
For Section 15.407 Section 15.247(d): For transmitters operating in the 5.15–5.25 GHz band: all emissions out-side of the 5.15–5.35 GHz band shall not exceed an EIRP of –27dBm/MHz. For transmitters operating in the 5.725–5.825 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an EIRP of –17dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of –27dBm/MHz. ## 11.5. Operating Condition of EUT - 11.5.1. Setup the EUT and simulator as shown as Section 11.1. - 11.5.2. Turn on the power of all equipment. - 11.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 5150-5250 and 5725-5850MHz. #### 11.6.Test Procedure The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes. The frequency range from 9KHz to 40000MHz is checked. Result = Reading + Corrected Factor Where Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain During the radiated emission test, the spectrum analyzer was set with the following configurations: - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak at frequency below 1GHz. - 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. - 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz. - 4. All modes of operation were investigated and the worst-case emissions are reported. Page 40 of 84 #### 11.7.DATA SAMPLE | Frequency | Reading | Factor | Result | Limit | Margin | Remark | |-----------|---------|--------|----------|----------|--------|--------| | (MHz) | (dBμv) | (dB/m) | (dBμv/m) | (dBμv/m) | (dB) | | | X.XX | 49.83 | -22.03 | 27.80 | 43.50 | -15.70 | QP | Frequency(MHz) = Emission frequency in MHz Reading($dB\mu\nu$) = Uncorrected Analyzer/Receiver reading Factor (dB/m)= Antenna factor + Cable Loss – Amplifier gain Result($dB\mu v/m$) = Reading + Factor Limit (dBμv/m)= Limit stated in standard Margin (dB) = Result(dB μ v/m) - Limit (dB μ v/m) Calculation Formula: Margin(dB) = Result (dB μ v/m)–Limit(dB μ v/m) Result(dB μ v/m)= Reading(dB μ v)+ Factor(dB/m) The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit. ## 11.8. The Field Strength of Radiation Emission Measurement Results Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported. - 2. *: Denotes restricted band of operation. - 3. The fundamental radiated emissions were reduced by Band Reject Filter in the attached plots. - 4. The EUT is tested radiation emission at each test mode (802.11a/n) in three axes. Besides, We have tested the single antenna transmit mode and the dual antenna emission mode. The worst emissions are reflected in the following plots. - 5. The radiation emissions from 9kHz-30MHz is not reported, because the test values lower than the limits of 20dB. - 6. The average measurement was not performed when peak measured data under the limit of average detection. Report No.: ATE20191739 Page 41 of 84 # ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: FRANK2019-W #447 Standard: FCC Class B 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Vaxis wireless video system Mode: TX 5180MHz(802.11N) Model: Vaxis Atom 500 Manufacturer: Hunan GM innovation technology Co., Ltd. Note: Report NO.:ATE20191739 Date: 2019/12/06 Time: 16:08:00 Engineer Signature: CHARLEY | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor
(dB) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | |-----|----------------|------------------|----------------|--------------------|-------------------|----------------|----------|-------------|------------------|--------| | 1 | 147.8745 | 62.31 | -28.05 | 34.26 | 43.50 | -9.24 | QP | 200 | 309 | | | 2 | 294.4259 | 56.45 | -21.45 | 35.00 | 46.00 | -11.00 | QP | 200 | 84 | | | 3 | 444.1299 | 50.52 | -17.39 | 33.13 | 46.00 | -12.87 | QP | 200 | 215 | | | 4 | 584.1611 | 42.90 | -14.02 | 28.88 | 46.00 | -17.12 | QP | 200 | 332 | | | 5 | 734.0371 | 50.66 | -10.69 | 39.97 | 46.00 | -6.03 | QP | 200 | 169 | | | 6 | 878.0931 | 48.73 | -7.56 | 41.17 | 46.00 | -4.83 | QP | 200 | 326 | | F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Report No.: ATE20191739 Page 42 of 84 Job No.: FRANK2019-W #446 Standard: FCC Class B 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Vaxis wireless video system Mode: TX 5180MHz(802.11N) Model: Vaxis Atom 500 Manufacturer: Hunan GM innovation technology Co., Ltd. Note: Report NO.:ATE20191739 Polarization: Vertical Power Source: DC 7.4V Date: 2019/12/06 Time: 16:06:25 Engineer Signature: CHARLEY | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor
(dB) | Result (dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | |-----|----------------|------------------|----------------|-----------------|-------------------|----------------|----------|-------------|------------------|--------| | 1 | 147.8745 | 56.93 | -28.05 | 28.88 | 43.50 | -14.62 | QP | 100 | 251 | | | 2 | 294.4259 | 60.85 | -21.45 | 39.40 | 46.00 | -6.60 | QP | 100 | 109 | | | 3 | 444.1299 | 51.66 | -17.39 | 34.27 | 46.00 | -11.73 | QP | 100 | 118 | | | 4 | 584.1611 | 47.69 | -14.02 | 33.67 | 46.00 | -12.33 | QP | 100 | 92 | | | 5 | 734.0371 | 52.07 | -10.69 | 41.38 | 46.00 | -4.62 | QP | 100 | 115 | | | 6 | 878.0931 | 49.22 | -7.56 | 41.66 | 46.00 | -4.34 | QP | 100 | 302 | | F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Report No.: ATE20191739 Page 43 of 84 Job No.: FRANK2019-W #448 Standard: FCC Class B 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Vaxis wireless video system Mode: TX 5240MHz(802.11N) Model: Vaxis Atom 500 Manufacturer: Hunan GM innovation technology Co., Ltd. Note: Report NO.:ATE20191739 Polarization: Horizontal Power Source: DC 7.4V Date: 2019/12/06 Time: 16:22:14 Engineer Signature: CHARLEY | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor
(dB) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | |-----|----------------|------------------|----------------|--------------------|-------------------|----------------|----------|-------------|------------------|--------| | 1 | 147.8745 | 63.32 | -28.05 | 35.27 | 43.50 | -8.23 | QP | 200 | 302 | | | 2 | 294.4259 | 59.65 | -21.45 | 38.20 | 46.00 | -7.80 | QP | 200 | 210 | | | 3 | 444.1299 | 50.47 | -17.39 | 33.08 | 46.00 | -12.92 | QP | 200 | 201 | T | | 4 | 584.1611 | 44.93 | -14.02 | 30.91 | 46.00 | -15.09 | QP | 200 | 58 | | | 5 | 734.0371 | 50.70 | -10.69 | 40.01 | 46.00 | -5.99 | QP | 200 | 324 | | | 6 | 878.0931 | 48.73 | -7.56 | 41.17 | 46.00 | -4.83 | QP | 200 | 106 | | F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Report No.: ATE20191739 Page 44 of 84 Job No.: FRANK2019-W #449 Standard: FCC Class B 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Vaxis wireless video system Mode: TX 5240MHz(802.11N) Model: Vaxis Atom 500 Manufacturer: Hunan GM innovation technology Co., Ltd. Note: Report NO.:ATE20191739 Polarization: Vertical Power Source: DC 7.4V Date: 2019/12/06 Time: 16:24:07 Engineer Signature: CHARLEY Distance: 3m QP QP QP QP 100 100 100 100 221 93 11 302 -10.98 -14.72 -4.16 -4.80 46.00 46.00 46.00 46.00 444,1299 584.1611 734.0371 878.0931 52.41 45.30 52.53 48.76 -17.39 -14.02 -10.69 -7.56 35.02 31.28 41.84 41.20 3 4 5 6 F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Report No.: ATE20191739 Page 45 of 84 Job No.: FRANK2019-W #451 Standard: FCC Class B 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Vaxis wireless video system Mode: TX 5745MHz(802.11N) Model: Vaxis Atom 500 Manufacturer: Hunan GM innovation technology Co., Ltd. Note: Report NO.:ATE20191739 Polarization: Horizontal Power Source: DC 7.4V Date: 2019/12/06 Time: 16:28:17 Engineer Signature: CHARLEY | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor
(dB) | Result (dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | |-----|----------------|------------------|----------------|-----------------|-------------------|----------------|----------|-------------
------------------|--------| | 1 | 147.8745 | 64.57 | -28.05 | 36.52 | 43.50 | -6.98 | QP | 200 | 247 | | | 2 | 294.4259 | 60.11 | -21.45 | 38.66 | 46.00 | -7.34 | QP | 200 | 331 | | | 3 | 444.1299 | 50.07 | -17.39 | 32.68 | 46.00 | -13.32 | QP | 200 | 82 | | | 4 | 584.1611 | 48.17 | -14.02 | 34.15 | 46.00 | -11.85 | QP | 200 | 118 | | | 5 | 734.0371 | 51.37 | -10.69 | 40.68 | 46.00 | -5.32 | QP | 200 | 32 | | | 6 | 878.0931 | 48.18 | -7.56 | 40.62 | 46.00 | -5.38 | QP | 200 | 305 | | Report No.: ATE20191739 Page 46 of 84 ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: FRANK2019-W #450 Standard: FCC Class B 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Vaxis wireless video system Mode: TX 5745MHz(802.11N) Model: Vaxis Atom 500 Manufacturer: Hunan GM innovation technology Co., Ltd. Note: Report NO.:ATE20191739 Date: 2019/12/06 Time: 16:25:54 Engineer Signature: CHARLEY | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor
(dB) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | | |-----|----------------|------------------|----------------|--------------------|-------------------|----------------|----------|-------------|------------------|--------|--| | 1 | 147.8745 | 62.30 | -28.05 | 34.25 | 43.50 | -9.25 | QP | 100 | 116 | | | | 2 | 294.4259 | 62.99 | -21.45 | 41.54 | 46.00 | -4.46 | QP | 100 | 201 | | | | 3 | 444.1299 | 52.41 | -17.39 | 35.02 | 46.00 | -10.98 | QP | 100 | 331 | | | | 4 | 584.1611 | 46.58 | -14.02 | 32.56 | 46.00 | -13.44 | QP | 100 | 96 | | | | 5 | 734.0371 | 51.03 | -10.69 | 40.34 | 46.00 | -5.66 | QP | 100 | 115 | | | | 6 | 878.0931 | 48.76 | -7.56 | 41.20 | 46.00 | -4.80 | QP | 100 | 302 | | | F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Report No.: ATE20191739 Page 47 of 84 Job No.: FRANK2019-W #452 Standard: FCC Class B 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Vaxis wireless video system Mode: TX 5825MHz(802.11N) Model: Vaxis Atom 500 Manufacturer: Hunan GM innovation technology Co., Ltd. Note: Report NO.:ATE20191739 Polarization: Horizontal Power Source: DC 7.4V Date: 2019/12/06 Time: 16:29:00 Engineer Signature: CHARLEY | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor (dB) | Result (dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | | |-----|----------------|------------------|-------------|-----------------|-------------------|----------------|----------|-------------|------------------|--------|--| | 1 | 147.8745 | 64.57 | -28.05 | 36.52 | 43.50 | -6.98 | QP | 200 | 302 | | | | 2 | 294.4259 | 60.11 | -21.45 | 38.66 | 46.00 | -7.34 | QP | 200 | 55 | | | | 3 | 444.1299 | 50.07 | -17.39 | 32.68 | 46.00 | -13.32 | QP | 200 | 218 | | | | 4 | 584.1611 | 48.31 | -14.02 | 34.29 | 46.00 | -11.71 | QP | 200 | 96 | | | | 5 | 734.0371 | 52.37 | -10.69 | 41.68 | 46.00 | -4.32 | QP | 200 | 219 | | | | 6 | 878.0931 | 49.18 | -7.56 | 41.62 | 46.00 | -4.38 | QP | 200 | 306 | | | F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Report No.: ATE20191739 Page 48 of 84 Job No.: FRANK2019-W #453 Standard: FCC Class B 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Vaxis wireless video system Mode: TX 5825MHz(802.11N) Model: Vaxis Atom 500 Manufacturer: Hunan GM innovation technology Co., Ltd. Note: Report NO.:ATE20191739 Polarization: Vertical Power Source: DC 7.4V Date: 2019/12/06 Time: 16:30:50 Engineer Signature: CHARLEY | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor (dB) | Result (dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | |-----|----------------|------------------|-------------|-----------------|-------------------|----------------|----------|-------------|------------------|--------| | 1 | 147.8745 | 62.35 | -28.05 | 34.30 | 43.50 | -9.20 | QP | 100 | 224 | | | 2 | 294.4259 | 62.61 | -21.45 | 41.16 | 46.00 | -4.84 | QP | 100 | 216 | | | 3 | 444.1299 | 51.35 | -17.39 | 33.96 | 46.00 | -12.04 | QP | 100 | 302 | | | 4 | 584.1611 | 49.55 | -14.02 | 35.53 | 46.00 | -10.47 | QP | 100 | 61 | | | 5 | 734.0371 | 52.30 | -10.69 | 41.61 | 46.00 | -4.39 | QP | 100 | 116 | | | 6 | 878.0931 | 48.70 | -7.56 | 41.14 | 46.00 | -4.86 | QP | 100 | 302 | | Report No.: ATE20191739 Page 49 of 84 # **Above 1G(1G-26.5GHz)** # 802.11A(20MHz) TX Mode: | Indicated | | | Table | Ante | nna | Cor | rection | Factor | | FCC Part | 15.407 | | |--------------------|-------------------------------|---------------------|-----------------|------------|----------------|--------------------------|-----------------------|--------------------|---------------------------|-------------------|----------------|----------| | Frequency
(MHz) | Receiver
Reading
(dBµV) | Detector
(PK/AV) | Angle
Degree | Height (m) | Polar
(H/V) | Ant.
Factor
(dB/m) | Cable
Loss
(dB) | Pre-Amp. Gain (dB) | Cord.
Amp.
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | Comment | | | | | | (| Channe | 1 36 (518 | 30 MHz | <u>:</u>) | | | | | | 10360 | 39.75 | AV | 128 | 1.5 | V | 31.2 | 4.3 | 26.7 | 48.55 | 54 | 5.45 | harmonic | | 10360 | 38.12 | AV | 15 | 1.5 | Н | 31.2 | 4.3 | 26.7 | 46.92 | 54 | 7.08 | harmonic | | 10360 | 52.81 | PK | 128 | 1.5 | V | 31.2 | 4.3 | 26.7 | 61.61 | 74 | 12.39 | harmonic | | 10360 | 51.98 | PK | 15 | 1.5 | Н | 31.2 | 4.3 | 26.7 | 60.78 | 74 | 13.22 | harmonic | | | | | | (| Channe | 1 48 (524 | l0 MHz | :) | | | | | | 10480 | 39.72 | AV | 310 | 1.5 | V | 31.2 | 4.3 | 26.7 | 48.52 | 54 | 5.48 | harmonic | | 10480 | 37.15 | AV | 10 | 1.5 | Н | 31.2 | 4.3 | 26.7 | 45.95 | 54 | 8.05 | harmonic | | 10480 | 52.13 | PK | 310 | 1.5 | V | 31.2 | 4.3 | 26.7 | 60.93 | 74 | 13.07 | harmonic | | 10480 | 51.53 | PK | 10 | 1.5 | Н | 31.2 | 4.3 | 26.7 | 60.33 | 74 | 13.67 | harmonic | | | | | | C | hannel | 149 (57 | 45 MH: | z) | | | | | | 11490 | 36.41 | AV | 125 | 1.5 | V | 31.9 | 4.4 | 26.6 | 46.11 | 54 | 7.89 | harmonic | | 11490 | 36.24 | AV | 130 | 1.5 | Н | 31.9 | 4.4 | 26.6 | 45.94 | 54 | 8.06 | harmonic | | 11490 | 50.22 | PK | 125 | 1.5 | V | 31.9 | 4.4 | 26.6 | 59.92 | 74 | 14.08 | harmonic | | 11490 | 49.42 | PK | 130 | 1.5 | Н | 31.9 | 4.4 | 26.6 | 59.12 | 74 | 14.88 | harmonic | | | | | | C | hannel | 165 (58 | 25 MH: | z) | | | | | | 11650 | 37.41 | AV | 25 | 1.5 | V | 31.9 | 4.4 | 26.6 | 47.11 | 54 | 6.89 | harmonic | | 11650 | 37.24 | AV | 125 | 1.5 | Н | 31.9 | 4.4 | 26.6 | 46.94 | 54 | 7.06 | harmonic | | 11650 | 51.22 | PK | 25 | 1.5 | V | 31.9 | 4.4 | 26.6 | 60.92 | 74 | 13.08 | harmonic | | 11650 | 50.42 | PK | 125 | 1.5 | Н | 31.9 | 4.4 | 26.6 | 60.12 | 74 | 13.88 | harmonic | Page 50 of 84 # 802.11N(20MHz) TX Mode: | Indicated | | | Table | Ante | nna | Cor | rrection | Factor | | FCC Part | 15.407 | | |-----------------|-------------------------------|---------------------|-----------------|------------|----------------|--------------------------|-----------------------|--------------------|---------------------------|-------------------|----------------|----------| | Frequency (MHz) | Receiver
Reading
(dBµV) | Detector
(PK/AV) | Angle
Degree | Height (m) | Polar
(H/V) | Ant.
Factor
(dB/m) | Cable
Loss
(dB) | Pre-Amp. Gain (dB) | Cord.
Amp.
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | Comment | | | | | | (| Channe | 1 36 (518 | 30 MHz | :) | | | | | | 10360 | 38.13 | AV | 146 | 1.5 | V | 31.2 | 4.3 | 26.7 | 46.93 | 54 | 7.07 | harmonic | | 10360 | 37.64 | AV | 127 | 1.5 | Н | 31.2 | 4.3 | 26.7 | 46.44 | 54 | 7.56 | harmonic | | 10360 | 51.06 | PK | 146 | 1.5 | V | 31.2 | 4.3 | 26.7 | 59.86 | 74 | 14.14 | harmonic | | 10360 | 50.48 | PK | 127 | 1.5 | Н | 31.2 | 4.3 | 26.7 | 59.28 | 74 | 14.72 | harmonic | | | | | | (| Channe | 1 48 (524 | l0 MHz | <u>:</u>) | | | | | | 10480 | 37.13 | AV | 330 | 1.5 | V | 31.2 | 4.3 | 26.7 | 45.93 | 54 | 8.07 | harmonic | | 10480 | 36.87 | AV | 109 | 1.5 | Н | 31.2 | 4.3 | 26.7 | 45.67 | 54 | 8.33 | harmonic | | 10480 | 50.18 | PK | 330 | 1.5 | V | 31.2 | 4.3 | 26.7 | 58.98 | 74 | 15.02 | harmonic | | 10480 | 49.32 | PK | 109 | 1.5 | Н | 31.2 | 4.3 | 26.7 | 58.12 | 74 | 15.88 | harmonic | | | | | | C | hannel | 149 (57 | 45 MH: | z) | | | | | | 11490 | 35.56 | AV | 167 | 1.5 | V | 31.9 | 4.4 | 26.6 | 45.26 | 54 | 8.74 | harmonic | | 11490 | 37.10 | AV | 192 | 1.5 | Н | 31.9 | 4.4 | 26.6 | 46.80 | 54 | 7.20 | harmonic | | 11490 | 49.56 | PK | 167 | 1.5 | V | 31.9 | 4.4 | 26.6 | 59.26 | 74 | 14.74 | harmonic | | 11490 | 48.45 | PK | 192 | 1.5 | Н | 31.9 | 4.4 | 26.6 | 58.15 | 74 | 15.85 | harmonic | | | | | | C | hannel | 165 (58 | 25 MH | z) | | | • | | | 11650 | 36.17 | AV | 225 | 1.5 | V | 31.9 | 4.4 | 26.6 | 45.87 | 54 | 8.13 | harmonic | | 11650 | 36.78 | AV | 118 | 1.5 | Н | 31.9 | 4.4 | 26.6 | 46.48 | 54 | 7.52 | harmonic | | 11650 | 50.83 | PK | 225 | 1.5 | V | 31.9 | 4.4 | 26.6 | 60.53 | 74 | 13.47 | harmonic | | 11650 | 51.02 | PK | 118 | 1.5 | Н | 31.9 | 4.4 | 26.6 | 60.72 | 74 | 13.28 | harmonic | Page 51 of 84 #### TX Frequency: 5180MHz, 5240MHz Test mode: 802.11a, N20 The EUT is tested radiation emission at each test mode in three axes. Besides, We have tested the single antenna transmit mode and the dual antenna emission mode. The worst emissions are reflected in the following plots #### **Common Information** Test Site: SMQ EMC Lab. **Environment Conditions:** Antenna Polarization: Horizontal Operator Name: Comment: Copy of FCC Electric Field Strength 26.5-40GHz #### **Common Information** SMQ EMC Lab. Test Site: Environment Conditions: Antenna Polarization: Vertical
Operator Name: Comment: Copy of FCC Electric Field Strength 26.5-40GHz Page 52 of 84 #### TX Frequency: 5745MHz, 5825MHz Test mode: 802.11a,N20 The EUT is tested radiation emission at each test mode in three axes. Besides, We have tested the single antenna transmit mode and the dual antenna emission mode. The worst emissions are reflected in the following plots #### **Common Information** Test Site: SMQ EMC Lab. **Environment Conditions:** Antenna Polarization: Horizontal Operator Name: Comment: Copy of FCC Electric Field Strength 26.5-40GHz #### **Common Information** SMQ EMC Lab. Test Site: **Environment Conditions:** Antenna Polarization: Vertical Operator Name: Comment: Copy of FCC Electric Field Strength 26.5-40GHz Page 53 of 84 ### 12.BAND EDGE COMPLIANCE TEST ## 12.1.Block Diagram of Test Setup ## 12.2. The Requirement For Unwanted Emissions in the Restricted Bands - 1. For all measurements, follow the requirements in section II.G.3., - "General Requirements for Unwanted Emissions Measurements. - 2. At frequencies below 1000 MHz, use the procedure described in section - II.G.4., "Procedure for Unwanted Emissions Measurements Below 1000 MHz." - 3. At frequencies above 1000 MHz, measurements performed using the peak and average measurement procedures described in sections II.G.5. and II.G.6, respectively, must satisfy the respective peak and average limits. - If all peak measurements satisfy the average limit, then average measurements are not required. - 4. For conducted measurements above 1000 MHz, EIRP shall be computed as specified in section II.G.3.b) and then field strength shall be computed as follows (see KDB Publication 412172): $E[dB\mu V/m] = EIRP[dBm] - 20 \log (d[meters]) + 104.77,$ where E = field strength and d = distance at which field strength limit is specified in the rules; $E[dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters. #### 12.3.EUT Configuration on Measurement The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application. ## 12.4. Operating Condition of EUT - 12.4.1. Setup the EUT and simulator as shown as Section 12.1. - 12.4.2. Turn on the power of all equipment. - 12.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 5150-5250 and 5725-5850MHz. Page 54 of 84 #### 12.5.Test Procedure #### Conducted Band Edge: - 12.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable. - 12.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz. #### Radiate Band Edge: - 12.5.3. The EUT is placed on a turntable, which is 1.5m above the ground plane and worked at highest radiated power. - 12.5.4. The turntable was rotated for 360 degrees to determine the position of maximum emission level. - 12.5.5.EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission. - 12.5.6.Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission: - 12.5.7.RBW=1MHz, VBW=1MHz - 12.5.8. The band edges was measured and recorded. #### 12.6.Test Result **PASS** ## ANT 1(11A) ## ANT 2(11A) ## ANT 1(11N20) ## ANT 2(11N20) Page 57 of 84 #### **Radiated Band Edge Result** Note: - 1. Emissions attenuated more than 20 dB below the permissible value are not reported. - 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows: Result = Reading + Corrected Factor - 3. Display the measurement of peak values. - 4. The EUT is tested radiation emission at each test mode (802.11a/n) in three axes. Besides, We have tested the single antenna transmit mode and the dual antenna emission mode. The worst emissions are reflected in the following plots. - 5. The average measurement was not performed when peak measured data under the limit of average detection. Report No.: ATE20191739 Page 58 of 84 Test mode: 802.11a TX Frequency: 5180MHz, 5240MHz, 5745MHz, 5825MHz The EUT is tested Radiated Band Edge at each test mode in three axes. Besides, We have tested the single antenna transmit mode and the dual antenna emission mode. The worst emissions are reflected in the following plots ## ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: FRANK2019-W #544 Standard: FCC PK Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Vaxis wireless video system Mode: TX Channel 36(802.11A) Model: Vaxis Atom 500 Manufacturer: Hunan GM innovation technology Co., Ltd. Note: Report NO.:ATE20191739 Date: 19/12/16/ Time: 10/21/09 Engineer Signature: CHARLEY Report No.: ATE20191739 Page 59 of 84 ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: FRANK2019-W #543 Standard: FCC PK Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Vaxis wireless video system Mode: TX Channel 36(802.11A) Model: Vaxis Atom 500 Manufacturer: Hunan GM innovation technology Co., Ltd. Note: Report NO.:ATE20191739 Polarization: Vertical Power Source: DC 7.4V Date: 19/12/16/ Time: 10/19/55 Engineer Signature: CHARLEY F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Report No.: ATE20191739 Page 60 of 84 Job No.: FRANK2019-W #545 Standard: FCC PK Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Vaxis wireless video system Mode: TX Channel 48(802.11A) Model: Vaxis Atom 500 Manufacturer: Hunan GM innovation technology Co., Ltd. Note: Report NO.:ATE20191739 Horizontal Polarization: Power Source: DC 7.4V Date: 19/12/16/ Time: 10/23/40 Engineer Signature: CHARLEY Report No.: ATE20191739 Page 61 of 84 ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: FRANK2019-W #546 Standard: FCC PK Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Vaxis wireless video system Mode: TX Channel 48(802.11A) Model: Vaxis Atom 500 Manufacturer: Hunan GM innovation technology Co., Ltd. Note: Report NO.:ATE20191739 Date: 19/12/16/ Time: 10/24/48 Engineer Signature: CHARLEY ATC[®] ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Report No.: ATE20191739 Page 62 of 84 Job No.: FRANK2019-W #549 Standard: FCC PK Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Vaxis wireless video system Mode: TX Channel 149(802.11A) Model: Vaxis Atom 500 Manufacturer: Hunan GM innovation technology Co., Ltd. Note: Report NO.:ATE20191739 Polarization: Horizontal Power Source: DC 7.4V Date: 19/12/16/ Time: 10/30/43 Engineer Signature: CHARLEY | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor
(dB) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | |-----|----------------|------------------|----------------|--------------------|-------------------|----------------|----------|-------------|------------------|--------| | 1 | 5715.000 | 41.49 | 2.74 | 44.23 | 74.00 | -29.77 | peak | 200 | 106 | | | 2 | 5715.000 | 31.21 | 2.74 | 33.95 | 54.00 | -20.05 | AVG | 200 | 320 | | | 3 | 5725.000 | 50.61 | 2.75 | 53.36 | 74.00 | -20.64 | peak | 200 | 119 | | | 4 | 5725.000 | 40.32 | 2.75 | 43.07 | 54.00 | -10.93 | AVG | 200 | 63 | | Page 63 of 84 ## ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: FRANK2019-W #547 Standard: FCC PK Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Vaxis wireless video system Mode: TX Channel 149(802.11A) Model: Vaxis Atom 500 Manufacturer: Hunan GM innovation technology Co., Ltd. Note: Report NO.:ATE20191739 Polarization: Vertical Power Source: DC 7.4V Date: 19/12/16/ Time: 10/27/06 Engineer Signature: CHARLEY | No. | Freq.
(MHz) | Reading
(dBuV/m) | Factor
(dB) | Result (dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | |-----|----------------|---------------------|----------------|-----------------|-------------------|----------------|----------|-------------|------------------|--------| | 1 | 5715.000 | 41.50 | 2.74 | 44.24 | 74.00 | -29.76 | peak | 150 | 109 | | | 2 | 5715.000 | 31.56 | 2.74 | 34.30 | 54.00 | -19.70 | AVG | 150 | 93 | | | 3 | 5725.000 | 53.29 | 2.75 | 56.04 | 74.00 | -17.96 | peak | 150 | 214 | | | 4 | 5725.000 | 42.89 | 2.75 | 45.64 | 54.00 | -8.36 | AVG | 150 | 201 | | ATC[®] Report No.: ATE20191739 Page 64 of 84 # ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: FRANK2019-W #550 Standard: FCC PK Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Vaxis wireless video system Mode: TX Channel 165(802.11A) Model: Vaxis Atom 500 Manufacturer: Hunan GM innovation technology Co., Ltd. Note: Report NO.:ATE20191739 Date: 19/12/16/ Time: 10/32/47 Engineer Signature: CHARLEY | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor (dB) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | |-----|----------------|------------------|-------------|--------------------|-------------------|----------------
----------|-------------|------------------|--------| | 1 | 5850.000 | 44.65 | 2.93 | 47.58 | 74.00 | -26.42 | peak | 200 | 106 | | | 2 | 5850.000 | 35.15 | 2.93 | 38.08 | 54.00 | -15.92 | AVG | 250 | 32 | | | 3 | 5860.000 | 41.41 | 2.95 | 44.36 | 74.00 | -29.64 | peak | 200 | 112 | | | 4 | 5860.000 | 32.41 | 2.95 | 35.36 | 54.00 | -18.64 | AVG | 250 | 201 | | ATC[®] ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Report No.: ATE20191739 Page 65 of 84 Job No.: FRANK2019-W #551 Standard: FCC PK Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Vaxis wireless video system Mode: TX Channel 165(802.11A) Model: Vaxis Atom 500 Manufacturer: Hunan GM innovation technology Co., Ltd. Note: Report NO.:ATE20191739 Polarization: Vertical Power Source: DC 7.4V Date: 19/12/16/ Time: 10/33/53 Engineer Signature: CHARLEY | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor
(dB) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | |-----|----------------|------------------|----------------|--------------------|-------------------|----------------|----------|-------------|------------------|--------| | 1 | 5850.000 | 47.67 | 2.93 | 50.60 | 74.00 | -23.40 | peak | 150 | 104 | | | 2 | 5850.000 | 38.15 | 2.93 | 41.08 | 54.00 | -12.92 | AVG | 150 | 32 | | | 3 | 5860.000 | 46.41 | 2.95 | 49.36 | 74.00 | -24.64 | peak | 150 | 201 | | | 4 | 5860.000 | 36.45 | 2.95 | 39.40 | 54.00 | -14.60 | AVG | 150 | 359 | | Page 66 of 84 Test mode: 802.11n20 TX Frequency: 5180MHz, 5240MHz, 5745MHz, 5825MHz The EUT is tested Radiated Band Edge at each test mode in three axes. Besides, We have tested the single antenna transmit mode and the dual antenna emission mode. The worst emissions are reflected in the following plots ## ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: FRANK2019-W #558 Standard: FCC PK Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Vaxis wireless video system Mode: TX Channel 36(802.11N) Model: Vaxis Atom 500 Manufacturer: Hunan GM innovation technology Co., Ltd. Note: Report NO.:ATE20191739 Polarization: Horizontal Power Source: DC 7.4V Date: 19/12/16/ Time: 10/43/47 Engineer Signature: CHARLEY F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Report No.: ATE20191739 Page 67 of 84 Job No.: FRANK2019-W #559 Standard: FCC PK Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Vaxis wireless video system Mode: TX Channel 36(802.11N) Mode: TX Channel 36(802.11N) Model: Vaxis Atom 500 Manufacturer: Hunan GM innovation technology Co., Ltd. Note: Report NO.:ATE20191739 Polarization: Vertical Power Source: DC 7.4V Date: 19/12/16/ Time: 10/45/03 Engineer Signature: CHARLEY **ATC**[®] ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Report No.: ATE20191739 Page 68 of 84 Job No.: FRANK2019-W #557 Standard: FCC PK Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Vaxis wireless video system Mode: TX Channel 48(802.11N) Model: Vaxis Atom 500 Manufacturer: Hunan GM innovation technology Co., Ltd. Note: Report NO.:ATE20191739 Polarization: Horizontal Power Source: DC 7.4V Date: 19/12/16/ Time: 10/41/55 Engineer Signature: CHARLEY ATC[®] ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Report No.: ATE20191739 Page 69 of 84 Job No.: FRANK2019-W #556 Standard: FCC PK Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Vaxis wireless video system Mode: TX Channel 48(802.11N) Model: Vaxis Atom 500 Manufacturer: Hunan GM innovation technology Co., Ltd. Note: Report NO.:ATE20191739 Polarization: Vertical Power Source: DC 7.4V Date: 19/12/16/ Time: 10/40/28 Engineer Signature: CHARLEY Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Report No.: ATE20191739 Page 70 of 84 F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Job No.: FRANK2019-W #554 Standard: FCC PK Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Vaxis wireless video system Mode: TX Channel 149(802.11N) Model: Vaxis Atom 500 Manufacturer: Hunan GM innovation technology Co., Ltd. Note: Report NO.:ATE20191739 Polarization: Horizontal Power Source: DC 7.4V Date: 19/12/16/ Time: 10/37/55 Engineer Signature: CHARLEY | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor (dB) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | |-----|----------------|------------------|-------------|--------------------|-------------------|----------------|----------|-------------|------------------|---| | 1 | 5715.000 | 40.89 | 2.74 | 43.63 | 74.00 | -30.37 | peak | 200 | 163 | | | 2 | 5715.000 | 31.21 | 2.74 | 33.95 | 54.00 | -20.05 | AVG | 250 | 210 | Time the state of | | 3 | 5725.000 | 48.31 | 2.75 | 51.06 | 74.00 | -22.94 | peak | 200 | 50 | | | 4 | 5725.000 | 37.45 | 2.75 | 40.20 | 54.00 | -13.80 | AVG | 250 | 148 | | Report No.: ATE20191739 Page 71 of 84 ### ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: FRANK2019-W #555 Standard: FCC PK Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Vaxis wireless video system Mode: TX Channel 149(802.11N) Model: Vaxis Atom 500 Manufacturer: Hunan GM innovation technology Co., Ltd. Note: Report NO.:ATE20191739 Polarization: Vertical Power Source: DC 7.4V Date: 19/12/16/ Time: 10/39/00 Engineer Signature: CHARLEY | Freq.
(MHz) | Reading (dBuV/m) | Factor
(dB) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | |----------------|---|--|---|--|--|---|--
---|--| | 5715.000 | 46.62 | 2.74 | 49.36 | 74.00 | -24.64 | peak | 150 | 185 | | | 5715.000 | 35.15 | 2.74 | 37.89 | 54.00 | -16.11 | AVG | 150 | 116 | | | 5725.000 | 52.09 | 2.75 | 54.84 | 74.00 | -19.16 | peak | 150 | 310 | | | 5725.000 | 42.12 | 2.75 | 44.87 | 54.00 | -9.13 | AVG | 150 | 122 | | | | (MHz)
5715.000
5715.000
5725.000 | (MHz) (dBuV/m)
5715.000 46.62
5715.000 35.15
5725.000 52.09 | (MHz) (dBuV/m) (dB) 5715.000 46.62 2.74 5715.000 35.15 2.74 5725.000 52.09 2.75 | (MHz) (dBuV/m) (dB) (dBuV/m) 5715.000 46.62 2.74 49.36 5715.000 35.15 2.74 37.89 5725.000 52.09 2.75 54.84 | (MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dBuV/m) 5715.000 46.62 2.74 49.36 74.00 5715.000 35.15 2.74 37.89 54.00 5725.000 52.09 2.75 54.84 74.00 | (MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB) 5715.000 46.62 2.74 49.36 74.00 -24.64 5715.000 35.15 2.74 37.89 54.00 -16.11 5725.000 52.09 2.75 54.84 74.00 -19.16 | (MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB) Detector 5715.000 46.62 2.74 49.36 74.00 -24.64 peak 5715.000 35.15 2.74 37.89 54.00 -16.11 AVG 5725.000 52.09 2.75 54.84 74.00 -19.16 peak | (MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB) (dB) (cm) 5715.000 46.62 2.74 49.36 74.00 -24.64 peak 150 5715.000 35.15 2.74 37.89 54.00 -16.11 AVG 150 5725.000 52.09 2.75 54.84 74.00 -19.16 peak 150 | (MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB) decidion (cm) (deg.) 5715.000 46.62 2.74 49.36 74.00 -24.64 peak 150 185 5715.000 35.15 2.74 37.89 54.00 -16.11 AVG 150 116 5725.000 52.09 2.75 54.84 74.00 -19.16 peak 150 310 | Report No.: ATE20191739 Page 72 of 84 ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: FRANK2019-W #553 Standard: FCC PK Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Vaxis wireless video system Mode: TX Channel 165(802.11N) Model: Vaxis Atom 500 Manufacturer: Hunan GM innovation technology Co., Ltd. Note: Report NO.:ATE20191739 Date: 19/12/16/ Time: 10/36/28 Engineer Signature: CHARLEY | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor
(dB) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | | |-----|----------------|------------------|----------------|--------------------|-------------------|----------------|----------|-------------|------------------|--------|--| | 1 | 5850.000 | 43.06 | 2.93 | 45.99 | 74.00 | -28.01 | peak | 200 | 106 | | | | 2 | 5850.000 | 33.12 | 2.93 | 36.05 | 54.00 | -17.95 | AVG | 250 | 321 | | | | 3 | 5860.000 | 41.61 | 2.95 | 44.56 | 74.00 | -29.44 | peak | 200 | 248 | | | | 4 | 5860.000 | 31.21 | 2.95 | 34.16 | 54.00 | -19.84 | AVG | 200 | 92 | | | ACCURATE TECHNOLOGY CO., LTD. Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Report No.: ATE20191739 Page 73 of 84 F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Polarization: Vertical Power Source: DC 7.4V Date: 19/12/16/ Time: 10/35/19 Engineer Signature: CHARLEY Distance: 3m Job No.: FRANK2019-W #552 Standard: FCC PK Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Vaxis wireless video system Mode: TX Channel 165(802.11N) Model: Vaxis Atom 500 Manufacturer: Hunan GM innovation technology Co., Ltd. Note: Report NO.:ATE20191739 | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor (dB) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | |-----|----------------|------------------|-------------|--------------------|-------------------|----------------|----------|-------------|------------------|--------| | 1 | 5850.000 | 49.80 | 2.93 | 52.73 | 74.00 | -21.27 | peak | 150 | 82 | | | 2 | 5850.000 | 40.45 | 2.93 | 43.38 | 54.00 | -10.62 | AVG | 150 | 195 | | | 3 | 5860.000 | 42.65 | 2.95 | 45.60 | 74.00 | -28.40 | peak | 150 | 103 | | | 4 | 5860.000 | 32.15 | 2.95 | 35.10 | 54.00 | -18.90 | AVG | 150 | 63 | | ## 13.IN BAND EMISSION ## 13.1.Block Diagram of Test Setup ## 13.2.For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. ## 13.3.EUT Configuration on Measurement The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application. ## 13.4. Operating Condition of EUT - 13.4.1. Setup the EUT and simulator as shown as Section 13.1. - 13.4.2. Turn on the power of all equipment. - 13.4.3.Let the EUT work in TX modes measure it. The transmit frequency is 5725-5850MHz. ## 13.5.Test Procedure - 13.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable. - 13.5.2.Set RBW of spectrum analyzer to 1000kHz and VBW to 3000kHz. ### 13.6. Test Result **PASS** ## SISO mode ## ANT 1(11A) 5745MHz ## ANT 2(11A) 5745MHz ANT 1(11A) 5825MHz ANT 2(11A) 5825MHz ANT 1(11N) 5745MHz ## ANT 2(11N) 5745MHz ANT 1(11N) 5825MHz ## ANT 2(11N) 5825MHz ### MIMO mode ## ANT 1(11N) 5745MHz ## ANT 2(11N) 5745MHz ## ANT 1(11N) 5825MHz ## ANT 2(11N) 5825MHz # 14.FREQUENCIES STABILITY ## 14.1.Block Diagram of Test Setup (EUT: Vaxis wireless video system) ## 14.2.EUT Configuration on Measurement Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user manual. ## 14.3. Operating Condition of EUT - 14.3.1. Setup the EUT and simulator as shown as Section 14.1. - 14.3.2. Turn on the power of all equipment. - 14.3.3.Let the EUT work in TX modes measure it. The transmit frequency are 5150-5250 and 5725-5850MHz. ## 14.4.Test Result | Test Conditions | Measured Frequency(MHz) 5180 | |----------------------------|------------------------------| | V nor(V) | 5180.0077 | | V max(V) | 5180.0081 | | V min(V) | 5180.0092 | | Max. Deviation Frequency | 0.0092 | | Max. Frequency Error (ppm) | 1.78 | Report No.: ATE20191739 Page 79 of 84 ## Frequency Error vs. Temperature: | Test Conditions (°C) | Measured Frequency(MHz) 5180 | |----------------------------|------------------------------| | -5 | 5180.0072 | | 5 | 5180.0055 | | 15 | 5180.0039 | | 25 | 5180.0081 | | 35 | 5180.0089 | | 45 | 5180.0051 | | 50 | 5180.0029 | | Max. Deviation Frequency | 0.0089 | | Max. Frequency Error (ppm) | 1.72 | | Test Conditions | Measured Frequency(MHz) 5825 | |----------------------------|------------------------------| | V nor(V) | 5825.0055 | | V max(V) | 5825.0047 | | V min(V) | 5825.0059 | | Max. Deviation Frequency | 0.0059 | | Max. Frequency Error (ppm) | 1.01 | # Frequency Error vs. Temperature: | Test Conditions (°C) | Measured Frequency(MHz) 5825 | |----------------------------|------------------------------| | -5 | 5825.0033 | | 5 | 5825.0051 | | 15 | 5825.0059 | | 25 | 5825.0062 | | 35 | 5825.0041 | | 45 | 5825.0062 | | 50 | 5825.0071 | | Max. Deviation Frequency | 0.0071 | | Max. Frequency Error (ppm) | 1.22 | 15. POWER LINE CONDUCTED MEASUREMENT ## 15.1.Block Diagram of Test Setup (EUT: Vaxis wireless video system) ### 15.2. Power Line Conducted Emission Measurement Limits | Frequency | Limit dB(μV) | | | | | |--------------|------------------|---------------|--|--|--| | (MHz) | Quasi-peak Level | Average Level | | | | | 0.15 - 0.50 | 66.0 – 56.0 * | 56.0 – 46.0 * | | | | | 0.50 - 5.00 | 56.0 | 46.0 | | | | | 5.00 - 30.00 | 60.0 | 50.0 | | | | NOTE1: The lower limit shall apply at the transition frequencies. NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz. ## 15.3. Configuration of EUT on Measurement The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application. ## 15.4. Operating Condition of EUT - 15.4.1. Setup the EUT and simulator as shown as Section 15.1. - 15.4.2. Turn on the power of all equipment. - 15.4.3.Let the EUT work in test mode and measure it. **Report No.: ATE20191739** Page 81 of 84 ### 15.5.Test Procedure The EUT is put on the plane 0.8 m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of
equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Measurement. The bandwidth of test receiver (R & S ESCS30) is set at 9kHz. The frequency range from 150kHz to 30MHz is checked. ### 15.6.DATA SAMPLE | Frequ | Quasi | Avera | Trans | QuasiP | Avera | Quasi | Avera | QuasiP | Averag | Remark | |-------|--------|--------|-------|--------|--------|--------|--------|--------|--------|-------------| | ency | Peak | ge | ducer | eak | ge | Peak | ge | eak | е | (Pass/Fail) | | (MHz) | Level | Level | value | Result | Result | Limit | Limit | Margin | Margin | | | | (dBμv) | (dBμv) | (dB) | (dBµv) | (dBμv) | (dBμv) | (dBμv) | (dB) | (dB) | | | X.XX | 29.4 | 18.3 | 11.1 | 40.5 | 29.4 | 56.0 | 56.0 | 15.5 | 16.6 | Pass | Transducer value = Insertion loss of LISN + Cable Loss Result = Quasi-peak Level/Average Level + Transducer value Limit = Limit stated in standard Calculation Formula: Margin = Limit – Reading level value – Transducer value ### 15.7. Power Line Conducted Emission Measurement Results #### PASS. The frequency range from 150kHz to 30MHz is checked. Emissions attenuated more than 20 dB below the permissible value are not reported. The spectral diagrams are attached as below. Report No.: ATE20191739 Page 82 of 84 #### ACCURATE TECHNOLOGY CO., LTD #### CONDUCTED EMISSION STANDARD FCC PART 15B EUT: Vaxis wireless video system M/N:Vaxis Atom 500 Hunan GM innovation technology Co., Ltd. Manufacturer: Operating Condition: WIFI OPERATION Test Site: 2#Shielding Room Operator: Frank Test Specification: N 120V/60Hz Report NO.:ATE20191739 Comment: Start of Test: 2019-12-6 / 9:57:10 SCAN TABLE: "V 150K-30MHz fin" Short Description: SUB STD VTERM2 1.70 Detector Meas. Start Stop Step IF Transducer Frequency Frequency Width Time Bandw. 150.0 kHz 30.0 MHz 4.5 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008 Average #### MEASUREMENT RESULT: "F-1739-3 fin" | 2019-12-6 | 9:58 | | | | | | | |--------------|--------|----------------------|----|--------------|----------|------|-----| | Frequen
M | - | rel Transd
BuV dB | | Margin
dB | Detector | Line | PE | | 0.3120 | 00 35. | 50 10.9 | 60 | 24.4 | QP | N | GND | | 0.4420 | 00 34. | 40 11.0 | 57 | 22.6 | QP | N | GND | | 1.4380 | 00 35. | 10 11.2 | 56 | 20.9 | QP | N | GND | | 3.2500 | 00 34. | 70 11.4 | 56 | 21.3 | QP | N | GND | | 10.6250 | 00 31. | 60 11.6 | 60 | 28.4 | QP | N | GND | | 19.8250 | 00 34. | 10 11.7 | 60 | 25.9 | QP | N | GND | ### MEASUREMENT RESULT: "F-1739-3_fin2" | | 9-12-6 9:5
Trequency
MHz | 8
Level
dBuV | Transd
dB | Limit
dBuV | Margin
dB | Detector | Line | PE | |---|--------------------------------|--------------------|--------------|---------------|--------------|----------|------|-----| | | 0.310000 | 22.60 | 10.9 | 50 | 27.4 | AV | N | GND | | | 0.564000 | 26.20 | 11.0 | 46 | 19.8 | AV | N | GND | | | 1.126000 | 31.30 | 11.2 | 46 | 14.7 | AV | N | GND | | | 2.125000 | 24.30 | 11.3 | 46 | 21.7 | AV | N | GND | | 1 | 1.070000 | 20.00 | 11.6 | 50 | 30.0 | AV | N | GND | | 2 | 0.240000 | 24.40 | 11.7 | 50 | 25.6 | ΑV | N | GND | ACCURATE TECHNOLOGY CO., LTD #### CONDUCTED EMISSION STANDARD FCC PART 15B EUT: Vaxis wireless video system M/N: Vaxis Atom 500 Hunan GM innovation technology Co., Ltd. Manufacturer: Operating Condition: WIFI OPERATION Test Site: 2#Shielding Room Frank Operator: Test Specification: L 120V/60Hz Report NO.:ATE20191739 2019-12-6 / 9:59:35 Comment: Start of Test: SCAN TABLE: "V 150K-30MHz fin" Short Description: SUB STD VTERM2 1.70 Detector Meas. IF Start Stop Step Transducer Bandw. Time Frequency Frequency Width 150.0 kHz 30.0 MHz 4.5 kH 4.5 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008 Average ### MEASUREMENT RESULT: "F-1739-4 fin" | PE | |-----| | GND | | 1 | ### MEASUREMENT RESULT: "F-1739-4 fin2" | 20 | 19-12-6 10:0 |)1 | | | | | | | |----|------------------|---------------|--------------|---------------|--------------|----------|------|-----| | | Frequency
MHz | Level
dBuV | Transd
dB | Limit
dBuV | Margin
dB | Detector | Line | PE | | | 0.150000 | 46.20 | 10.8 | 56 | 9.8 | AV | L1 | GND | | | 0.564000 | 38.00 | 11.0 | 46 | 8.0 | AV | L1 | GND | | | 1.128000 | 37.60 | 11.2 | 46 | 8.4 | AV | L1 | GND | | | 2.255000 | 36.60 | 11.3 | 46 | 9.4 | AV | L1 | GND | | | 10.930000 | 25.90 | 11.6 | 50 | 24.1 | AV | L1 | GND | | | 20.515000 | 27.90 | 11.7 | 50 | 22.1 | AV | L1 | GND | Report No.: ATE20191739 Page 84 of 84 # 16.ANTENNA REQUIREMENT ## 16.1. The Requirement According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. ## 16.2. Antenna Construction Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The maximum gain of each antenna is 2.5dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.