

TEST REPORT

APPLICANT	:	Shenzhen Sincodynamic Technology Co.,Ltd
PRODUCT NAME	:	ANC Headphone
MODEL NAME	:	BSNCH102BK-BMCYTKT BSNCH102WH-BMCYTKT B8-ANC B6-ANC
BRAND NAME	:	/
FCC ID	:	2AJO8-BSNCH102
STANDARD(S)	:	47 CFR Part 15 Subpart C
RECEIPT DATE	:	2023-02-09
TEST DATE	:	2023-02-09 to 2023-02-20
ISSUE DATE	:	2023-02-20

Edited by:

Len iaoy Zeng Xia bying (Rappo)

Approved by:

Shen Junsheng (Supervisor)

NOTE: This document is issued by Shenzhen Morlab Communications Technology Co., Ltd., the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

 Tel:
 86-755-36698555
 Fax:
 86-755-36698525

 Http://www.morlab.cn
 E-mail:
 service@morlab.cr

DIRECTORY

1. Technical Information 3
1.1. Applicant and Manufacturer Information 3
1.2. Equipment Under Test (EUT) Description 3
1.3. The Channel Number and Frequency 4
1.4. Test Standards and Results 5
1.5. Environmental Conditions 6
2. 47 CFR Part 15C Requirements 7
2.1. Antenna Requirement 7
2.2. Hopping Mechanism 7
2.3. Number of Hopping Frequency 8
2.4. Duty Cycle of Test Signal 11
2.5. Maximum Peak Conducted Output Power12
2.6. 20 dB Bandwidth 19
2.7. Carried Frequency Separation26
2.8. Time of Occupancy (Dwell time)29
2.9. Conducted Spurious Emissions42
2.10. Conducted Emission65
2.11. Restricted Frequency Bands 69
2.12. Radiated Emission 79
Annex A Test Uncertainty92
Annex B Testing Laboratory Information93

Change History			
Version	Date	Reason for change	
1.0	2023-02-20	First edition	

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	Shenzhen Sincodynamic Technology Co.,Ltd
Applicant Address:	Building 1 Changguang Industrial area AoBei Second Village Henggang town,Village Henggang town, Longgang District,
	Shenzhen, China
Manufacturer:	Shenzhen Sincodynamic Technology Co.,Ltd
	Building 1 Changguang Industrial area AoBei Second Village
Manufacturer Address:	Henggang town, Village Henggang town, Longgang District,
	Shenzhen, China

1.2. Equipment Under Test (EUT) Description

Product Name:	ANC Headphone	
Sample No.:	1#	
Hardware Version: V1.0		
Software Version: V1.0		
Equipment Type: Bluetooth classic		
Bluetooth Version:	5.2	
Modulation Type:	FHSS (GFSK(1Mbps), π/4-DQPSK(EDR 2Mbps),	
modulation Type.	8-DPSK(EDR 3Mbps))	
Operating Frequency Range:	2402MHz–2480MHz	
Antenna Type: PCB Antenna		
Antenna Gain:	-0.58dBi	

Note 1: We use the dedicated software to control the EUT continuous transmission.

Note 2: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

1.3. The Channel Number and Frequency

Note 1: The black bold channels were selected for test.

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 E-mail: service@morlab.cn Http://www.morlab.cn

Fax: 86-755-36698525

1.4. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C for the EUT FCC ID Certification:

No.	Identity	Document Title
1	47 CFR Part 15	Radio Frequency Devices
Test detailed items/section required by FCC rules and results are as below:		

No.	Section	Description	Test Date	Test Engineer	Result	Method Determination /Remark
1	15.203	Antenna Requirement	N/A	N/A	PASS	No deviation
2	15.247(a) 15.247(h)	Hopping Mechanism	N/A	N/A	PASS	No deviation
3	15.247(a)	Number of Hopping Frequency	Feb. 19, 2023	Zhong Yanshan	PASS	No deviation
4	ANSI C63.10	Duty Cycle	Feb. 19, 2023	Zhong Yanshan	PASS	No deviation
5	15.247(b)	Maximum Peak Conducted Output Power	Feb. 19, 2023	Zhong Yanshan	PASS	No deviation
6	15.247(b)	Maximum Average Conducted Output Power	Feb. 19, 2023	Zhong Yanshan	PASS	No deviation
7	15.247(a)	20dB Bandwidth	Feb. 19, 2023	Zhong Yanshan	PASS	No deviation
8	15.247(a)	Carrier Frequency Separation	Feb. 19, 2023	Zhong Yanshan	PASS	No deviation
9	15.247(a)	Time of Occupancy (Dwell time)	Feb. 19, 2023	Zhong Yanshan	PASS No deviation	
10	15.247(d)	Conducted Spurious Emission	Feb. 19, 2023	Zhong Yanshan	PASS	No deviation
11	15.207	Conducted Emission	Feb. 19, 2023	Wu Zhaoling	PASS	No deviation
12	15.247(d)	Restricted Frequency Bands	Feb. 19, 2023	Lin Jiayong	PASS	No deviation
13	15.209,	Radiated Emission	Feb. 19, 2023	Lin Jiayong	PASS	No deviation

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

	15.247(d)					
	13.247 (u)					
Note	1: The tests	were performed acco	ording to the met	hod of measurer	ments pres	scribed in ANSI
C63.	C63.10-2013, KDB558074 D01 v05r02 and DA 00-075.					
Note	2: The path	loss during the RF tes	st is calibrated to	correct the resu	ults by the	offset setting in
the test equipments. The Ref offset 10.83dB means the cable loss is 10.83dB.						
Note 3: Additions to, deviation, or exclusions from the method shall be judged in the "method						
deter	mination" co	lumn of add, deviate o	or exclude from th	ne specific metho	od shall be	e explained in the
"Remark" of the above table.						
Noto	A. When the	toot requit is a aritiga		aa tha maaaura	mont unoo	rtainty aive the

Note 4: When the test result is a critical value, we will use the measurement uncertainty give the judgment result based on the 95% confidence intervals.

1.5. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15-35
Relative Humidity (%):	30-60
Atmospheric Pressure (kPa):	86-106

2.47 CFR Part 15C Requirements

2.1. Antenna Requirement

2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Test Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

2.2. Hopping Mechanism

2.2.1. Requirement

According to FCC §15.247(a)(1), a frequency hopping spread spectrum system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

According to FCC §15.247(h), the incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

2.2.2. Result: Compliant

The hopping mechanism of the EUT is in compliance with the document "*Bluetooth core specification v5.2*".

2.3. Number of Hopping Frequency

2.3.1. Requirement

According to FCC §15.247(a)(1)(iii), frequency hopping systems operating in the 2400MHz to 2483.5MHz bands shall use at least 15 hopping frequencies.

2.3.2. Test Description

Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set through the coupler; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

2.3.3. Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation

RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize

2.3.4. Test Result

A. Test Verdict:

Test Mode	Frequency Block (MHz)	Measured Channel Numbers	Min. Limit	Verdict
GFSK	2400 - 2483.5	79	15	PASS
π/4-DQPSK	2400 - 2483.5	79	15	PASS
8-DPSK	2400 - 2483.5	79	15	PASS

B. Test Plot:

(GFSK)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 E-mail: service@morlab.cn Http://www.morlab.cn

Fax: 86-755-36698525

(π/4-DQPSK)

(8-DPSK)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

2.4. Duty Cycle of Test Signal

2.4.1. Requirement

Preferably, all measurements of maximum conducted (average) output power will be performed with the EUT transmitting continuously (i.e., with a duty cycle of greater than or equal to 98%). When continuous operation cannot be realized, then the use of sweep triggering/signal gating techniques can be used to ensure that measurements are made only during transmissions at the maximum power control level. Such sweep triggering/signal gating techniques will require knowledge of the minimum transmission duration (T) over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Sweep triggering/signal gating techniques can then be used if the measurement/sweep time of the analyzer can be set such that it does not exceed T at any time that data are being acquired (i.e., no transmitter OFF-time is to be considered).

When continuous transmission cannot be achieved and sweep triggering/signal gating cannot be implemented, alternative procedures are provided that can be used to measure the average power; however, they will require an additional measurement of the transmitter duty cycle (D). Within this sub clause, the duty cycle refers to the fraction of time over which the transmitter is ON and is transmitting at its maximum power control level. The duty cycle is considered to be constant if variations are less than $\pm 2\%$; otherwise, the duty cycle is considered to be nonconstant.

2.4.2. Test Description

Test Setup:

ANSI C63.10 2013 Clause 11.6 was used in order to prove compliance.

2.4.3. Test Result

Test Mode	Duty Cycle (%)
	(D)
GFSK	79.66
π/4-DQPSK	79.66
8-DPSK	79.66

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.5. Maximum Peak Conducted Output Power

2.5.1. Requirement

According to FCC §15.247(b)(1), for frequency hopping systems that operates in the 2400MHz to 2483.5MHz band employing at least 75 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1Watt. For all other frequency hopping systems in the 2400MHz to 2483.5MHz band, it is 0.125Watts.

2.5.2. Test Description

Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set through the coupler; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

2.5.3. Test Result

GFSK Mode

A. Test Verdict:

Channel	Frequency	Measured Outp	Measured Output Peak Power Limit		nit	Vordiot
Channel	(MHz)	dBm	W	dBm	W	verdict
0	2402	1.05	0.0013			PASS
39	2441	1.48	0.0014	20.96	0.125	PASS
78	2480	1.53	0.0014			PASS

B. Test Plot:

(Channel 0, GFSK)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Keysight Spe X/RL Center F	ectrum Analyzer - Swept SA RF 50 Ω DC req 2.4410000000	GHz PNO: Fast ↔→ IFGain:Low #A1	SENSE:INT g: Free Run ten: 40 dB	#Avg Type Avg Hold:	ALIGN AUTO E: RMS 100/100	07:31:54 PM TRACI TYP DE	Jan 25, 2023 1 2 3 4 5 6 M WWWWW P P P P P P P	Fr	equency
10 dB/div	Ref Offset 10.78 dB Ref 30.00 dBm				Mkr1	2.440 8 1.48	64 GHz 31 dBm		Auto Tun
20.0								(2.44	Center Fre
0.00 0.00			↓ ¹					2.43	Start Fre 7000000 GI
10.0 20.0							and a start of the	2.44	Stop Fr 5000000 Gi
40.0								<u>Auto</u>	CF Sto 800.000 k M
0.0									Freq Offs 0
60.0									Scale Ty
enter 2.4 Res BW	441000 GHz 3.0 MHz	#VBW 8.0	MHz	ş	Sweep 1	Span 8. .000 ms (′	000 MHz 1001 pts)	Log	<u> </u>

(Channel 39, GFSK)

(Channel 78, GFSK)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

$\pi/4$ -DQPSK Mode

A. Test Verdict:

Channel	Frequency	Measured Outp	Measured Output Peak Power Limit		nit	Vardiat
Channel	(MHz)	dBm	W	dBm	W	verdict
0	2402	1.80	0.0015			PASS
39	2441	2.18	0.0016	20.96	0.125	PASS
78	2480	2.25	0.0017			PASS

B. Test Plot:

(Channel 0, π/4-DQPSK)

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn E-mail: service@morlab.cn

(Channel 39, π/4-DQPSK)

(Channel 78, π/4-DQPSK)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Fax: 86-755-36698525 E-mail: service@morlab.cn

8-DPSK Mode

A. Test Verdict:

Channel	Frequency	Measured Outp	Measured Output Peak Power Limit		nit	Vordiot
Channel	(MHz)	dBm	W	dBm	W	verdict
0	2402	2.15	0.0016			PASS
39	2441	2.55	0.0018	20.96	0.125	PASS
78	2480	2.68	0.0019			PASS

B. Test Plot:

(Channel 0, 8-DPSK)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

(Channel 39, 8-DPSK)

(Channel 78, 8-DPSK)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Fax: 86-755-36698525 E-mail: service@morlab.cn

2.6. 20 dB Bandwidth

2.6.1. Definition

According to FCC 15.247(a)(1), the 20 dB bandwidth is known as the 99% emission bandwidth, or 20 dB bandwidth ($10*\log 1\% = 20$ dB) taking the total RF output power.

2.6.2. Test Description

Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set through the coupler; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

2.6.3. Test Procedure

Use the following spectrum analyzer settings: Span = between 2 to 5 times the OBW, centered on the test channel RBW= 1% to 5% of the OBW $VBW \ge 3 \times RBW$ Sweep = auto Detector function = peak Trace = max hold

2.6.4. Test Result

GFSK Mode

A. Test Verdict:

Channel	Frequency (MHz)	20 dB Bandwidth (MHz)	Result
0	2402	1.023	PASS
39	2441	1.032	PASS
78	2480	1.032	PASS

B. Test Plot:

(Channel 0, GFSK)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525 E-mail: service@morlab.cn

Http://www.morlab.cn

(Channel 39, GFSK)

(Channel 78, GFSK)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

π/4-DQPSK Mode

A. Test Verdict:

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Result
0	2402	1.329	PASS
39	2441	1.350	PASS
78	2480	1.323	PASS

B. Test Plot:

Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω DC	SENSE:INT	ALIGN AUTO	06:51:23 PM Jan 25, 2023	
enter Freq 2.40200000	PNO: Wide ↔ Trig: Free Run IFGain:Low #Atten: 40 dB	#Avg Type: RMS Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE M WWWW DET P P P P P P	Frequency
Ref Offset 10.83 dB) dB/div Ref 30.00 dBm	3	ΔΝ	/kr3 1.329 MHz 0.493 dB	Auto Tun
Pg 0.0 0.0 0.0				Center Fre 2.402000000 GH
0.0 0.0 0.0	An market	wwwwwy13∆1	-24.14 obin	Start Fre 2.400500000 G⊦
0.0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				Stop Fre 2.403500000 GH
enter 2.402000 GHz Res BW 20 kHz	#VBW 62 kHz	Sweep 2	Span 3.000 MHz .333 ms (1001 pts)	CF Ste 300.000 kH
R MODE TRC SCL X 1 N 1 f 2.40 2 N 1 f 2.40 3 Δ1 f 2.40 4 5 6 6	Y F D1 358 GHz -24.685 dBm 02 024 GHz -4.143 dBm 1.329 MHz (Δ) 0.493 dB	UNCTION FUNCTION WIDTH	FUNCTION VALUE	Freq Offs 0 F
7				Scale Typ
1			-	

(Channel 0, π/4-DQPSK)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 E-mail: service@morlab.cn

Fax: 86-755-36698525

Http://www.morlab.cn

(Channel 39, π/4-DQPSK)

(Channel 78, π/4-DQPSK)

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

8-DPSK Mode

A. Test Verdict:

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Result
0	2402	1.281	PASS
39	2441	1.383	PASS
78	2480	1.287	PASS

B. Test Plot:

(Channel 0, 8-DPSK)

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn E-mail: service@morlab.cn

(Channel 39, 8-DPSK)

(Channel 78, 8-DPSK)

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

2.7. Carried Frequency Separation

2.7.1. Definition

According to FCC §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

2.7.2. Test Description

Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set through the coupler; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

2.7.3. Test Procedure

The EUT must have its hopping function enabled. According to DA 00-705, use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span

Video (or Average) Bandwidth (VBW) ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

2.7.4. Test Result

A. Test Verdict:

	Carried Frequency		
Test Mode	Separation	Min. Limit	Verdict
	(MHz)		
GFSK	1.094	≥1.032	PASS
π/4-DQPSK	1.13	≥0.900	PASS
8-DPSK	1.233	≥0.922	PASS

B. Test Plot:

(GFSK)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn E-mail: service@morlab.cn

(π/4-DQPSK)

 Tel:
 86-755-36698555
 Fax:
 86-755-36698525

 Http://www.morlab.cn
 E-mail:
 service@morlab.cn

2.8. Time of Occupancy (Dwell time)

2.8.1. Requirement

According to FCC §15.247(a) (1) (iii), frequency hopping systems in the 2400 - 2483.5MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

2.8.2. Test Description

Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set through the coupler; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

2.8.3. Test Procedure

Normal Mode:

DH1: Dwell time equal to Pulse time (ms) (1600 / 2 / 79) 31.6 Millisecond DH3: Dwell time equal to Pulse time (ms) (1600 / 4 / 79) 31.6 Millisecond DH5: Dwell time equal to Pulse Time (ms) (1600 / 6 / 79) 31.6 Millisecond

AFH Mode:

DH1: Dwell time equal to Pulse time (ms) (800 / 2 / 20)(0.4 + 20) Millisecond DH3: Dwell time equal to Pulse time (ms) (800 / 4 / 20)(0.4 + 20) Millisecond DH5: Dwell time equal to Pulse Time (ms) (800 / 6 / 20)(0.4 + 20) Millisecond.

2.8.4. Test Result

GFSK Mode

A. Test Verdict:

TestMode	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Нор	0.37	330	0.124	≤0.4	PASS
DH3	Нор	1.63	150	0.245	≤0.4	PASS
DH5	Нор	2.88	80	0.23	≤0.4	PASS

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

(DH1, GFSK)

Tel: 86-755-36698555 F Http://www.morlab.cn E

Fax: 86-755-36698525

(DH3, GFSK)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

(DH5, GFSK)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

π/4-DQPSK Mode

A. Test Verdict:

TestMode	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
2DH1	Нор	0.38	320	0.123	≤0.4	PASS
2DH3	Нор	1.64	200	0.327	≤0.4	PASS
2DH5	Нор	2.88	100	0.288	≤0.4	PASS

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

Page 34 of 95

(DH1, π/4-DQPSK)

Tel: 86-755-36698555

Fax: 86-755-36698525 E-mail: service@morlab.cn

Http://www.morlab.cn

(DH3, π/4-DQPSK)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

(DH5, π/4-DQPSK)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

8-DPSK mode

A. Test Verdict:

TestMode	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
3DH1	Нор	0.39	320	0.123	≤0.4	PASS
3DH3	Нор	1.64	190	0.311	≤0.4	PASS
3DH5	Нор	2.89	120	0.346	≤0.4	PASS

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

B. Test Plot:

(DH1, 8-DPSK)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

(DH3, 8-DPSK)

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

(DH5, 8-DPSK)

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

2.9. Conducted Spurious Emissions

2.9.1. Requirement

According to FCC §15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.9.2. Test Description

Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set through the coupler; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

2.9.3. Test Procedure

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100 kHz $\vee BW \ge RBW$ Sweep = auto Detector function = peakTrace = max hold

Allow the trace to stabilize.

2.9.4. Test Result

Conducted Spurious Emission

A. Test Verdict:

TestMode	Channel	FreqRange	RefLevel	Result	Limit	Verdict
		[MHz]	[dBm]	[dBm]	[dBm]	
GFSK	2402	Reference	0.35	0.35		PASS
		30~1000	0.35	-55.65	≤-19.65	PASS
		1000~26500	0.35	-39.55	≤-19.65	PASS
	2441	Reference	1.03	1.03		PASS
		30~1000	1.03	-56.46	≤-18.97	PASS
		1000~26500	1.03	-39.53	≤-18.97	PASS
	2480	Reference	0.97	0.97		PASS
		30~1000	0.97	-56.51	≤-19.03	PASS
		1000~26500	0.97	-37.54	≤-19.03	PASS
π/4-DQPSK	2402	Reference	0.29	0.29		PASS
		30~1000	0.29	-55.87	≤-19.71	PASS
		1000~26500	0.29	-43.51	≤-19.71	PASS
	2441	Reference	0.80	0.80		PASS
		30~1000	0.80	-56.53	≤-19.2	PASS
		1000~26500	0.80	-41.3	≤-19.2	PASS
	2480	Reference	-0.50	-0.50		PASS
		30~1000	-0.50	-58.04	≤-20.5	PASS
		1000~26500	-0.50	-36.38	≤-20.5	PASS
8-DPSK	2402	Reference	-0.13	-0.13		PASS
		30~1000	-0.13	-57.04	≤-20.13	PASS
		1000~26500	-0.13	-40.49	≤-20.13	PASS
	2441	Reference	0.47	0.47		PASS
		30~1000	0.47	-56.11	≤-19.53	PASS
		1000~26500	0.47	-43.09	≤-19.53	PASS
	2480	Reference	0.26	0.26		PASS
		30~1000	0.26	-55.96	≤-19.74	PASS
		1000~26500	0.26	-39.03	≤-19.74	PASS

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Fax: 86-755-36698525

B. Test Plot:

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn E-mail: service@morlab.cn

- --

Tel: 86-755-36698555 Http://www.morlab.cn

Fax: 86-755-36698525

rlab.cn E-mail: service@morlab.cn

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Tel: 86-755-36698555 F Http://www.morlab.cn E

Fax: 86-755-36698525