

Global United Technology Services Co., Ltd.

Report No.: GTS202206000307F01

TEST REPORT

Applicant:	AeroGrow International, Inc.				
Address of Applicant:	6075 Longbow Dr. Suite #200, Boulder, Colorado 80301, United States				
Manufacturer:	AeroGrow International, Inc.				
Address of Manufacturer: Factory:	6075 Longbow Dr. Suite #200, Boulder, Colorado 80301, United States Zhangzhou iHastek Inc.				
Address of Factory:	No. 10, Jinda Road, Wanlida Industry Zone,Jinfeng Industrial Estate, Zhangzhou, Fujian, China				
Equipment Under Test (E	EUT)				
Product Name:	AeroGarden Tabletop Grow Light				
Model No.:	AGTB1001, AGTB1002				
Trade Mark:	AeroGarden				
FCC ID:	2AJNO-AGTB100				
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247				
Date of sample receipt:	June 30, 2022				
Date of Test:	June 30, 2022-July 13, 2022				
Date of report issued:	July 14, 2022				
Test Result :	PASS *				

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	July 14, 2022	Original

ger Cha **Prepared By:** Date: July 14, 2022 Project Engineer oppinson (m) Check By: Date: July 14, 2022 Reviewer

GTS

Report No.: GTS202206000307F01

3 Contents

		Pa	ge
1	cov		1
2	VER	SION	. 2
3	CON	ITENTS	. 3
4	TES	T SUMMARY	4
5	GEN	ERAL INFORMATION	. 5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	-
	5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4	DEVIATION FROM STANDARDS	
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6	TEST FACILITY	
	5.7 5.8	TEST LOCATION	
6	TES	T INSTRUMENTS LIST	. 8
7	TEO	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5	Power Spectral Density	
	7.6 7.6.1	SPURIOUS EMISSION IN NON-RESTRICTED & RESTRICTED BANDS	
	7.0.1		
	TIOL		
8	TES	T SETUP PHOTO	33
•	EUT.	CONSTRUCTIONAL DETAILS	
9	EUI	CONSTRUCTIONAL DETAILS	33

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Frequency Range	Measurement Uncertainty	Notes
9kHz-30MHz	3.1dB	(1)
30MHz-200MHz	3.8039dB	(1)
200MHz-1GHz	3.9679dB	(1)
1GHz-18GHz	4.29dB	(1)
18GHz-40GHz	3.30dB	(1)
0.15MHz ~ 30MHz	3.44dB	(1)
	9kHz-30MHz 30MHz-200MHz 200MHz-1GHz 1GHz-18GHz 18GHz-40GHz	9kHz-30MHz 3.1dB 30MHz-200MHz 3.8039dB 200MHz-1GHz 3.9679dB 1GHz-18GHz 4.29dB 18GHz-40GHz 3.30dB

5 General Information

5.1 General Description of EUT

Product Name:	AeroGarden Tabletop Grow Light			
Model No.:	AGTB1001, AGTB1002			
Test Model No.:	AGTB1001			
	identical in the same PCB layout, interior structure and electrical are the model name and the enclosure color of appliance.			
Test sample(s) ID:	GTS202206000307-1			
Sample(s) Status:	Engineer sample			
Serial No.:	AGTB1001/2			
Operation Frequency:	2402MHz~2480MHz			
Channel Numbers:	40			
Channel Separation:	2MHz			
Modulation Type:	GFSK			
Antenna Type:	PCB Antenna			
Antenna Gain:	0dBi(declare by applicant)			
Power Supply:	Adapter 1:			
	Class 2 power supply			
	Model: XH1200-1200L			
	Input: AC 100-240V, 50/60Hz, 0.5A			
	Output: DC 12.0V, 1.20A			
	Adapter 2:			
	Class 2 power supply			
	Model: IVP1200-1200			
	Input: AC 100-240V, 50/60Hz, 0.5A			
	Output: DC 12.0V, 1.20A			

Remark: Both 2 adapters were tested and compliance, only adapter 1 test result shows in report

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode

mode Keep the EUT in continuously transmitting mode.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC—Registration No.: 381383

Designation Number: CN5029 Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC — Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at: Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software	ftware Test software provided by manufacturer		
Power level setup	Default		

6 Test Instruments list

Rad	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 23 2022	June. 22 2023		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 23 2022	June. 22 2023		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 23 2022	June. 22 2023		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 23 2022	June. 22 2023		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	June. 23 2022	June. 22 2023		
9	Coaxial Cable	GTS	N/A	GTS211	June. 23 2022	June. 22 2023		
10	Coaxial cable	GTS	N/A	GTS210	June. 23 2022	June. 22 2023		
11	Coaxial Cable	GTS	N/A	GTS212	June. 23 2022	June. 22 2023		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 23 2022	June. 22 2023		
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 23 2022	June. 22 2023		
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 23 2022	June. 22 2023		
15	Band filter	Amindeon	82346	GTS219	June. 23 2022	June. 22 2023		
16	Power Meter	Anritsu	ML2495A	GTS540	June. 23 2022	June. 22 2023		
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 23 2022	June. 22 2023		
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 23 2022	June. 22 2023		
19	Splitter	Agilent	11636B	GTS237	June. 23 2022	June. 22 2023		
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 23 2022	June. 22 2023		
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 17 2021	Oct. 16 2022		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 17 2021	Oct. 16 2022		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 17 2021	Oct. 16 2022		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 23 2022	June. 22 2023		

Con	Conducted Emission								
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.14 2022	May.13 2025			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 23 2022	June. 22 2023			
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 23 2022	June. 22 2023			
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 23 2022	June. 22 2023			
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A			
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
7	Thermo meter	KTJ	TA328	GTS233	June. 23 2022	June. 22 2023			
8	Absorbing clamp	Absorbing clamp Elektronik- Feinmechanik		GTS229	June. 23 2022	June. 22 2023			
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	June. 23 2022	June. 22 2023			
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	July. 08 2022	July. 07 2023			

RF C	RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 23 2022	June. 22 2023			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 23 2022	June. 22 2023			
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 23 2022	June. 22 2023			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 23 2022	June. 22 2023			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 23 2022	June. 22 2023			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 23 2022	June. 22 2023			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 23 2022	June. 22 2023			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 23 2022	June. 22 2023			

Gene	ral used equipment:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 23 2022	June. 22 2023
2	Barometer	ChangChun	DYM3	GTS255	June. 23 2022	June. 22 2023

Global United Technology Services Co., Ltd. No. 123- 128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

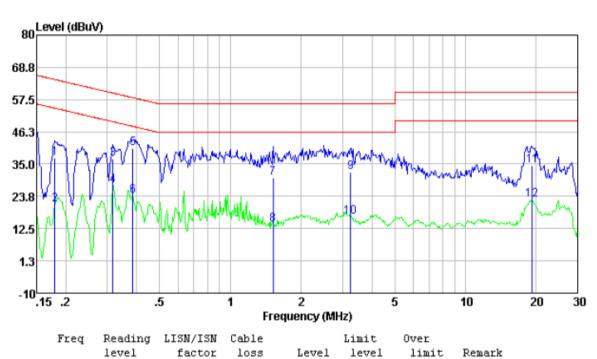
7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
15.203 requirement:	
responsible party shall be us antenna that uses a unique	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit n be replaced by the user, but the use of a standard antenna jack or bited.
15.247(c) (1)(i) requiremen	t:
operations may employ trans	2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point smitting antennas with directional gain greater than 6dBi provided the power of the intentional radiator is reduced by 1 dB for every 3 dB that the na exceeds 6dBi.
E.U.T Antenna:	
The antenna is PCB antenn	na, reference to the appendix II for details

7.2 Conducted Emissions

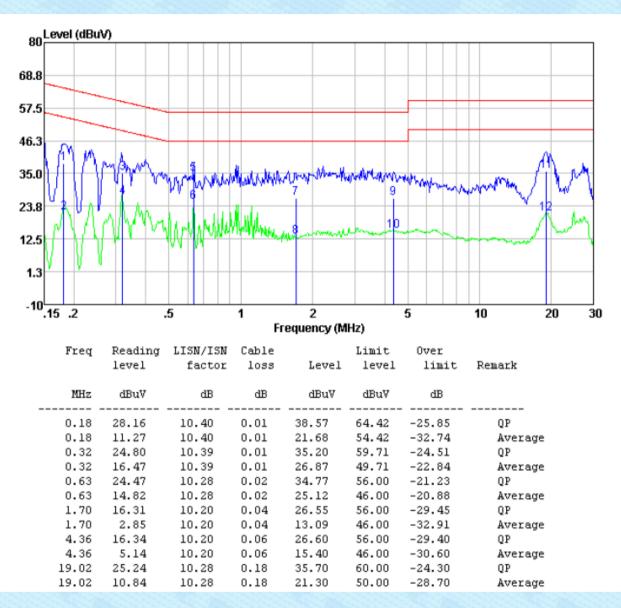
Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10:2013			
Test Frequency Range:	150KHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto		
Limit:	Frequency range (MHz)	Limit	(dBuV)	
		Quasi-peak		rage
	0.15-0.5	66 to 56*		0 46*
	0.5-5 5-30	56 60		6 0
	* Decreases with the logarithr			
Test setup:	Reference Plane			
Test procedure:	LISN 40cm 80cm AUX Equipment E.U.T Fequipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 8m 1. The E.U.T and simulators a	EMI Receiver	nower main power	through a
	 line impedance stabilization 50ohm/50uH coupling imped The peripheral devices are LISN that provides a 50ohr termination. (Please refer t photographs). Both sides of A.C. line are interference. In order to fine positions of equipment and according to ANSI C63.10: 	n network (L.I.S.N.). edance for the measuralso connected to the n/50uH coupling imported to the block diagram checked for maximud the maximum emisting all of the interface contents	This provides uring equipm he main powe edance with of the test se m conducted ssion, the rela- ables must b	s a hent. er through a 50ohm etup and d tive be changed
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test environment:	Temp.: 25 °C Hun	nid.: 52%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz			
Test results:	Pass			
1001100010.	. 400			


Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data

Report No.: GTS202206000307F01

Pre-scan all test modes, found worst case at 2480MHz, and so only show the test result of 2480MHz, **Line:**



MHz	dBuV	dB	dB	dBu∛	dBuV	dB	
0.18	26.75	10.40	0.01	37.16	64.50	-27.34	QP
0.18	10.34	10.40	0.01	20.75	54.50	-33.75	Average
0.32	26.37	10.39	0.01	36.77	59.80	-23.03	QP
0.32	17.22	10.39	0.01	27.62	49.80	-22.18	Average
0.39	29.96	10.36	0.01	40.33	58.17	-17.84	QP
0.39	13.37	10.36	0.01	23.74	48.17	-24.43	Average
1.52	19.90	10.20	0.04	30.14	56.00	-25.86	QP
1.52	3.79	10.20	0.04	14.03	46.00	-31.97	Average
3.24	21.85	10.20	0.05	32.10	56.00	-23.90	QP
3.24	6.48	10.20	0.05	16.73	46.00	-29.27	Average
19.22	24.01	10.29	0.18	34.48	60.00	-25.52	QP
19.22	11.97	10.29	0.18	22.44	50.00	-27.56	Average

GTS

Neutral:

Report No.: GTS202206000307F01

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Report No.: GTS202206000307F01

7.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	>500KHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

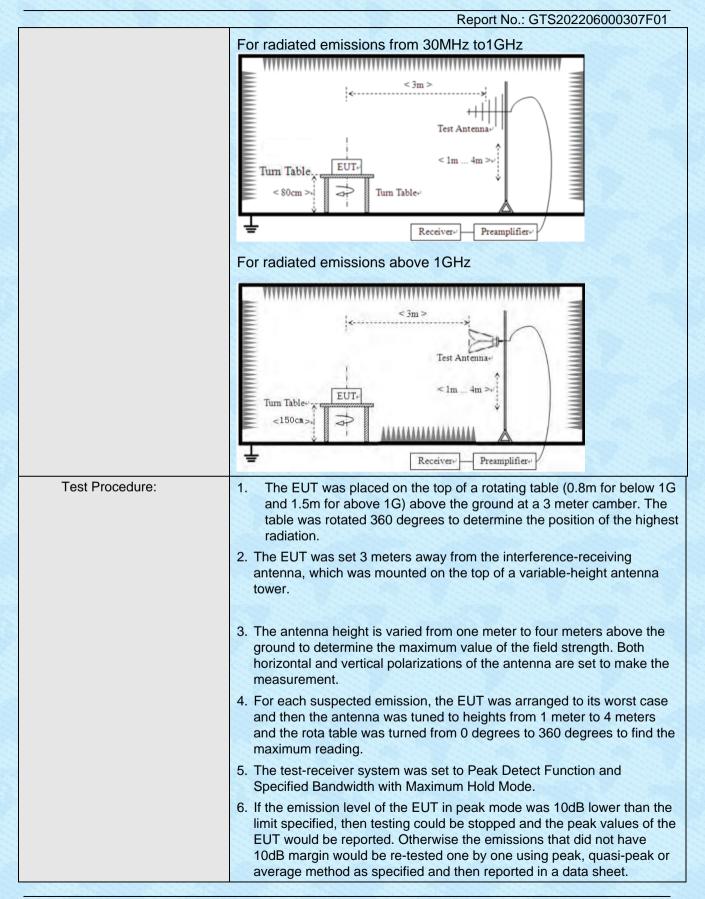
7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	8dBm/3kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

7.6 Spurious Emission in Non-restricted & restricted Bands

Test Requirement: FCC Part15 C Section 15.247 (d) Test Method: ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02 Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer E.U.T Non-Conducted Table **Ground Reference Plane Test Instruments:** Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test results: Pass

7.6.1 Conducted Emission Method


GTS

7.6.2 Radiated Emission Meth	100						
Test Requirement:	FCC Part15 C Section	on 15	5.209				
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	9kHz to 25GHz					-	
Test site:	Measurement Distar	nce: 3	3m				
Receiver setup:	Frequency	D	etector	RB\	N	VBW	Value
	9KHz-150KHz	Qu	asi-peak	200	Ηz	600Hz	Quasi-peak
	150KHz-30MHz	Qu	asi-peak	9K⊢	łz	30KHz	Quasi-peak
	30MHz-1GHz	Qu	asi-peak	120K	Hz	300KHz	Quasi-peak
	Above 1GHz		Peak	1MF	łz	3MHz	Peak
			Peak	1MF	łz	10Hz	Average
Limit:	Frequency		Limit (u∨	′/m)	1	/alue	Measurement Distance
	0.009MHz-0.490M	Hz	2400/F(K	(Hz)	QF	P/PK/AV	300m
	0.490MHz-1.705M	Hz	24000/F(I	KHz)		QP	30m
	1.705MHz-30MH		30			QP	30m
	30MHz-88MHz		100			QP	
	88MHz-216MHz		150			QP	
	216MHz-960MH	z	200			QP	3m
	960MHz-1GHz		500			QP	
	Above 1GHz		500			verage	
			5000			Peak	
Test setup:	For radiated emiss	ions	from 9kH	z to 30	MH:	z	_
	Tum Table	ninga I	< 3m > Test A um Table+	ntenna Im)		

7.6.2 Radiated Emission Method

Global United Technology Services Co., Ltd. No. 123- 128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

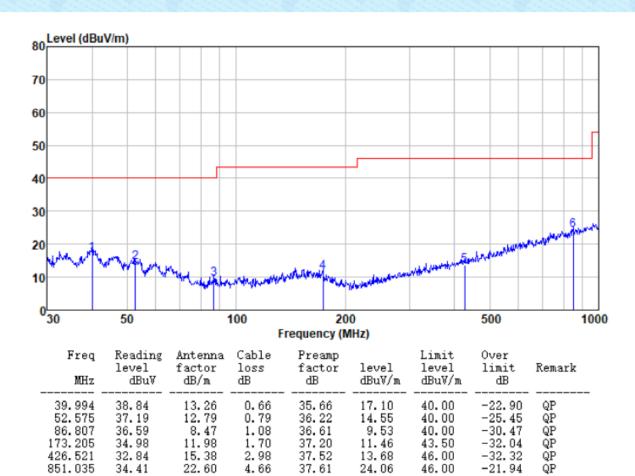
Global United Technology Services Co., Ltd. No. 123- 128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

				Report No.: (GTS2022060	00307F01
Test Instruments:	Refer to see	ction 6.0 for c	letails			
Test mode:	Refer to see	ction 5.2 for c	letails			
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 6	0Hz				
Test results:	Pass					

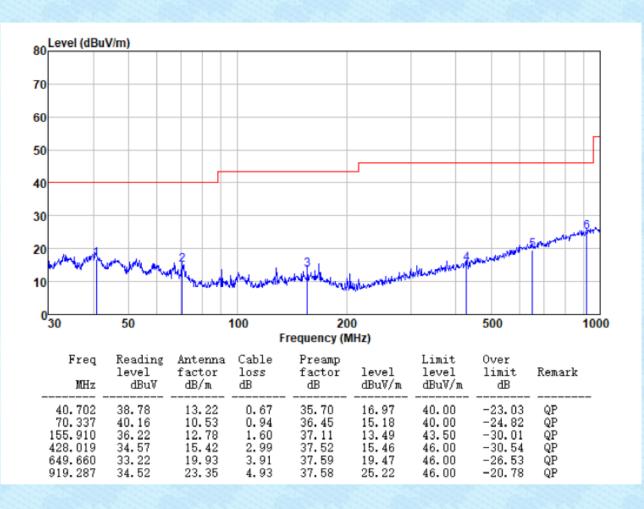
Measurement data:

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

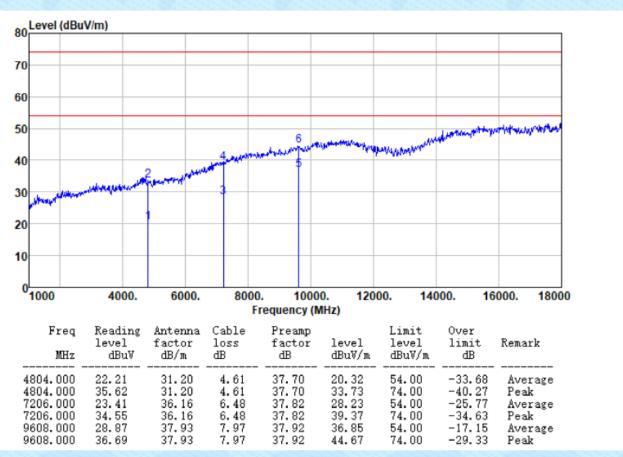

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


Below 1GHz

Pre-scan all test modes, found worst case at 2480MHz, and so only show the test result of 2480MHz **Horizontal:**

Vertical:



Report No.: GTS202206000307F01

Above 1GHz

Unwanted Emissions in Restricted Frequency Bands

Test channel:	Lowest	Polarization:	Horizontal

Report No.: GTS202206000307F01

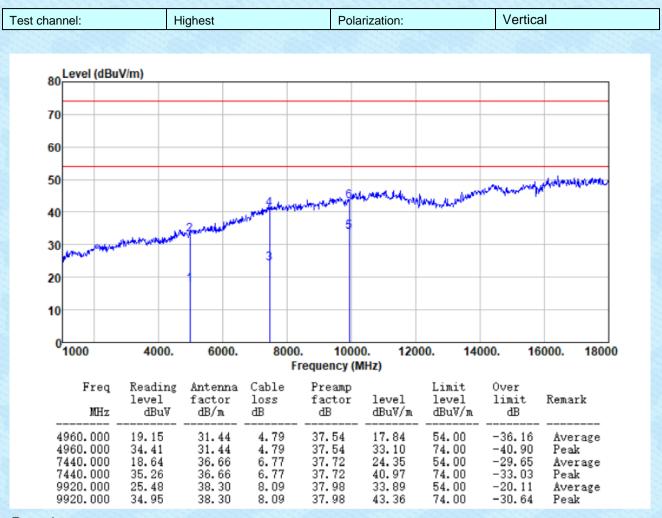
		Vertica		larization:	Po		owest	L	nnel:
								V/m)	Level (dBu
topological and the second s	orthe name of the part	philliphia and a starting for	للمعلى	Malhan .	6				
			the work which we want the	- A CONTRACTOR OF CALLER	- and a share of	1 may marked			
					Ĭ			harry and the second	
									and the second second
18000	000 190	160	00 140	0 120	100	8000	0003	4000	1000
10000	. 100	. 100	. 140		requency (0000.	4000.	1000
:	Remark	Over limit dB	Limit level dBu∛/m	level dBu∛/m	Preamp factor dB	Cable loss dB	Antenna factor dB/m	Reading level dBuV	Freq MHz
age	Average Peak Average Peak	-33.23 -40.12 -26.94 -33.45	54.00 74.00 54.00 74.00	20.77 33.88 27.06 40.55	37.70 37.70 37.82 37.82	4.61 4.61 6.48 6.48	31.20 31.20 36.16 36.16	22.66 35.77 22.24 35.73	804.000 804.000 206.000 206.000
ige		-17.31	54.00	36.69	37.92	7.97	37.93	28.71	608.000
1	000. 1 Remark Averag Peak Averag Peak	0. 160 Over limit dB -33.23 -40.12 -26.94	Limit level dBuV/m 54.00 74.00 54.00	00. 120 MHz) 1evel dBu∛/m 20.77 33.88 27.06	0. 1000 Frequency (Preamp factor dB 37.70 37.70 37.82	8000 F Cable loss dB 4.61 4.61 6.48	6000. Antenna factor dB/m 31.20 31.20 36.16	4000. Reading level dBuV 22.66 35.77 22.24	1000 Freq MHz 804.000 804.000 206.000

Report No.: GTS202206000307F01

t channel:		Middle		Pol	arization:		Horizo	ontal
80 Level (dBu	V/m)							
70								
60								
50								
00			4 martines	AND	uport another los	When an he was	and the second start of th	on the public of the start of the
						a second s		
40		2 contraction	- With a low to a low	5				
	and the second	2 milenter averal	agented and a second	5				
	مايين وماير المراجع والمراجع والم	Content to a cont	Sarred a horard	5				
30 	hatan na an		3	5				
30 Martin America	hater in the part of the		3	5				
30 	4000.	6000.	3	5 0. 1000	0. 1200			5000. 18000
30 20 10	4000. Reading	6000. Antenna	8000 F Cable	0. 1000 Frequency (N Preamp	ю. 1200 ИНz)	00. 140 Limit	000. 16 Over	5000. 18000
30 20 10 0 1000	4000.	6000.	3 3 800(5 0. 1000 Frequency (M	0. 1200	00. 140	00. 16	
30 20 10 0 1000 Freq MHz 4880.000	4000. Reading level dBuV 19.63	6000. Antenna factor dB/m 	8000 F Cable loss dB 4.69	0. 1000 Frequency (N Preamp factor dB 37.62	0. 1200 MHz) 	00. 140 Limit level dBuV/m 54.00	000. 16 Over limit dB 	6000. 18000 Remark Average
30 20 10 0 1000 Freq MHz	4000. Reading level dBuV	6000. Antenna factor dB/m	8000 F Cable loss dB	0. 1000 Frequency (N Preamp factor dB	0. 1200 MHz) level dBuV/m	00. 140 Limit level dBuV/m	000. 16 Over limit dB	5000. 18000 Remark

Report No.: GTS202206000307F01

channel:		Middle		Po	olarization:		Verti	ical
Level (dBu	V/m)							
80								
70								
50								
50				6	. Liber		and a start of the start of the	annihilitetet frankrike
40			Andhan	All and a start of the start of the	munihality	Maryalangeller		
10			-	5				
		2 Martin Martin						
30	مار ويودو مرد	2 (phylouthat a fairly	3					
30	guaman, anu dat f ^{rid}	2 lphy-martinetic hards	3					
30 20	guninger geringer f ^{ere} s	200 - Contraction of the second	3					
30 potential 20	an a	2 to the second se	3					
10								
10	4000.	6000.	8000). 1000		00. 140	000. 16	6000. 1800
0 1000	4000.		8000). 1000 requency (N		00. 140 Limit	000. 16 Over	6000. 1800
20 10 0 1000 Freq	4000. Reading level	6000. Antenna factor	8000 Fi Cable loss). 1000 requency (N Preamp factor	MH z) level	Limit level	Over limit	6000. 1800 Remark
20 10 0 1000 Freq MHz	4000. Reading level dBuV	6000. Antenna factor dB/m	8000 Fi Cable loss dB). 1000 requency (N Preamp factor dB	/Hz) level dBuV/m 	Limit level dBuV/m	Over limit dB	Remark
20 10 0 1000 Freq MHz 4880.000 4880.000	4000. Reading level dBuV 21.46 35.54	6000. Antenna factor dB/m 31.31 31.31	8000 Fi Cable loss dB 4.69 4.69	0. 1000 requency (N factor dB 37.62 37.62	1evel dBuV/m 19.84 33.92	Limit level dBuV/m 54.00 74.00	Over limit dB -34.16 -40.08	Remark Average Peak
20 10 0 1000 Freq MHz 4880.000	4000. Reading level dBuV 21.46	6000. Antenna factor dB/m 31.31	8000 Fi Cable loss dB 4.69). 1000 requency (N Preamp factor dB 37.62	1Hz) 1evel dBuV/m 19.84	Limit level dBuV/m 54.00	Over limit dB 	Remark Average

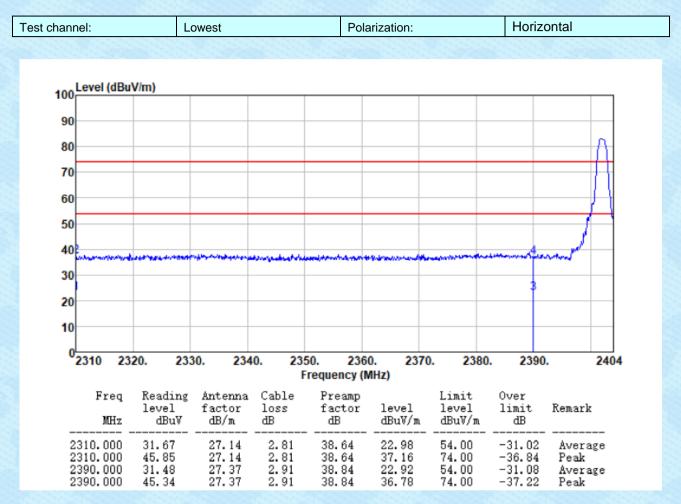


Report No.: GTS202206000307F01

channel:	F	lighest		Pola	arization:		Horizo	ontal
80 Level (dBu	V/m)							
70								
60								
50				6	underheiden is	Warmer Hold Street and	, phylologic de la company	and and a second and a second
40	fernand straker meka	2. Daulahan	and the shares	Julius Vitera	an in the model of	Walking Lot & Marine		
30	fallen om a starte litter andere							
20		1						
10								
0 <mark></mark>	4000.	6000.	8000 F). 1000 requency (N		00. 140	00. 16	000. 18000
Exce	Reading level	Antenna factor	Cable loss	Preamp factor	level	Limit level	Over limit	Remark
Freq MHz	dBuV	dB/m	dB	dB	dBu∛/m	dBu∛/m	dB	

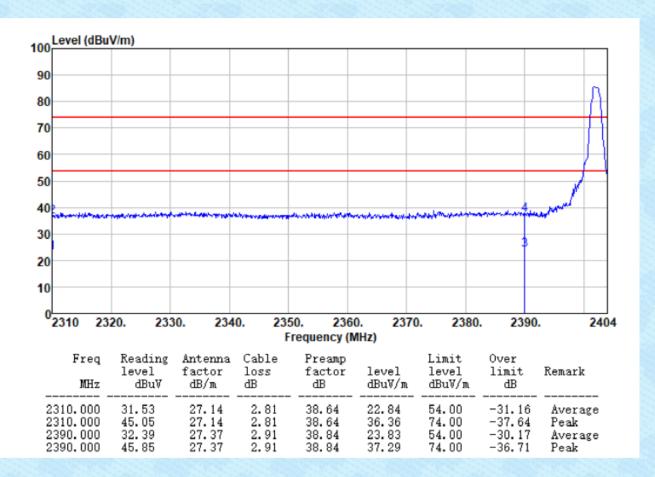
GTS

Report No.: GTS202206000307F01

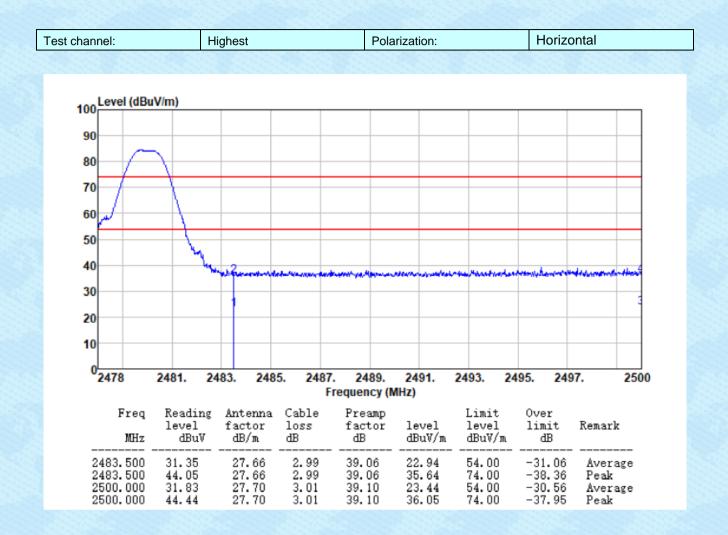


Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Unwanted Emissions in Non-restricted Frequency Bands



Test channel:	Lowest	Polarization:	Vertical

GTS

Report No.: GTS202206000307F01

channel:	ŀ	Highest		Pola	arization:		Vertic	cal
100 Level (dBuV/	<u>/m)</u>							
90								
80								
70	1							
60 A						_		
50								
	here have	.2						
40	hardense	hand the management	hang Nafrandraak (~~	ามีอาลีมีอาสุรายเราไรรา	المأدراف المعيمية	he have been a started and the	atta ayan talan sa	eren Holderstatur
	kreve breeze	4.1.2 1 1	haan dagaa dagad dagad daga	เป็นเสียงสุดมากใจค	ار بالاردوار معانی ا	hal han marked and the sec	atterspiritelier er	1712m-1 1401 .00 years
40		1	terre filigere divertie Arm	ารใชงส์มีของสุดมันจะไดงห	الم العربي الم الم الم الم	hal an	atturnes atta	(* film=* it(#film er_syle=*film) 3
40		1			المراجرية معيسرة م المراجر العالم معيسرة م	99 0 0000000000000000000000000000000000		01100-1100killer-yimtun 3
40 30 20 10								
40 30 20 10		1	5. 2487.	2489.	2491. 2	2493. 24		
40 30 20 10 0 2478 2	481. 24		5. 2487.	2489. requency (M	2491. 2			
40 30 20 10 0 2478 2 Freq	481. 24 Reading level	83. 248 Antenna factor	5. 2487. Fr Cable loss	2489. requency (M Preamp factor	2491. 2 IHZ) level	2493. 24 Limit level	95. 249 Over limit	
40 30 20 10 0 2478 2 Freq MHz	481. 24 Reading level dBuV	Antenna factor dB/m	5. 2487. Fr Cable loss dB	2489. requency (M Preamp factor dB	2491. 2 Hz) level dBuV/m	2493. 24 Limit level dBuV/m	95. 249 Over limit dB	07. 2500 Remark
40 30 20 10 0 2478 2478 2478 2478 2483.500	481. 24 Reading level	83. 248 Antenna factor	5. 2487. Fr Cable loss	2489. requency (M Preamp factor	2491. 2 IHZ) level	2493. 24 Limit level	95. 249 Over limit)7. 2500

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

- The emission levels of other frequencies are very lower than the limit and not show in test report.
 "*", means this data is the too weak instrument of signal is unable to test.

GTS

Report No.: GTS202206000307F01

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----