

0659



# FCC Radio Test Report FCC ID: 2AJN7-TP00143AL

Report No. : BTL-FCCP-14-2112T127
Equipment : Notebook Computer

TD00142AL

Model Name : TP00143AL Brand Name : Lenovo

**Applicant**: LC Future Center

Address : 7F., No. 780, Beian Rd., Zhongshan Dist., Taipei City 104, Taiwan

Manufacturer : Lenovo PC HK Limited

Address : 23/F, Lincoln House, Taikoo Place 979 King's Road, Quarry Bay, Hong

Kong, P.R. China

Radio Function : LTE Band 14

FCC Rule Part(s) : FCC CFR Title 47, Part 90(R)

Measurement: ANSI C63.26-2015Procedure(s)ANSI/TIA-603-E-2016

FCC KDB 971168 D01 Power Meas License Digital Systems v03r01

**Date of Receipt** : 2022/1/13

**Date of Test** : 2022/1/13 ~ 2022/3/11

**Issued Date** : 2022/3/31

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by : Eric Lee, Engineer

Approved by : Jewy (hung

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Jerry Chuang, Supervisor

Project No.: 2112T127 Page 1 of 31 Report Version: R00





### **Declaration**

**BTL** represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

**BTL**'s reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

**BTL**'s laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

### Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2112T127 Page 2 of 31 Report Version: R00





### **CONTENTS** 1 SUMMARY OF TEST RESULTS 5 1.1 **TEST FACILITY** 6 1.2 MEASUREMENT UNCERTAINTY 6 1.3 TEST ENVIRONMENT CONDITIONS 6 2 **GENERAL INFORMATION** 7 2.1 **DESCRIPTION OF EUT** 7 2.2 **TEST MODES** 7 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 8 2.4 SUPPORT UNITS 8 AC POWER LINE CONDUCTED EMISSIONS TEST 9 3 3.1 LIMIT 9 3.2 **TEST PROCEDURE** 9 3.3 **DEVIATION FROM TEST STANDARD** 9 3.4 **TEST SETUP** 10 3.5 **TEST RESULT** 10 4 EFFECTIVE RADIATED POWER MEASUREMENT 11 4.1 LIMIT 11 4.2 **TEST PROCEDURE** 11 4.3 **DEVIATION FROM TEST STANDARD** 11 **TEST SETUP** 4.4 12 4.5 **EUT OPERATING CONDITIONS** 12 4.6 **TEST RESULT** 12 5 RADIATED SPURIOUS EMISSIONS MEASUREMENT 13 5.1 13 LIMIT 5.2 **TEST PROCEDURE** 13 5.3 **DEVIATION FROM TEST STANDARD** 13 5.4 **TEST SETUP** 14 5.5 **EUT OPERATING CONDITIONS** 14 5.6 **TEST RESULT** 14 LIST OF MEASURING EQUIPMENTS 15 6 7 **EUT TEST PHOTO** 16 8 **EUT PHOTOS** 16 AC POWER LINE CONDUCTED EMISSIONS APPENDIX A 17 APPENDIX B **EFFECTIVE RADIATED POWER** 22 APPENDIX C RADIATED SPURIOUS EMISSIONS 27



### **REVISION HISTORY**

| Report No.           | Version | Description      | Issued Date | Note  |
|----------------------|---------|------------------|-------------|-------|
| BTL-FCCP-14-2112T127 | R00     | Original Report. | 2022/3/31   | Valid |

Project No.: 2112T127 Page 4 of 31 Report Version: R00



### **SUMMARY OF TEST RESULTS**

Test procedures according to the technical standards.

| Standard(s) Section                   | Description                                        | Test Result | Judgement | Remark |
|---------------------------------------|----------------------------------------------------|-------------|-----------|--------|
| 15.207                                | AC Power Line Conducted Emissions                  | APPENDIX A  | Pass      |        |
| 2.1046<br>90.542 (a)(7)               | Conducted Output Power<br>Effective Radiated Power | APPENDIX B  | Pass      |        |
| -                                     | Peak To Average Ratio                              | NOTE (3)    | Pass      |        |
| 2.1049                                | Occupied Bandwidth                                 | NOTE (3)    | Pass      |        |
| 2.1053<br>90.543 (e)(2)(3)            | Band Edge Measurements                             | NOTE (3)    | Pass      |        |
| 2.1051<br>90.210(n)                   | Mask Measurements                                  | NOTE (3)    | Pass      |        |
| 2.1053<br>90.543 (e)(3)               | Conducted Spurious Emissions                       | NOTE (3)    | Pass      |        |
| 2.1055<br>90.539 (e)                  | Frequency Stability Temperature & Voltage          | NOTE (3)    | Pass      |        |
| 2.1053<br>90.543 (e)(3)<br>90.543 (f) | Radiated Spurious Emissions                        | APPENDIX C  | Pass      |        |

### NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.
- (3) This item is demonstrated to full compliance referring to the test report number FG0O3022D of the integrated module (model name: L860-GL-16, FCC ID: ZMOL860GL16), according to KDB 996369 D02
- (4) The ac power lines conducted emissions and radiated emissions are tested to demonstrate full compliance of both module integrated into the host and host itself.

Report Version: R00 Project No.: 2112T127 Page 5 of 31

□ CB16

### 1.1 TEST FACILITY

|  | The test facilities | used to | collect the | test data | in this | report: |
|--|---------------------|---------|-------------|-----------|---------|---------|
|--|---------------------|---------|-------------|-----------|---------|---------|

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

he test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.  $\square$  CB08  $\square$  CB11  $\square$  CB15

⊠ SR05

### 1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $\mathbf{y} \pm \mathbf{U}$ , where expanded uncertainty  $\mathbf{U}$  is based on a standard uncertainty multiplied by a coverage factor of  $\mathbf{k} = \mathbf{2}$ , providing a level of confidence of approximately  $\mathbf{95}$  %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2  $\mathbf{U}_{cispr}$  requirement.

A. AC power line conducted emissions test:

| Test Site | Method | Measurement Frequency Range | U (dB) |
|-----------|--------|-----------------------------|--------|
| C05       | CISPR  | 150 kHz ~ 30MHz             | 3.44   |

### B. Effective Radiated Power and Radiated emissions test:

| Test Site | Measurement Frequency Range | U,(dB) |
|-----------|-----------------------------|--------|
|           | 0.03 GHz ~ 0.2 GHz          | 4.17   |
| CB15      | 0.2 GHz ~ 1 GHz             | 4.72   |
|           | 1 GHz ~ 6 GHz               | 5.21   |
|           | 6 GHz ~ 18 GHz              | 5.51   |
|           | 18 GHz ~ 26 GHz             | 3.69   |
|           | 26 GHz ~ 40 GHz             | 4.23   |

### NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

### 1.3 TEST ENVIRONMENT CONDITIONS

| [ <u> </u>                        |                       |              |                          |
|-----------------------------------|-----------------------|--------------|--------------------------|
| Test Item                         | Environment Condition | Test Voltage | Tested by                |
| AC Power Line Conducted Emissions | 23 °C, 60 %           | AC 120V      | Angela Wang              |
| Conducted Output Power            | 23.5 °C, 58.5 %       | AC 120V      | William Wei              |
| Effective Radiated Power          | Refer to data         | AC 120V      | Vincent Lee              |
| Radiated Spurious Emissions       | Refer to data         | AC 120V      | Vincent Lee<br>Eddie Lee |

Project No.: 2112T127 Page 6 of 31 Report Version: R00



### 2 GENERAL INFORMATION

### 2.1 DESCRIPTION OF EUT

| Equipment           | Notebook Computer                                        |                                                                                       |     |                |           |  |
|---------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------|-----|----------------|-----------|--|
| Model Name          | TP00143AL                                                | -                                                                                     |     |                |           |  |
| Brand Name          | Lenovo                                                   |                                                                                       |     |                |           |  |
| Model Difference    | N/A                                                      |                                                                                       |     |                |           |  |
| Power Source        |                                                          | DC voltage supplied from External Power Supply.<br>(Lenovo/ ADL135SLC3A, ADL135SCC2A) |     |                |           |  |
| Power Rating        | I/P: 100-240V~ 2.5A 50-60Hz<br>O/P: DC20.0V 6.75A 135.0W |                                                                                       |     |                |           |  |
| WWAN Module         | Fibocom / L860-GL-16                                     |                                                                                       |     |                |           |  |
| Operation Frequency | Band UL Frequency (MHz) DL Frequency (MHz)               |                                                                                       |     | requency (MHz) |           |  |
| Operation requestey | LTE 14                                                   | 788 ~ 798                                                                             | 3   |                | 758 ~ 768 |  |
|                     | Band                                                     | BW (MHz)                                                                              | Мо  | de             | Power (W) |  |
|                     |                                                          | 5                                                                                     | QP  | SK             | 0.114     |  |
| Maximum ERP         | LTE 14                                                   | 3                                                                                     | 16Q | AM             | 0.089     |  |
|                     | LIE 14                                                   | 10                                                                                    | QP  | SK             | 0.116     |  |
|                     | 10 16QAM 0.090                                           |                                                                                       |     |                |           |  |
| Test Model          | TP00143AL                                                |                                                                                       |     |                |           |  |
| Sample Status       | Engineering Sample                                       |                                                                                       |     |                |           |  |
| EUT Modification(s) | N/A                                                      |                                                                                       |     |                |           |  |

### NOTE:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

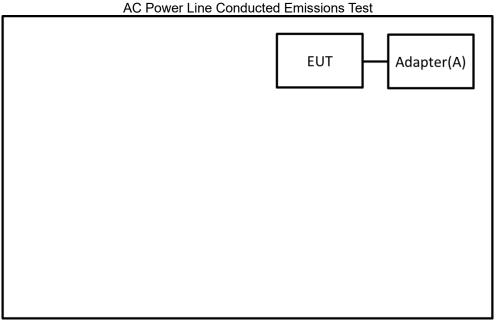
### (2) Table for Filed Antenna:

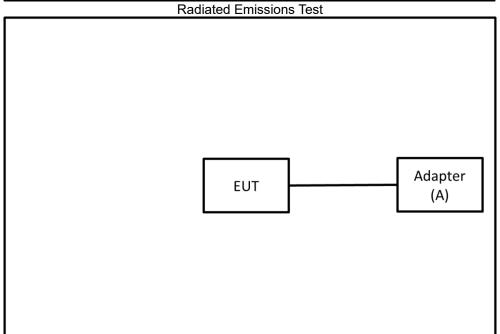
| Antenna | Manufacture | Parts Number | Type | Connector | Gain (dBi) | Note        |
|---------|-------------|--------------|------|-----------|------------|-------------|
| Main    | AWAN        | DC33001WF00  | PIFA | I-PEX     | -2.05      | LTE Band 14 |
| Aux     | AWAN        | DC33001WF10  | PIFA | I-PEX     | -          | RX only     |

### 2.2 TEST MODES

| Test Items                        | Band        | Test Mode           | Note |
|-----------------------------------|-------------|---------------------|------|
| AC Power Line Conducted Emissions | -           | Normal/Idle         | -    |
| Conducted Output Power            | LTE Band 14 | Refer to APPENDIX B | -    |
| Effective Radiated Power          | LTE Band 14 | TX Mode (CH 23330)  | -    |
| Radiated Spurious Emissions       | LTE Band 14 | TX Mode (CH 23330)  | -    |

### NOTE:


- (1) All X, Y and Z axes are evaluated, but only the worst case (Y axis) is recorded.
- (2) For Radiated Spurious Emissions both QPSK and 16QAM are evaluated, but only the worst case (QPSK) is recorded.


Project No.: 2112T127 Page 7 of 31 Report Version: R00



### 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.





### 2.4 SUPPORT UNITS

| Item | Equipment | Brand  | Model No.   | Series No. | Remarks                     |
|------|-----------|--------|-------------|------------|-----------------------------|
| Α    | Adapter   | Lenovo | ADL135SLC3A | N/A        | Supplied by test requester. |

| Item | Shielded | Ferrite Core | Length | Cable Type | Remarks |
|------|----------|--------------|--------|------------|---------|
| -    | -        | -            | -      | -          | -       |



### 3 AC POWER LINE CONDUCTED EMISSIONS TEST

### 3.1 LIMIT

| Frequency  | Limit (dBµV) |           |  |
|------------|--------------|-----------|--|
| (MHz)      | Quasi-peak   | Average   |  |
| 0.15 - 0.5 | 66 - 56 *    | 56 - 46 * |  |
| 0.50 - 5.0 | 56           | 46        |  |
| 5.0 - 30.0 | 60           | 50        |  |

### NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

| Carculation oxampio. |   |                |   |                   |  |
|----------------------|---|----------------|---|-------------------|--|
| Reading Level        |   | Correct Factor |   | Measurement Value |  |
| 38.22                | + | 3.45           | = | 41.67             |  |

| Measurement Value |   | Limit Value |   | Margin Level |
|-------------------|---|-------------|---|--------------|
| 41.67             | - | 60          | = | -18.33       |

The following table is the setting of the receiver.

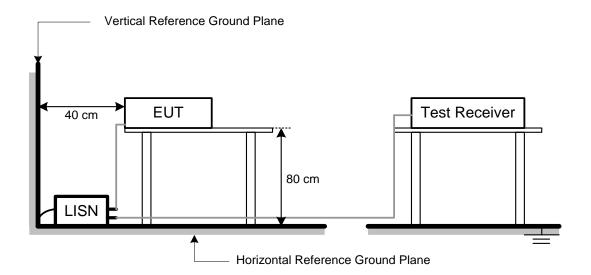
| Receiver Parameter | Setting  |
|--------------------|----------|
| Attenuation        | 10 dB    |
| Start Frequency    | 0.15 MHz |
| Stop Frequency     | 30 MHz   |
| IF Bandwidth       | 9 KHz    |

### 3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
  - All other support equipment were powered from an additional LISN(s).
  - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
  - The end of the cable will be terminated, using the correct terminating impedance.
  - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

### NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


### 3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2112T127 Page 9 of 31 Report Version: R00



### 3.4 TEST SETUP



### 3.5 TEST RESULT

Please refer to the APPENDIX A.



### 4 EFFECTIVE RADIATED POWER MEASUREMENT

### 4.1 LIMIT

Mobile / Portable station are limited to 3 watts e.r.p.

### NOTE:

(1) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

| Reading Level |   | Correct Factor |    | Measurement Value |
|---------------|---|----------------|----|-------------------|
| -29.66        | + | 34.26          | II | 4.60              |

| Measurement Value |   | Limit Value |   | Margin Level |
|-------------------|---|-------------|---|--------------|
| 4.60              | - | 38.45       | = | -33.85       |

### 4.2 TEST PROCEDURE

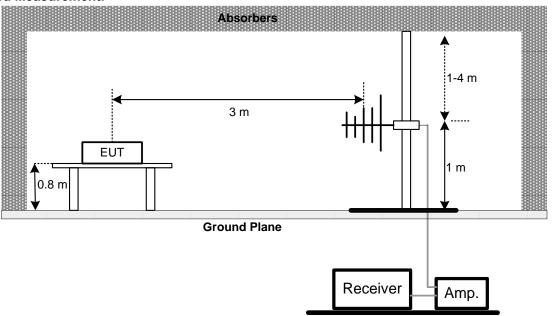
The testing follows FCC KDB 971168 v03r01 Section 5.8.

- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. ERP can be calculated form EIRP by subtracting the gain of dipole, ERP = EIPR 2.15dBi..
- e. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

### 4.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2112T127 Page 11 of 31 Report Version: R00




### 4.4 TEST SETUP

### **Conducted Measurement:**



### **Radiated Measurement:**



### 4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

### 4.6 TEST RESULT

Please refer to the APPENDIX B.

Project No.: 2112T127 Page 12 of 31 Report Version: R00



### 5 RADIATED SPURIOUS EMISSIONS MEASUREMENT

### 5.1 LIMIT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The emission limit equal to -13dBm.

### NOTE:

- (1) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.
- (2) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

| Reading Level |   | Correct Factor |    | Measurement Value |
|---------------|---|----------------|----|-------------------|
| -50.43        | + | -2.11          | II | -52.54            |

| Measurement Value |   | Limit Value |   | Margin Level |
|-------------------|---|-------------|---|--------------|
| -52.54            | - | -13         | = | -39.54       |

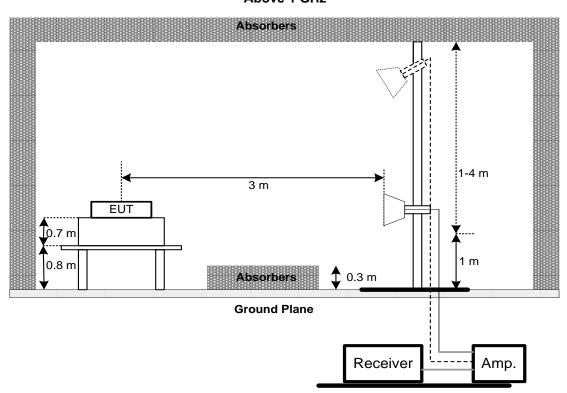
### 5.2 TEST PROCEDURE

The testing follows FCC KDB 971168 v03r01 Section 6.2.

- f. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- g. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- h. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- i. ERP can be calculated form EIRP by subtracting the gain of dipole, ERP = EIPR 2.15dBi..
- j. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

### 5.3 DEVIATION FROM TEST STANDARD

No deviation.


Project No.: 2112T127 Page 13 of 31 Report Version: R00



### 5.4 TEST SETUP

# Absorbers Absorbers Ground Plane Receiver Amp.

### **Above 1 GHz**



### 5.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

### 5.6 TEST RESULT

Please refer to the APPENDIX C.

Project No.: 2112T127 Page 14 of 31 Report Version: R00





### LIST OF MEASURING EQUIPMENTS

|      |                         | AC Pow       | er Line Conducted                 | d Emissions |                    |                     |
|------|-------------------------|--------------|-----------------------------------|-------------|--------------------|---------------------|
| Item | Kind of<br>Equipment    | Manufacturer | Type No.                          | Serial No.  | Calibrated<br>Date | Calibrated<br>Until |
| 1    | TWO-LINE<br>V-NETWORK   | R&S          | ENV216                            | 101339      | 2021/3/10          | 2022/3/9            |
| 2    | Test Cable              | EMCI         | EMCCFD300-BM<br>-BMR-6000         | 170714      | 2021/6/7           | 2022/6/6            |
| 3    | EMI Test<br>Receiver    | R&S          | ESR 7                             | 101433      | 2021/11/24         | 2022/11/23          |
| 4    | Measurement<br>Software | EZ           | EZ_EMC<br>(Version<br>NB-03A1-01) | N/A         | N/A                | N/A                 |

|      | Conducted Output Power                     |              |          |            |                    |                     |  |
|------|--------------------------------------------|--------------|----------|------------|--------------------|---------------------|--|
| Item | Kind of<br>Equipment                       | Manufacturer | Type No. | Serial No. | Calibrated<br>Date | Calibrated<br>Until |  |
| 1    | 8960 Series 10<br>Wireless Com<br>Test Set | Agilent      | E5515C   | GB47390193 | 2021/7/23          | 2022/7/22           |  |
| 2    | Radio<br>Communication<br>Analyzer         | Anritsu      | MT8820C  | 6201381608 | 2021/12/15         | 2022/12/14          |  |

|      |                                            | Effective Radia | ated Power and Ra                 | adiated Emission | s                  |                     |
|------|--------------------------------------------|-----------------|-----------------------------------|------------------|--------------------|---------------------|
| Item | Kind of<br>Equipment                       | Manufacturer    | Type No.                          | Serial No.       | Calibrated<br>Date | Calibrated<br>Until |
| 1    | Preamplifier                               | EMCI            | EMC02325                          | 980217           | 2021/4/8           | 2022/4/7            |
| 2    | Preamplifier                               | EMCI            | EMC012645B                        | 980222           | 2021/4/8           | 2022/4/7            |
| 3    | Test Cable                                 | EMCI            | EMC104-SM-100<br>0                | 180809           | 2021/4/8           | 2022/4/7            |
| 4    | Test Cable                                 | EMCI            | EMC104-SM-SM-<br>3000             | 151205           | 2021/4/8           | 2022/4/7            |
| 5    | Test Cable                                 | EMCI            | EMC-SM-SM-700<br>0                | 180408           | 2021/4/8           | 2022/4/7            |
| 6    | MXE EMI<br>Receiver                        | Agilent         | N9038A                            | MY56400087       | 2021/5/27          | 2022/5/26           |
| 7    | Signal Analyzer                            | Agilent         | N9010A                            | MY56480554       | 2021/8/25          | 2022/8/24           |
| 8    | Horn Ant                                   | SCHWARZBECK     | BBHA 9120D                        | 9120D-1342       | 2021/6/2           | 2022/6/1            |
| 9    | Horn Ant                                   | Schwarzbeck     | BBHA 9170                         | 340              | 2021/7/9           | 2022/7/8            |
| 10   | Trilog-Broadband<br>Antenna                | Schwarzbeck     | VULB 9168                         | 9168-352         | 2021/8/11          | 2022/8/10           |
| 11   | 5dB Attenuator                             | EMCI            | EMCI-N-6-05                       | AT-N0625         | 2021/8/11          | 2022/8/10           |
| 12   | Measurement<br>Software                    | EZ              | EZ_EMC<br>(Version<br>NB-03A1-01) | N/A              | N/A                | N/A                 |
| 13   | 8960 Series 10<br>Wireless Com<br>Test Set | Agilent         | E5515C                            | GB47390193       | 2021/7/23          | 2022/7/22           |
| 14   | Radio<br>Communication<br>Analyzer (LTE)   | Anritsu         | MT8821C                           | 6262044728       | 2021/11/28         | 2022/11/27          |

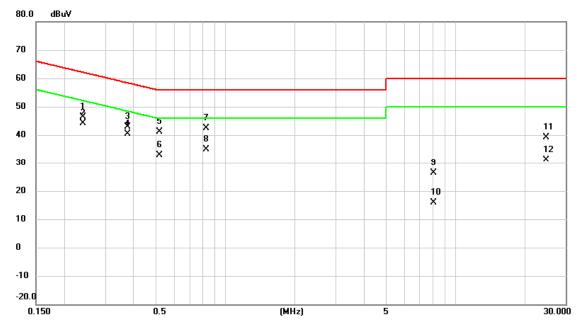
"N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year. Remark:



| 7 EUT TEST PHOTO                                                             |  |  |  |
|------------------------------------------------------------------------------|--|--|--|
| Please refer to document Appendix No.: TP-2112T127-1 (APPENDIX-TEST PHOTOS). |  |  |  |
| B EUT PHOTOS                                                                 |  |  |  |
| Please refer to document Appendix No.: EP-2112T127-1 (APPENDIX-EUT PHOTOS).  |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |

Project No.: 2112T127 Page 16 of 31 Report Version: R00



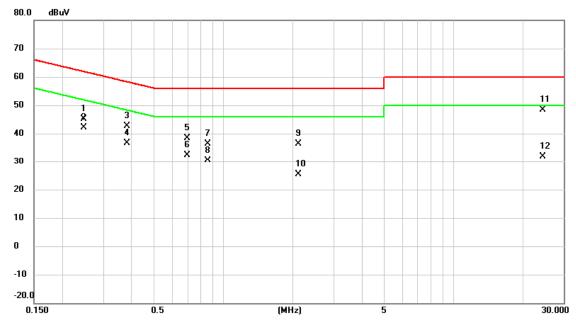



| APPENDIX A | AC POWER LINE CONDUCTED EMISSIONS |
|------------|-----------------------------------|
|            |                                   |
|            |                                   |
|            |                                   |
|            |                                   |
|            |                                   |
|            |                                   |
|            |                                   |
|            |                                   |
|            |                                   |

Project No.: 2112T127 Page 17 of 31 Report Version: R00



| Test Mode      | Normal | Tested Date | 2022/2/16 |
|----------------|--------|-------------|-----------|
| Test Frequency | -      | Phase       | Line      |



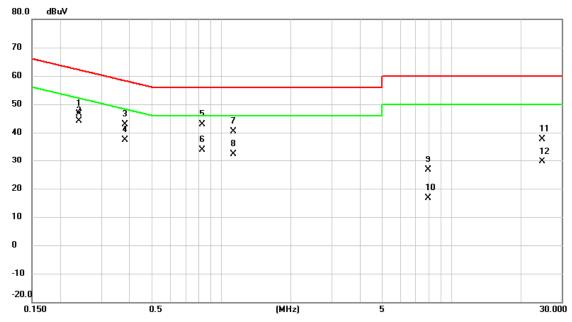

| No. Mk | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |         |
|--------|---------|------------------|-------------------|------------------|-------|--------|----------|---------|
|        | MHz     | dBu∨             | dB                | dBu∨             | dBu∨  | dB     | Detector | Comment |
| 1      | 0.2400  | 36.70            | 9.72              | 46.42            | 62.10 | -15.68 | QP       |         |
| 2      | 0.2400  | 34.34            | 9.72              | 44.06            | 52.10 | -8.04  | AVG      |         |
| 3      | 0.3772  | 33.21            | 9.72              | 42.93            | 58.34 | -15.41 | QP       |         |
| 4 *    | 0.3772  | 30.69            | 9.72              | 40.41            | 48.34 | -7.93  | AVG      |         |
| 5      | 0.5190  | 31.49            | 9.73              | 41.22            | 56.00 | -14.78 | QP       |         |
| 6      | 0.5190  | 23.23            | 9.73              | 32.96            | 46.00 | -13.04 | AVG      |         |
| 7      | 0.8272  | 32.56            | 9.74              | 42.30            | 56.00 | -13.70 | QP       |         |
| 8      | 0.8272  | 25.06            | 9.74              | 34.80            | 46.00 | -11.20 | AVG      |         |
| 9      | 8.0520  | 16.43            | 10.06             | 26.49            | 60.00 | -33.51 | QP       |         |
| 10     | 8.0520  | 5.78             | 10.06             | 15.84            | 50.00 | -34.16 | AVG      |         |
| 11     | 24.6525 | 28.97            | 10.24             | 39.21            | 60.00 | -20.79 | QP       |         |
| 12     | 24.6525 | 20.84            | 10.24             | 31.08            | 50.00 | -18.92 | AVG      |         |

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



| Ш |                |        |             |           | 1 |
|---|----------------|--------|-------------|-----------|---|
|   | Test Mode      | Normal | Tested Date | 2022/2/16 |   |
|   | Test Frequency | -      | Phase       | Neutral   |   |




| No. Mk | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |         |
|--------|---------|------------------|-------------------|------------------|-------|--------|----------|---------|
|        | MHz     | dBu∨             | dB                | dBu∨             | dBu∨  | dB     | Detector | Comment |
| 1      | 0.2468  | 35.34            | 9.72              | 45.06            | 61.86 | -16.80 | QР       |         |
| 2 *    | 0.2468  | 32.44            | 9.72              | 42.16            | 51.86 | -9.70  | AVG      |         |
| 3      | 0.3817  | 32.96            | 9.73              | 42.69            | 58.24 | -15.55 | QP       |         |
| 4      | 0.3817  | 26.99            | 9.73              | 36.72            | 48.24 | -11.52 | AVG      |         |
| 5      | 0.6990  | 28.70            | 9.74              | 38.44            | 56.00 | -17.56 | QP       |         |
| 6      | 0.6990  | 22.76            | 9.74              | 32.50            | 46.00 | -13.50 | AVG      |         |
| 7      | 0.8587  | 26.55            | 9.75              | 36.30            | 56.00 | -19.70 | QР       |         |
| 8      | 0.8587  | 20.65            | 9.75              | 30.40            | 46.00 | -15.60 | AVG      |         |
| 9      | 2.1188  | 26.67            | 9.78              | 36.45            | 56.00 | -19.55 | QP       |         |
| 10     | 2.1188  | 15.59            | 9.78              | 25.37            | 46.00 | -20.63 | AVG      |         |
| 11     | 24.4298 | 38.03            | 10.41             | 48.44            | 60.00 | -11.56 | QP       |         |
| 12     | 24.4298 | 21.56            | 10.41             | 31.97            | 50.00 | -18.03 | AVG      |         |

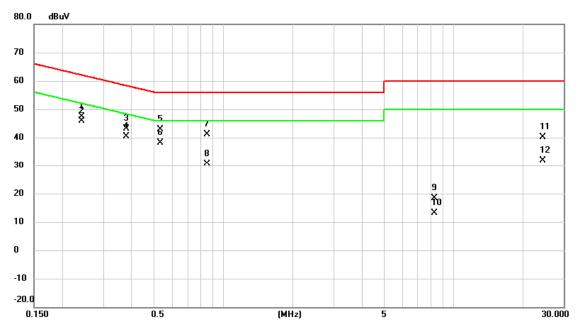
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Report Version: R00 Page 19 of 31 Project No.: 2112T127



| Ш |                |      |             |           |  |
|---|----------------|------|-------------|-----------|--|
|   | Test Mode      | Idle | Tested Date | 2022/2/16 |  |
|   | Test Frequency | -    | Phase       | Line      |  |




| No. N | Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |         |
|-------|-----|---------|------------------|-------------------|------------------|-------|--------|----------|---------|
|       |     | MHz     | dBu∨             | dB                | dBu∨             | dBu∨  | dB     | Detector | Comment |
| 1     |     | 0.2400  | 36.86            | 9.72              | 46.58            | 62.10 | -15.52 | QP       |         |
| 2     | *   | 0.2400  | 34.53            | 9.72              | 44.25            | 52.10 | -7.85  | AVG      |         |
| 3     |     | 0.3817  | 33.21            | 9.72              | 42.93            | 58.24 | -15.31 | QP       |         |
| 4     |     | 0.3817  | 27.63            | 9.72              | 37.35            | 48.24 | -10.89 | AVG      |         |
| 5     |     | 0.8250  | 33.19            | 9.74              | 42.93            | 56.00 | -13.07 | QP       |         |
| 6     |     | 0.8250  | 24.12            | 9.74              | 33.86            | 46.00 | -12.14 | AVG      |         |
| 7     |     | 1.1242  | 30.66            | 9.74              | 40.40            | 56.00 | -15.60 | QР       |         |
| 8     |     | 1.1242  | 22.63            | 9.74              | 32.37            | 46.00 | -13.63 | AVG      |         |
| 9     |     | 7.9148  | 16.47            | 10.05             | 26.52            | 60.00 | -33.48 | QP       |         |
| 10    |     | 7.9148  | 6.52             | 10.05             | 16.57            | 50.00 | -33.43 | AVG      |         |
| 11    |     | 24.6480 | 27.37            | 10.24             | 37.61            | 60.00 | -22.39 | QP       |         |
| 12    |     | 24.6480 | 19.51            | 10.24             | 29.75            | 50.00 | -20.25 | AVG      |         |

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Page 20 of 31 Report Version: R00 Project No.: 2112T127



| Ш |                |      |             |           | 1 |
|---|----------------|------|-------------|-----------|---|
|   | Test Mode      | Idle | Tested Date | 2022/2/16 |   |
|   | Test Frequency | -    | Phase       | Neutral   |   |



| No. N | Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |         |
|-------|-----|---------|------------------|-------------------|------------------|-------|--------|----------|---------|
|       |     | MHz     | dBu∨             | dB                | dBu∨             | dBu∨  | dB     | Detector | Comment |
| 1     |     | 0.2423  | 37.60            | 9.72              | 47.32            | 62.02 | -14.70 | QР       |         |
| 2     | *   | 0.2423  | 36.16            | 9.72              | 45.88            | 52.02 | -6.14  | AVG      |         |
| 3     |     | 0.3795  | 33.46            | 9.73              | 43.19            | 58.29 | -15.10 | QP       |         |
| 4     |     | 0.3795  | 30.71            | 9.73              | 40.44            | 48.29 | -7.85  | AVG      |         |
| 5     |     | 0.5347  | 33.14            | 9.74              | 42.88            | 56.00 | -13.12 | QP       |         |
| 6     |     | 0.5347  | 28.43            | 9.74              | 38.17            | 46.00 | -7.83  | AVG      |         |
| 7     |     | 0.8475  | 31.31            | 9.75              | 41.06            | 56.00 | -14.94 | QP       |         |
| 8     |     | 0.8475  | 20.86            | 9.75              | 30.61            | 46.00 | -15.39 | AVG      |         |
| 9     |     | 8.2703  | 8.38             | 10.10             | 18.48            | 60.00 | -41.52 | QP       |         |
| 10    |     | 8.2703  | 2.96             | 10.10             | 13.06            | 50.00 | -36.94 | AVG      |         |
| 11    | 2   | 24.4410 | 29.74            | 10.41             | 40.15            | 60.00 | -19.85 | QP       |         |
| 12    |     | 24.4410 | 21.53            | 10.41             | 31.94            | 50.00 | -18.06 | AVG      |         |

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Page 21 of 31 Report Version: R00 Project No.: 2112T127





# 

Project No.: 2112T127 Page 22 of 31 Report Version: R00



### **Conducted Output Power and Calculated ERP:**

### LTE Band 14 Power:

| Band | BW<br>(MHz) | Channel | Frequency<br>(MHz) | Mode    | UL RB<br>Allocation | UL RB<br>Offset | MPR   | Average power | ERP power (dBm) | ERP power<br>(W) |
|------|-------------|---------|--------------------|---------|---------------------|-----------------|-------|---------------|-----------------|------------------|
|      | (1711 12)   |         | (1011 12)          |         | 1                   | 0               | 0     | 24.67         | 20.47           | 0.111            |
|      |             |         |                    |         | 1                   | 12              | 0     | 24.56         | 20.36           | 0.109            |
|      |             |         |                    | QPSK    | 1                   | 24              | 0     | 24.50         | 20.30           | 0.107            |
|      |             |         |                    |         | 12                  | 0               | 1     | 23.68         | 19.48           | 0.089            |
|      |             |         |                    | Qi Oit  | 12                  | 6               | 1     | 23.55         | 19.35           | 0.086            |
|      |             |         |                    |         | 12                  | 11              | 1     | 23.46         | 19.26           | 0.084            |
|      |             |         |                    |         | 25                  | 0               | 1     | 23.62         | 19.42           | 0.087            |
|      |             | 23305   | 790.5              |         | 1                   | 0               | 1     | 23.60         | 19.40           | 0.087            |
|      |             |         |                    |         | 1                   | 12              | 1     | 23.46         | 19.26           | 0.084            |
|      |             |         |                    |         | 1                   | 24              | 1     | 23.38         | 19.18           | 0.083            |
|      |             |         |                    | 16QAM   | 12                  | 0               | 2     | 22.67         | 18.47           | 0.070            |
|      |             |         |                    |         | 12                  | 6               | 2     | 22.56         | 18.36           | 0.069            |
|      |             |         |                    |         | 12                  | 11              | 2     | 22.50         | 18.30           | 0.068            |
|      |             |         |                    |         | 25                  | 0               | 2     | 21.68         | 17.48           | 0.056            |
|      |             |         |                    |         | 1                   | 0               | 0     | 24.75         | 20.55           | 0.114            |
|      |             |         |                    |         | 1                   | 12              | 0     | 24.64         | 20.44           | 0.111            |
|      |             |         |                    |         | 1                   | 24              | 0     | 24.58         | 20.38           | 0.109            |
|      |             |         | QPSK               | 12      | 0                   | 1               | 23.76 | 19.56         | 0.090           |                  |
|      |             |         | QI SIX             | 12      | 6                   | 1               | 23.63 | 19.43         | 0.088           |                  |
|      |             |         |                    | 12      | 11                  | 1               | 23.54 | 19.34         | 0.086           |                  |
|      |             |         | 793.0              |         | 25                  | 0               | 1     | 23.70         | 19.50           | 0.089            |
| 14   | 5           | 23330   |                    |         | 1                   | 0               | 1     | 23.68         | 19.48           | 0.089            |
|      |             |         |                    | 16QAM   | 1                   | 12              | 1     | 23.54         | 19.34           | 0.086            |
|      |             |         |                    |         | 1                   | 24              | 1     | 23.46         | 19.26           | 0.084            |
|      |             |         |                    |         | 12                  | 0               | 2     | 22.75         | 18.55           | 0.072            |
|      |             |         |                    |         | 12                  | 6               | 2     | 22.64         | 18.44           | 0.070            |
|      |             |         |                    |         | 12                  | 11              | 2     | 22.58         | 18.38           | 0.069            |
|      |             |         |                    |         | 25                  | 0               | 2     | 21.76         | 17.56           | 0.057            |
|      |             |         |                    |         | 1                   | 0               | 0     | 24.72         | 20.52           | 0.113            |
|      |             |         |                    |         | 1                   | 12              | 0     | 24.61         | 20.41           | 0.110            |
|      |             |         |                    |         | 1                   | 24              | 0     | 24.55         | 20.35           | 0.108            |
|      |             |         |                    | QPSK    | 12                  | 0               | 1     | 23.73         | 19.53           | 0.090            |
|      |             |         |                    | α. σ. τ | 12                  | 6               | 1     | 23.60         | 19.40           | 0.087            |
|      |             |         |                    |         | 12                  | 11              | 1     | 23.51         | 19.31           | 0.085            |
|      |             |         |                    |         | 25                  | 0               | 1     | 23.67         | 19.47           | 0.089            |
|      |             | 23355   | 795.5              |         | 1                   | 0               | 1     | 23.65         | 19.45           | 0.088            |
|      |             |         | 1                  |         | 1                   | 12              | 1     | 23.51         | 19.31           | 0.085            |
|      |             |         |                    |         | 1                   | 24              | 1     | 23.43         | 19.23           | 0.084            |
|      |             |         |                    | 16QAM   | 12                  | 0               | 2     | 22.72         | 18.52           | 0.004            |
|      |             |         |                    | IOQAM   | 12                  | 6               | 2     | 22.72         | 18.41           | 0.069            |
|      |             |         |                    |         | 12                  | 11              | 2     | 22.55         | 18.35           | 0.069            |
|      |             |         |                    |         | 25                  | 0               | 2     | 21.73         | 17.53           | 0.068            |
|      |             | l       | L                  |         | 25                  | U               |       | 21.13         | 17.55           | 0.037            |

### NOTE:

(1) EIRP = Average power + Antenna gain.

(2) ERP = EIRP - 2.15. (3) P(W) = 1 W  $\cdot$  10<sup>(P(dBm)/10)</sup> / 1000

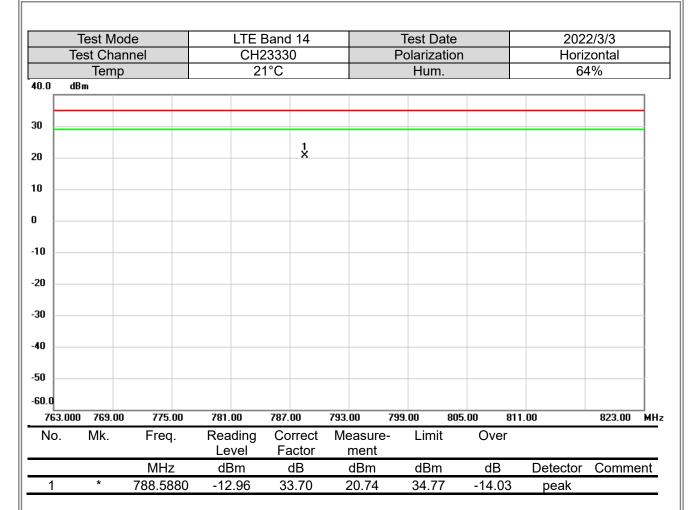
Report Version: R00 Page 23 of 31 Project No.: 2112T127



| Band | BW<br>(MHz) | Channel | Frequency<br>(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | MPR | Average power | ERP power (dBm) | ERP power<br>(W) |    |    |   |       |       |       |
|------|-------------|---------|--------------------|-------|---------------------|-----------------|-----|---------------|-----------------|------------------|----|----|---|-------|-------|-------|
|      | , ,         |         |                    |       | 1                   | 0               | 0   | 24.83         | 20.63           | 0.116            |    |    |   |       |       |       |
|      |             |         |                    |       | 1                   | 24              | 0   | 24.72         | 20.52           | 0.113            |    |    |   |       |       |       |
|      |             |         |                    |       | 1                   | 49              | 0   | 24.66         | 20.46           | 0.111            |    |    |   |       |       |       |
|      |             |         |                    | QPSK  | 25                  | 0               | 1   | 23.84         | 19.64           | 0.092            |    |    |   |       |       |       |
|      |             |         |                    |       |                     |                 |     |               |                 |                  | 25 | 12 | 1 | 23.71 | 19.51 | 0.089 |
|      |             | 23330   | 793.0              |       | 25                  | 24              | 1   | 23.62         | 19.42           | 0.087            |    |    |   |       |       |       |
| 14   | 10          |         |                    |       | 50                  | 0               | 1   | 23.78         | 19.58           | 0.091            |    |    |   |       |       |       |
| 14   | 10          | 23330   |                    |       | 1                   | 0               | 1   | 23.76         | 19.56           | 0.090            |    |    |   |       |       |       |
|      |             |         |                    |       | 1                   | 24              | 1   | 23.62         | 19.42           | 0.087            |    |    |   |       |       |       |
|      |             |         |                    |       | 1                   | 49              | 1   | 23.54         | 19.34           | 0.086            |    |    |   |       |       |       |
|      |             |         |                    | 16QAM | 25                  | 0               | 2   | 22.83         | 18.63           | 0.073            |    |    |   |       |       |       |
|      |             |         |                    |       | 25                  | 12              | 2   | 22.72         | 18.52           | 0.071            |    |    |   |       |       |       |
|      |             |         |                    |       | 25                  | 24              | 2   | 22.66         | 18.46           | 0.070            |    |    |   |       |       |       |
|      |             |         |                    |       | 50                  | 0               | 2   | 21.84         | 17.64           | 0.058            |    |    |   |       |       |       |

### NOTE:

- (1) EIRP = Average power + Antenna gain. (2) ERP = EIRP 2.15. (3) P(W) = 1 W · 10<sup>(P(dBm) / 10)</sup> / 1000


Report Version: R00 Page 24 of 31 Project No.: 2112T127



| Radia |         | Power:   |                  |                   |                  |             |        |          |        |     |
|-------|---------|----------|------------------|-------------------|------------------|-------------|--------|----------|--------|-----|
|       | Test M  |          |                  | Band 14           |                  | Test Date   |        |          | 2/3/3  |     |
|       | Test Ch |          |                  | 23330             |                  | Polarizatio | n      |          | tical  |     |
|       | Tem     | ıp       | 2                | 1°C               |                  | Hum.        |        | 64       | 1%     |     |
| 40.0  | dBm     |          |                  |                   |                  |             |        |          |        | 7   |
| 30    |         |          |                  |                   |                  |             |        |          |        | 1   |
| 50    |         |          |                  |                   |                  |             |        |          |        | 7   |
| 20 _  |         |          |                  | 1<br>X            |                  |             |        |          |        | -   |
| 10    |         |          |                  | ×                 |                  |             |        |          |        | -   |
| o     |         |          |                  |                   |                  |             |        |          |        | -   |
| -10   |         |          |                  |                   |                  |             |        |          |        |     |
| -20   |         |          |                  |                   |                  |             |        |          |        |     |
| -30   |         |          |                  |                   |                  |             |        |          |        | -   |
| -40   |         |          |                  |                   |                  |             |        |          |        | -   |
| -50 _ |         |          |                  |                   |                  |             |        |          |        | -   |
| -60.0 |         |          |                  |                   |                  |             |        |          |        |     |
| 763.  |         |          | 781.00           | 787.00            |                  |             |        | 1.00     | 823.00 | МН  |
| No.   | Mk.     | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | - Limit     | Over   |          |        |     |
|       |         | MHz      | dBm              | dB                | dBm              | dBm         | dB     | Detector | Comme  | ent |
| 1     | *       | 788.6440 | -18.77           | 34.17             | 15.40            | 34.77       | -19.37 | peak     |        |     |

- (1) Measurement Value = Reading Level + Correct Factor.
  (2) Margin Level = Measurement Value Limit Value.





- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



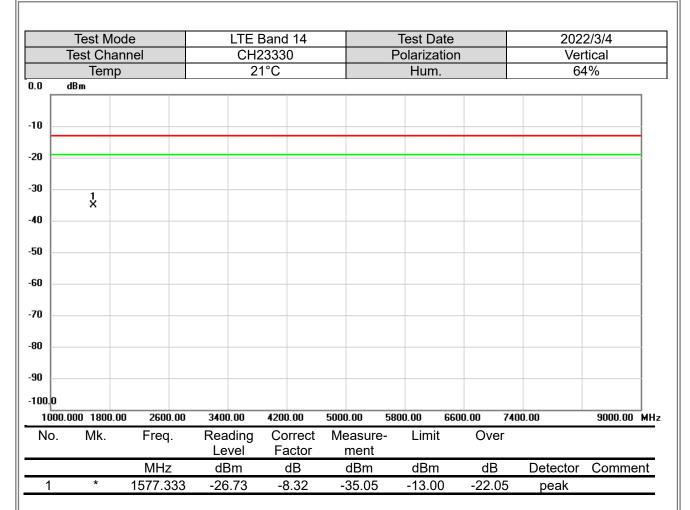


## APPENDIX C RADIATED SPURIOUS EMISSIONS

Project No.: 2112T127 Page 27 of 31 Report Version: R00

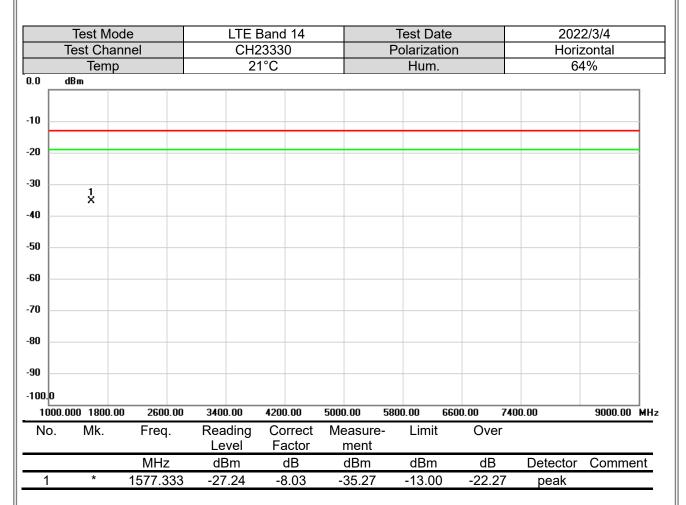





- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.






- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

**End of Test Report**