

TEST REPORT

Applicant:	AeroGrow International, Inc.
Address of Applicant:	6075 Longbow Dr. Suite #200, Boulder, Colorado 80301, United States
Manufacturer:	AeroGrow International, Inc.
Address of Manufacturer:	6075 Longbow Dr. Suite #200, Boulder, Colorado 80301, United States
Factory:	LUX Electrical & Lighting Co., Ltd.
Address of Factory:	Baigang Develop Zone, Heshun, Lishui, Nanhai, Foshan, Guangdong, China
Equipment Under Test (E	EUT)
Product Name:	AeroGarden Stem Grow Light
Model No.:	AGST0501, AGST0502
Trade Mark:	AeroGarden
FCC ID:	2AJNO-AGST050
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	July 13, 2022
Date of Test:	July 14, 2022-August 09, 2022
Date of report issued:	August 09, 2022
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	August 09, 2022	Original

Prepared By:

ger Che

Date:

August 09, 2022

Project Engineer

Check By:

opinson (m) Reviewer

Date:

August 09, 2022

Report No.: GTS202207000118F01

3 Contents

		Pa	ge
1	COV	ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	. 3
4	TES	T SUMMARY	4
			1
5	GEN	IERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	7
	5.4	DEVIATION FROM STANDARDS	. 7
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6	TEST FACILITY	.7
	5.7	TEST LOCATION	. 7
	5.8	Additional Instructions	.7
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5	Power Spectral Density	
	7.6	SPURIOUS EMISSION IN NON-RESTRICTED & RESTRICTED BANDS	
	7.6.	1 Conducted Emission Method	17
	7.6.2	2 Radiated Emission Method	18
8	TEC	Т SETUP PHOTO	22
0	IES		55
9	EUT	CONSTRUCTIONAL DETAILS	33

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Frequency Range	Measurement Uncertainty	Notes
9kHz-30MHz	3.1dB	(1)
30MHz-200MHz	3.8039dB	(1)
200MHz-1GHz	3.9679dB	(1)
1GHz-18GHz	4.29dB	(1)
18GHz-40GHz	3.30dB	(1)
0.15MHz ~ 30MHz	3.44dB	(1)
	9kHz-30MHz 30MHz-200MHz 200MHz-1GHz 1GHz-18GHz 18GHz-40GHz	9kHz-30MHz 3.1dB 30MHz-200MHz 3.8039dB 200MHz-1GHz 3.9679dB 1GHz-18GHz 4.29dB 18GHz-40GHz 3.30dB

5 General Information

5.1 General Description of EUT

and the second	
Product Name:	AeroGarden Stem Grow Light
Model No.:	AGST0501, AGST0502
Test Model No.:	AGST0501
	identical in the same PCB layout, interior structure and electrical are the model name and the enclosure color of appliance.
Test sample(s) ID:	GTS202207000118-1
Sample(s) Status:	Engineer sample
Serial No.:	AGST0501/2
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain:	0dBi(declare by applicant)
Power Supply:	Adapter 1:
	Model: M4-050200A1-ETL
	Input: AC 100-240V, 50/60Hz, 0.5A
	Output: DC 5.0V, 2A
	Adapter 2:
	Model: QK-0502000
	Input: AC 100-240V, 50/60Hz, 0.4A Max
	Output: DC 5V, 2000mA

Remark: Both 2 adapters were tested and compliance, only adapter 1 test result shows in report

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode

Keep the EUT in continuously transmitting mode.

5.3 **Description of Support Units**

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 **Test Facility**

The test facility is recognized, certified, or accredited by the following organizations:

FCC—Registration No.: 381383

Designation Number: CN5029 Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC — Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 **Test Location**

All tests were performed at: Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software	oftware Test software provided by manufacturer			
Power level setup	Default			

6 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 02, 2020	July 01, 2025	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 22, 2022	April 21, 2023	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 21, 2022	March 20, 2023	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June 12, 2022	June 11, 2023	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 23, 2022	June 22, 2023	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	April 22, 2022	April 21, 2023	
9	Coaxial Cable	GTS	N/A	GTS211	April 22, 2022	April 21, 2023	
10	Coaxial cable	GTS	N/A	GTS210	April 22, 2022	April 21, 2023	
11	Coaxial Cable	GTS	N/A	GTS212	April 22, 2022	April 21, 2023	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	April 22, 2022	April 21, 2023	
13	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 23, 2022	June 22, 2023	
14	Band filter	Amindeon	82346	GTS219	June 23, 2022	June 22, 2023	
15	Power Meter	Anritsu	ML2495A	GTS540	June 23, 2022	June 22, 2023	
16	Power Sensor	Anritsu	MA2411B	GTS541	June 23, 2022	June 22, 2023	
17	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 22, 2022	April 21, 2023	
18	Splitter	Agilent	11636B	GTS237	June 23, 2022	June 22, 2023	
19	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 30, 2021	Nov. 29, 2022	
20	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 22, 2022	April 21, 2023	
21	Breitband hornantenna	SCHWARZBECK	BBHA 9170	GTS579	Oct. 17, 2021	Oct. 16, 2022	
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 17, 2021	Oct. 16, 2022	
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 17, 2021	Oct. 16, 2022	
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June 23, 2022	June 22, 2023	
25	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 22, 2022	April 21, 2023	

Con	Conducted Emission								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May 14, 2022	May 13, 2025			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 24, 2022	April 23, 2023			
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 23, 2022	June 22, 2023			
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	April 22, 2022	April 21, 2023			
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A			
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
7	Thermo meter	JINCHUANG	GSP-8A	GTS639	April 28, 2022	April 27, 2023			
8	Absorbing clamp Elektronik- Feinmechanik		MDS21	GTS229	April 15, 2022	April 14, 2023			
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	April 22, 2022	April 21, 2023			
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 22, 2022	April 21, 2023			
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 22, 2022	April 21, 20			

RF C	RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 22, 2022	April 21, 2023			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 22, 2022	April 21, 2023			
3	Spectrum Analyzer	Agilent	E4440A	GTS536	April 22, 2022	April 21, 2023			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 22, 2022	April 21, 2023			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 22, 2022	April 21, 2023			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 22, 2022	April 21, 2023			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 22, 2022	April 21, 2023			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 22, 2022	April 21, 2023			

Ger	neral used equipment:					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	April 25, 2022	April 24, 2023
2	Barometer	KUMAO	SF132	GTS647	July 26, 2022	July 25, 2023

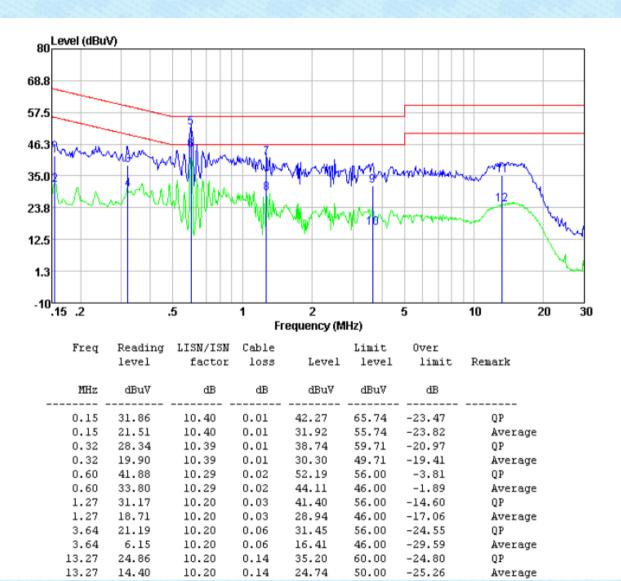
7 Test results and Measurement Data

7.1 Antenna requirement

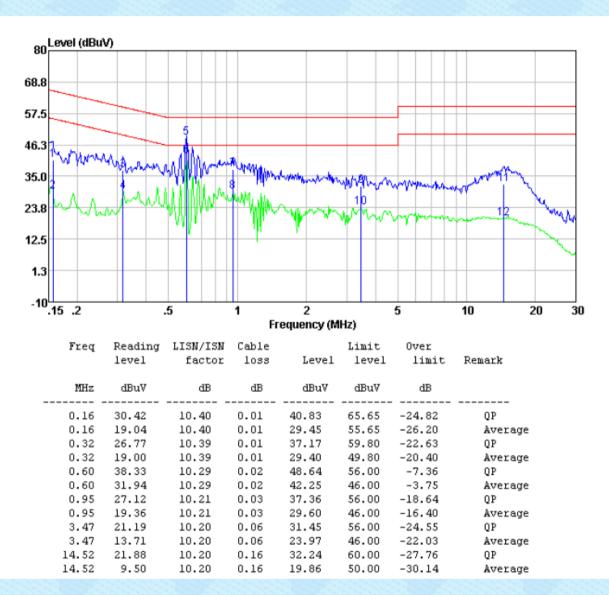
Standard requirement:	FCC Part15 C Section 15.203 /247(c)
15.203 requirement:	
responsible party shall be us antenna that uses a unique of	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit in be replaced by the user, but the use of a standard antenna jack or bited.
15.247(c) (1)(i) requirement	t:
operations may employ trans	2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point smitting antennas with directional gain greater than 6dBi provided the power of the intentional radiator is reduced by 1 dB for every 3 dB that the na exceeds 6dBi.
E.U.T Antenna:	
The antenna is PCB antenna	a, reference to the appendix II for details

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10:2013			
Test Frequency Range:	150KHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto		
Limit:	Frequency range (MHz)	Limit	(dBuV)	
		Quasi-peak	Aver	
	0.15-0.5	66 to 56*	56 to	
	0.5-5 5-30	56 60	4	
	* Decreases with the logarithm		0	0
Test setup:	Reference Plane			
Test procedure:	LISN 40cm 80cm AUX Equipment E.U.T Test table/Insulation plane E.U.T Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a	Filter AC p EMI Receiver		through a
	 line impedance stabilization 50ohm/50uH coupling impedance The peripheral devices are LISN that provides a 50ohn termination. (Please refer to photographs). Both sides of A.C. line are of interference. In order to find positions of equipment and according to ANSI C63.10:: 	edance for the measured also connected to the n/50uH coupling imported to the block diagram of checked for maximum emised the maximum emised all of the interface content of the second secon	uring equipm he main powe edance with of the test se m conducted sion, the rela ables must b	ent. er through a 50ohm tup and tup and tive e changed
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test environment:	Temp.: 25 °C Hum	nid.: 52%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz			
Test results:	Pass			


Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data


Report No.: GTS202207000118F01

Pre-scan all test modes, found worst case at 2480MHz, and so only show the test result of 2480MHz, **Line:**

Neutral:

Report No.: GTS202207000118F01

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

7.4 Channel Bandwidth

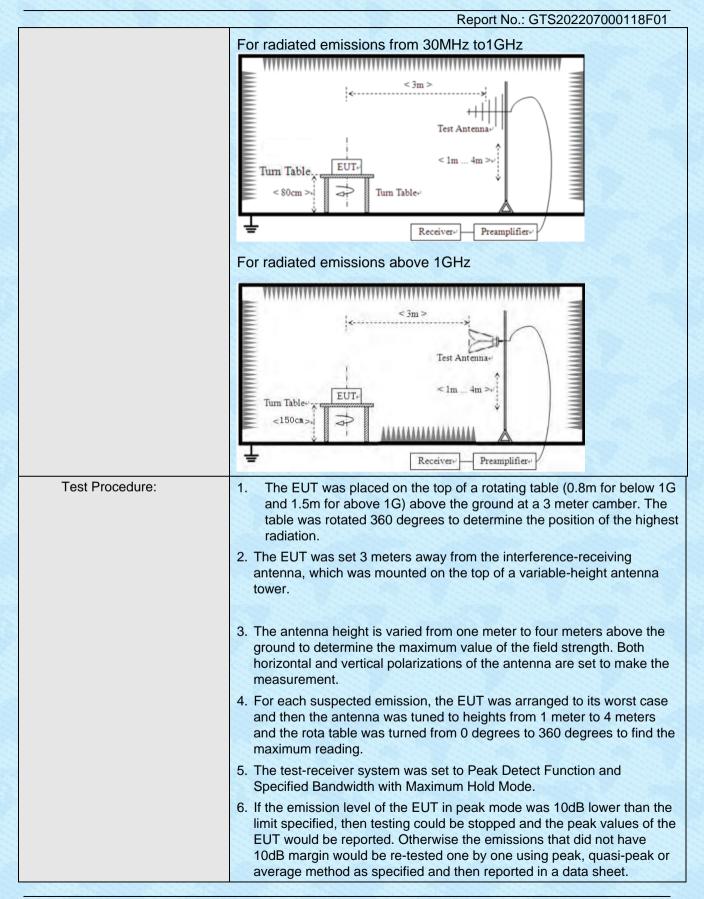
Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	>500KHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	8dBm/3kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

7.6 Spurious Emission in Non-restricted & restricted Bands

Test Requirement: FCC Part15 C Section 15.247 (d) Test Method: ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02 Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer E.U.T Non-Conducted Table **Ground Reference Plane Test Instruments:** Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test results: Pass


7.6.1 Conducted Emission Method

GTS

7.6.2 Radiated Emission Meth	100						
Test Requirement:	FCC Part15 C Section	on 15.	.209				
Test Method:	ANSI C63.10:2013				29		
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement Distar	nce: 3	m				
Receiver setup:	Frequency	D	etector	RBV	V V	/BW	Value
	9KHz-150KHz	Qua	asi-peak	200H	lz 60	00Hz	Quasi-peak
	150KHz-30MHz	Qua	asi-peak	9KH	z 30	OKHz	Quasi-peak
	30MHz-1GHz	Qua	asi-peak	120K	Hz 30	0KHz	Quasi-peak
	Above 1GHz		Peak	1MH	lz 3	MHz	Peak
	Above ronz		Peak	1MH	lz 1	0Hz	Average
	Note: For Duty cycle < 98%, average dete						veFor Duty cycle
Limit:	Frequency		Limit (u∨	//m)	Valu	e	Measurement Distance
	0.009MHz-0.490M	IHz	2400/F(K	(Hz)	QP/PK	/AV	300m
	0.490MHz-1.705M	IHz	24000/F(I	KHz)	QP		30m
	1.705MHz-30MH	Iz	30		QP		30m
	30MHz-88MHz		100		QP		
	88MHz-216MHz	z	150		QP		
	216MHz-960MH	z	200		QP		3m
	960MHz-1GHz		500		QP		om
	Above 1GHz		500		Avera	ige	
			5000		Pea	k	
Test setup:	For radiated emiss	sions	from 9kH	z to 30	MHz		
	AAAA						
			< 3m >	·····>			
	AAA			Ĺ	١	-	
		_	Test A	ntenna			
	Tum Table		m Table+	1m		111111	
	Ŧ		[Receiver		0	

7.6.2 Radiated Emission Method

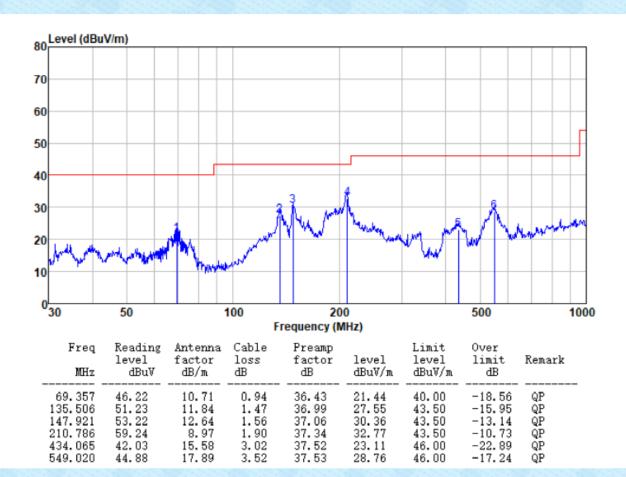
Global United Technology Services Co., Ltd. No. 123- 128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

				Report No.: (GTS2022070	00118F01
Test Instruments:	Refer to see	ction 6.0 for c	letails			
Test mode:	Refer to see	ction 5.2 for c	letails			
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 6	0Hz				
Test results:	Pass					

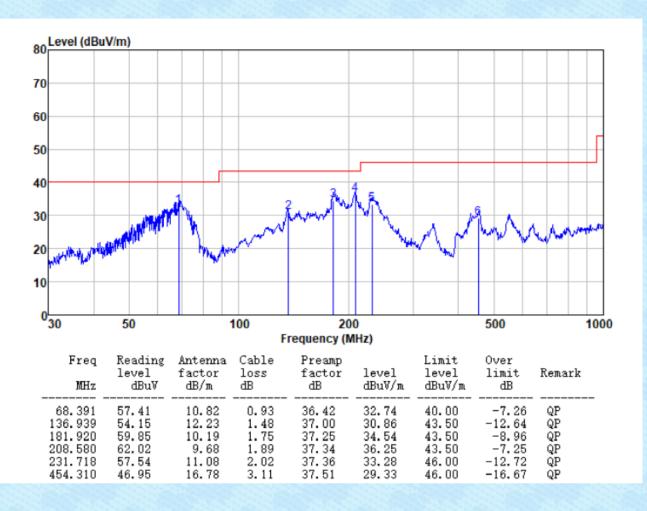
Measurement data:

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

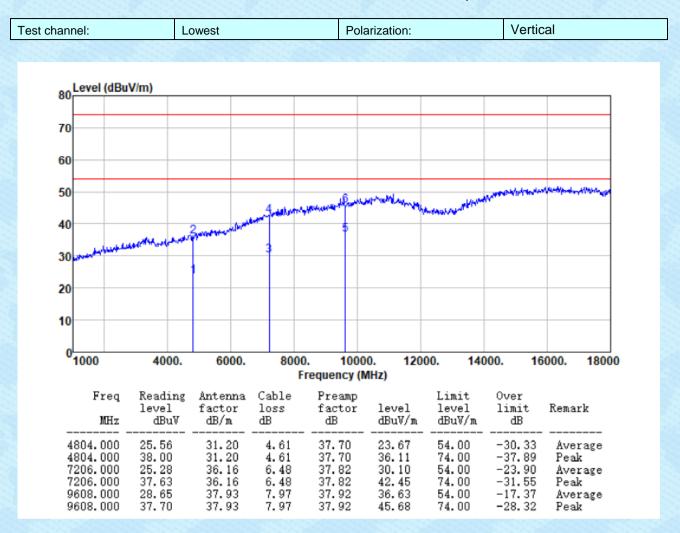

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

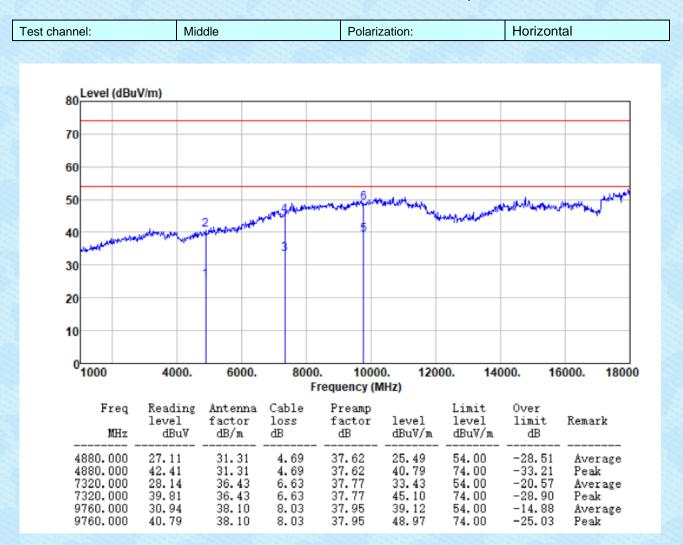

Below 1GHz

Pre-scan all test modes, found worst case at 2480MHz, and so only show the test result of 2480MHz **Horizontal:**

Vertical:



Report No.: GTS202207000118F01

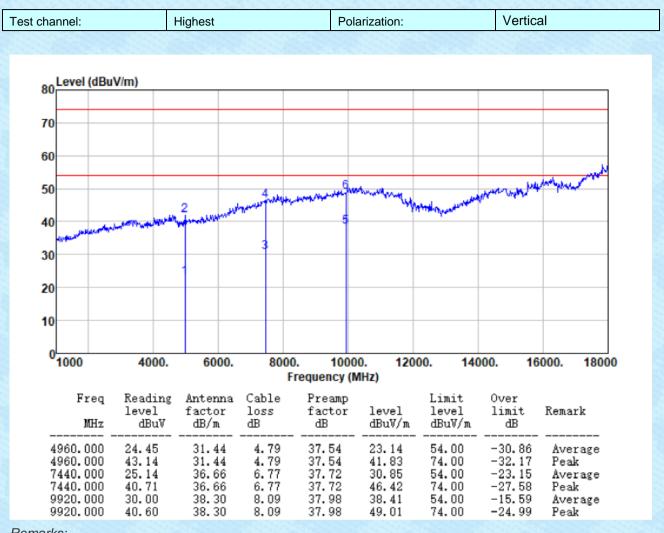

Above 1GHz

channel:	L	owest		Pola	arization:		Horizo	ntal
80 Level (dB	uV/m)							
70								
70								
60								
50			_	6	We the			and the second of the second
		2	ميلله المرجم مع	the second second	when the work of	We develop the state	Construction of the second sec	
40	www.wayardday	Provident and a	3					
30								
201								
20								
10								
10	4000	0003		0 100	0 120	0. 140	00 16	000 1000
10	4000.	6000.	800)0. 100(Frequency (I		00. 140	00. 16	000. 18000
10	Reading	Antenna	Cable	Frequency (I Preamp	MHZ)	Limit	Over	
10 0 1000	Reading level			Frequency (I				000. 18000 Remark
10 0 1000 Freq MHz 4804.000	Reading level dBuV 27.03	Antenna factor dB/m 31.20	Cable loss dB 	Frequency (I Preamp factor dB 37.70	MHz) level dBuV/m 25.14	Limit level dBuV/m 54.00	Over limit dB 28.86	Remark Average
10 0 1000 Freq MHz	Reading level dBu∛ 27.03 42.20	Antenna factor dB/m	Cable loss dB 4.61 4.61 6.48	Frequency (I Preamp factor dB 	MHz) level dBuV/m	Limit level dBuV/m	Over limit dB	Remark Average Peak
10 0 1000 Freq MHz 4804.000 4804.000	Reading level 27.03 42.20 29.63 41.37	Antenna factor dB/m 31.20 31.20	Cable loss dB 4.61 4.61	Frequency (1 Preamp factor dB 37.70 37.70	MHz) 1evel dBuV/m 25.14 40.31	Limit level dBuV/m 54.00 74.00	Over limit dB -28.86 -33.69	Remark Average

Report No.: GTS202207000118F01

Report No.: GTS202207000118F01

Report No.: GTS202207000118F01


channel:	М	iddle		Pola	rization:		Vertica	al
Level (dBu	V/m)							
80	,							
70								
60								
50				6				and share
50			Anna Anna Mara	and the state of t	- the hard when the state of the	- Lunger and	pale and a second	and the second states a
40	whether the states and	For a spent and	3	5		elete.		
30		1	_					
20								
10								
0 <mark>1000</mark>	4000.	6000.	800	0. 1000	0. 1200	0. 140	00. 16	000. 1800
			F	requency (N	1Hz)			
Freq	Reading level	Antenna factor	Cable loss	Preamp factor	level	Limit level	Over limit	Remark
MHz	dBu∛	dB/m 	dB 	dB 	dBu∛/m 	dBu∛/m 	dB 	
4880.000 4880.000	27.23 41.42	31.31 31.31	4.69 4.69	37.62 37.62	25.61 39.80	54.00 74.00	-28.39 -34.20	Average Peak
7320.000 7320.000	28.52 40.25	36.43 36.43	6.63 6.63	37.77 37.77	33.81 45.54	54.00 74.00	-20.19 -28.46	Average Peak
9760.000	30.65	38.10	8.03	37.95	38.83	54.00	-15.17	Average

Report No.: GTS202207000118F01

channel:	Hig	ghest		Pola	arization:		Horiz	ontal
80 Level (dBuV/	m)							
70								
60								A.
50			4	and the second	North Martin		وبالاسبيه وفيديان	and a stand and a start and a start and a start and a start a start and a start a start a start a start a start
40	wayint	2 minhour wood	Mar Martin	5		and the second	· · · ·	
40 mater ways	hours from the second		3					
30		1						
20								
10								
0 ¹ 1000	4000.	6000.	8000			0. 140	00. 16	000. 18000
_		-		requency (N	1Hz)		_	
-	Reading level	Antenna factor	Cable loss	Preamp factor	level	Limit level	Over limit	Remark
MHz	dBu∛ 	dB/m 	dB 	dB 	dBu∛/m 	dBu∛/m 	dB 	
4960.000 4960.000	26.33 42.73	31.44 31.44	4.79 4.79	37.54 37.54	25.02 41.42	54.00 74.00	-28.98 -32.58	Average Peak
7440.000	28.59 42.86	36.66 36.66	6.77 6.77	37.72 37.72	34.30 48.57	54.00 74.00	-19.70 -25.43	Average Peak
	32.43	38.30	8.09	37.98	40.84	54.00	-13.16	Average

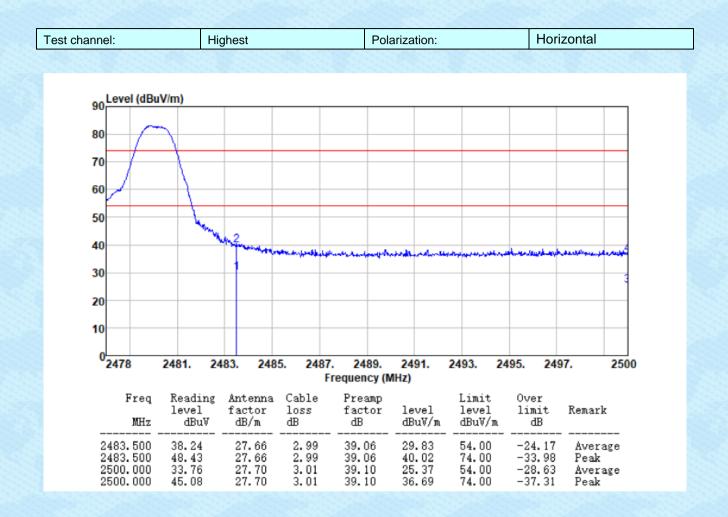
Report No.: GTS202207000118F01

Remarks:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Horizontal Test channel: Polarization: Lowest 90 Level (dBuV/m) 80 70 60 50 40 المهدور المراسا 30 20 10 0<mark>_____</mark>2310 2320. 2330. 2340. 2350. 2360. 2370. 2380. 2390. 2404 Frequency (MHz) Cable Freq Reading Antenna Preamp Limit Over factor level factor level level Remark loss limit MHz dBu∛ dB/m dB dB dBu∛/m dBu∛/m dB 2.81 2.81 2.91 31.25 27.14 2310.000 38.64 22.56 54.00 -31.44 Average 2310.000 2390.000 27.14 27.37 34.95 22.60 43.64 74.00 -39.05 Peak 38.64 38.84 31.16 54.00 -31.40Average 2390.000 45.60 27.37 2.91 38.84 37.04 74.00 -36.96Peak


Unwanted Emissions in Non-restricted Frequency Bands

Report No.: GTS202207000118F01

hannel:	Lo	owest		Pola	arization:		Vertic	al
Level (dBu	V/m)							
90	v/mj							
80								<u>Λ</u>
70								(1
60								
50								1
40								1
40 promoto sister	والأحيوار مراري أرياحهم والموجود والم	and the states	المرباد ورميد المحا	un parton	haldmanstrage	and designed and	will a star of the particular	www.w
30	An open der har provinser ber	ennetriktersters	الاسامير عينه عامينه	un parton	herton ann han gan	andere source and	with the state of the state	www.
-	hanga dalar dan dan dalar d	ennelenselensene	اللاسة، _{كو} ر تو _ي ية، _ك ارينية	an a far that have	hailite ann an	anghéndi nginan dan da	viden 16, 4 yel 4 3	
30	44494944444444444444444444444444444444	ennelinskene	الا ^ل ار می وارد می وارد می وارد می وارد م	and south of	heelden geweren en gew	ander de ser d	videnain,*adi	
30 20 10	Ay 44 a ku 1 a da a	nonioritheadard	her daga kan palapan	and or the section of a	herion and an	andelnek september der der	vide++++++yd++++-,+ 3	
30 20 10	20. 233		0. 23	50. 236	0. 2370		3	. 2404
30 20 10 0 2310 23	20. 233		0. 23	50. 236 Frequency (N	0. 2370		3	. 2404
30 20 10		i0. 234	0. 23	50. 236	0. 2370). 2380. Limit level	3	. 2404 Remark
30 20 10 0 2310 23 Freq	20. 233 Reading level dBuV 31.04	0. 234 Antenna factor	0. 23 Cable loss dB 2.81	50. 236 Frequency (N Preamp factor	0. 2370 MHZ)). 2380. Limit level dBuV/m 54.00	3 2390 Over limit	Remark
30 20 10 0 2310 23 Freq MHz	20. 233 Reading level dBuV	0. 234 Antenna factor dB/m	0. 23 Cable loss dB	50. 236 Frequency (N Preamp factor dB	0. 2370 MHZ) level). 2380. Limit level dBuV/m	3 2390 Over limit dB	

Report No.: GTS202207000118F01

est channel:	F	Highest			Polarization:			Vertical	
90 Level (dBuV	/m)								
90									
80									
70	\setminus								
	N								
60									
50	1								
40	1 the	2							
		- Proprietory	When some and a	der growing from a	and the states	-lookshannon-b	nensolandeland	and the second and	
30								3	
20									
10									
⁰ 2478 2	481. 2	483. 248			2491.	2493. 24	95. 249	7. 2500	
				requency (I	MHZ)				
Freq	Reading level	Antenna factor	Cable loss	Preamp factor	level	Limit level	Over limit	Remark	
MHz	dBu∛	dB/m 	dB	B	dBu∛/m	dBu∛/m	dB		
2483.500	38.77	27.66	2.99	39.06	30.36	54.00	-23.64	Average	
2483.500 2500.000	49.08 32.44	27.66 27.70	2.99 3.01	39.06 39.10	40.67 24.05	74.00 54.00	-33.33 -29.95	Peak Average	
2500.000	45.14	27.70	3.01	39.10	36.75	74.00	-37.25	Peak	

Remarks:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.
 "*", means this data is the too weak instrument of signal is unable to test.

Report No.: GTS202207000118F01

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----