Report No.: FG102302E : 01 # FCC RADIO TEST REPORT FCC ID : 2AJN7-TP00130CU Equipment : Notebook Computer Brand Name : Lenovo Model Name : TP00130C; TP00130D Applicant : LC Future Center Limited Taiwan Branch 7F., No.780, Beian Rd., Zhongshan Dist., Taipei 104, Taiwan Manufacturer: LCFC (HeFei) Electronics Technology Co., Ltd. No. 3188-1, Yungu Road (Hefei Export Processing Zone), Hefei Economics & Technology Development Area, Anhui, CHINA Standard : FCC 47 CFR Part 2, Part 27(D) Equipment: Fibocom FM350-GL tested inside of Lenovo Notebook Computer. The product was received on Oct. 22, 2021 and testing was performed from Dec. 03, 2021 to Feb. 15, 2022. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI / TIA-603-E and has been in compliance with the applicable technical standards. The test results in this partial report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full. Approved by: Louis Wu Lunis Wu Sporton International Inc. Wensan Laboratory TEL: 0800-800005 Page Number : 1 of 18 FAX: 886-3-327-0855 Issued Date : Feb. 22, 2022 E-mail : Alex@sporton.com.tw Report Version ## **Table of Contents** | His | tory c | of this test report | 3 | |-----|--------|--|----| | Su | nmar | y of Test Result | 4 | | 1 | Gene | eral Description | 5 | | | 1.1 | Product Feature of Equipment Under Test | 5 | | | 1.2 | Product Specification of Equipment Under Test | 6 | | | 1.3 | Modification of EUT | 6 | | | 1.4 | Testing Site | 6 | | | 1.5 | Applied Standards | 7 | | 2 | Test | Configuration of Equipment Under Test | 8 | | | 2.1 | Test Mode | 8 | | | 2.2 | Connection Diagram of Test System | 8 | | | 2.3 | Support Unit used in test configuration and system | 9 | | | 2.4 | Frequency List of Low/Middle/High Channels | 9 | | 3 | Conc | ducted Test Items | 10 | | | 3.1 | Measuring Instruments | 10 | | | 3.2 | Conducted Output Power Measurement | 11 | | | 3.3 | Effective Isotropic Radiated Power | 12 | | 4 | Radia | ated Test Items | 13 | | | 4.1 | Measuring Instruments | 13 | | | 4.2 | Radiated Spurious Emission Measurement | 15 | | 5 | List o | of Measuring Equipment | 16 | | 6 | Unce | ertainty of Evaluation | 18 | | Ap | | x A. Test Results of Conducted Test | | | Ap | pendi | x B. Test Results of Radiated Test | | | Αpı | pendi | x C. Test Setup Photographs | | TEL: 0800-800005 FAX: 886-3-327-0855 E-mail: Alex@sporton.com.tw Report Template No.: BU5-FGLTE27D Version 2.4 Page Number : 2 of 18 Issued Date : Feb. 22, 2022 Report No. : FG1O2302E Report Version : 01 ## History of this test report Report No. : FG1O2302E | Report No. | Version | Description | Issued Date | |------------|---------|-------------------------|---------------| | FG1O2302E | 01 | Initial issue of report | Feb. 22, 2022 | TEL: 0800-800005 Page Number : 3 of 18 FAX: 886-3-327-0855 Issued Date : Feb. 22, 2022 ## **Summary of Test Result** Report No.: FG102302E | Report Ref Std. Clause Clause | | Test Items | Result
(PASS/FAIL) | Remark | |-------------------------------|--|---|-----------------------|---| | 3.2 | §2.1046 | Conducted Output Power | Reporting only | - | | - | - | Peak-to-Average Ratio | - | See Note | | 3.3 | §27.50 (a)(3) Effective Isotropic Radiated Power | | Pass | - | | - | §2.1049 | Occupied Bandwidth | - | See Note | | - | §2.1051
§27.53 (a)(4) | Conducted Band Edge Measurement | - | See Note | | - | §2.1051
§27.53 (a)(4) | Conducted Spurious Emission | - | See Note | | - | §2.1055
§27.54 | Frequency Stability Temperature & Voltage | - | See Note | | 4.2 | §2.1053
§27.53 (a)(4) | Radiated Spurious Emission | Pass | Under limit
6.69 dB at
4611.000 MHz | #### Note: - The certified module (model: FM350-GL) which supports normal mode and TX switching mode being integrated into a notebook computer. Spot check on both modes were performed and no degradation occur. Thus the module test results were leveraged in this report and additionally reporting the spot check results in this report. - In normal mode, Conducted power was verified to be consistent with the original modular approval, so the output power level in the original modular grant is referenced in this report for determining EIRP of this host product, and verified the TX switching mode of Radiated Spurious Emission and Conducted power. #### **Declaration of Conformity:** - The test results (PASS/FAIL) with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results. - 2. The measurement uncertainty please refer to this report "Uncertainty of Evaluation". #### **Comments and Explanations:** The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity. Reviewed by: Sheng Kuo Report Producer: Tina Chuang TEL: 0800-800005 Page Number : 4 of 18 FAX: 886-3-327-0855 Issued Date : Feb. 22, 2022 E-mail : Alex@sporton.com.tw Report Version : 01 ## 1 General Description ## 1.1 Product Feature of Equipment Under Test | Product Feature | | | | | | | |---------------------------------|------------------------------------|--|--|--|--|--| | Equipment | Notebook Computer | | | | | | | Brand Name | Lenovo | | | | | | | Model Name | TP00130C; TP00130D | | | | | | | FCC ID | 2AJN7-TP00130CU | | | | | | | Sample 1 | EUT with Amphenol Antenna | | | | | | | Sample 2 | EUT with Speed Antenna | | | | | | | | WCDMA/HSPA/LTE/5G NR/GNSS/NFC/UWB | | | | | | | | WLAN 11a/b/g/n HT20/HT40 | | | | | | | EUT supports Radios application | WLAN 11ac VHT20/VHT40/VHT80/VHT160 | | | | | | | | WLAN 11ax HE20/HE40/HE80/HE160 | | | | | | | | Bluetooth BR/EDR/LE | | | | | | | EUT Stage | Production Unit | | | | | | Report No.: FG1O2302E #### Remark: - 1. The above EUT's information was declared by manufacturer. - 2. Equipment: Fibocom FM350-GL tested inside of Lenovo Notebook Computer. | | Normal mode | TX switching mode | |----------------|--|--------------------------------| | | TX/RX | TX/RX | | | WCDMA: 2/4/5 | WCDMA: 5 | | Ant_0 (Main) | LTE: 2/4/5/7/12/13/14/17/25/26/30/38/66/71 | LTE: 5/12/13/14/17/26/41/48/71 | | | NR: 2/5/7/25/30/38/66/71 | NR: 5/41/71/77/78 | | | LTE : 41/48 | WCDMA : 2/4 | | IAnt 2 (MIMO2) | NR : 41/77/78 | LTE: 2/4/7/25/30/38/66 | | | INK . 41/11/10 | NR: 2/7/25/30/38/66 | | WWAN Antenna Information | | | | | | | | |--------------------------|--------------|-------------|-----------------|------------------|--|--|--| | | Manufacturer | Amphenol | Peak gain (dBi) | LTE Band 30:0.6 | | | | | Main Antenna | Part number | DC33001VG40 | Туре | PIFA | | | | | Walli Antenna | Manufacturer | Speed | Peak gain (dBi) | LTE Band 30:0.6 | | | | | | Part number | DC33001VH40 | Туре | PIFA | | | | | | Manufacturer | Amphenol | Peak gain (dBi) | LTE Band 30: 0.8 | | | | | MIMO 2 Antenna | Part number | DC33001VG30 | Туре | PIFA | | | | | Willivio 2 Afficerifia | Manufacturer | Speed | Peak gain (dBi) | LTE Band 30: 0.8 | | | | | | Part number | DC33001VH30 | Туре | PIFA | | | | **Remark:** The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary. E-mail : Alex@sporton.com.tw Report Version : 01 ## 1.2 Product Specification of Equipment Under Test | Product Specification is subject to this standard | | | | | | |---|--|--|--|--|--| | Tx Frequency | 2307.5 MHz ~ 2312.5 MHz | | | | | | Rx Frequency | 2352.5 MHz ~ 2357.5 MHz | | | | | | Bandwidth | 5MHz / 10MHz | | | | | | Maximum Output Power to Antenna | <main antenna="">: 21.88 dBm
<mimo 2="" antenna="">: 21.32 dBm</mimo></main> | | | | | | Type of Modulation | QPSK / 16QAM / 64QAM / 256QAM | | | | | Report No.: FG1O2302E ## 1.3 Modification of EUT No modifications are made to the EUT during all test items. ## 1.4 Testing Site | Test Site | Sporton International Inc. EMC & Wireless Communications Laboratory | |-----------------------|--| | Test Site Location | No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333 | | Test Site No. | Sporton Site No. | | rest site No. | TH03-HY (TAF Code: 1190) | | Test Engineer | Haoen Zhang | | Temperature (°C) | 22.1~23.4 | | Relative Humidity (%) | 51.8~55.6 | | Remark | The Conducted test item subcontracted to Sporton International Inc. EMC & Wireless Communications Laboratory | | Test Site | Sporton International Inc. Wensan Laboratory | |-----------------------|---| | Test Site Location | No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist.,
Taoyuan City 333010 | | Test Site No. | Sporton Site No. | | rest site No. | 03CH13-HY | | Test Engineer | Yuan Lee, Jacky Hong, Wilson Wu, and Peter Liao | | Temperature (°C) | 21~25 | | Relative Humidity (%) | 48~58 | Note: The test site complies with ANSI C63.4 2014 requirement. FCC Designation No.: TW1190 and TW3786 TEL: 0800-800005 Page Number : 6 of 18 FAX: 886-3-327-0855 Issued Date : Feb. 22, 2022 E-mail : Alex@sporton.com.tw Report Version : 01 ## 1.5 Applied Standards According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards: Report No.: FG102302E - + ANSI C63.26-2015 - FCC 47 CFR Part 2, Part 27(D) - ANSI / TIA-603-E - FCC KDB 971168 Power Meas License Digital Systems D01 v03r01 - FCC KDB 412172 D01 Determining ERP and EIRP v01r01 - FCC KDB 414788 D01 Radiated Test Site v01r01 #### Remark: - 1. All test items were verified and recorded according to the standards and without any deviation during the test. - 2. The TAF code is not including all the FCC KDB listed without accreditation. TEL: 0800-800005 Page Number : 7 of 18 FAX: 886-3-327-0855 Issued Date : Feb. 22, 2022 ## 2 Test Configuration of Equipment Under Test ### 2.1 Test Mode Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas. License Digital Systems v03r01 with maximum output power. Report No.: FG102302E | | | | Ва | andwic | lth (Mi | Hz) | | | Modu | ulation | | | RB# | | Test | t Chai | nnel | |----------------------------------|--|-----|----|--------|---------|-----|------|------|-------|---------|--------|---|------|--------|------|--------|------| | Test Items | Band | 1.4 | 3 | 5 | 10 | 15 | 20 | QPSK | 16QAM | 64QAM | 256QAM | 1 | Half | Full | L | М | н | | Max. Output
Power | 30 | - | - | v | v | - | - | V | v | v | v | v | v | v | ٧ | v | v | | E.I.R.P | 30 | - | - | v | v | - | - | v | v | v | v | | 1 | Max. F | ower | , | | | Radiated
Spurious
Emission | 30 | - | - | v | v | - | - | v | | | | v | | | v | v | v | | Remark | The mark "v " means that this configuration is chosen for testing The mark "-" means that this bandwidth is not supported. The device is investigated from 30MHz to 10 times of fundamental signal for radiated spurious emission test under different RB size/offset and modulations in exploratory test. Subsequently, only the worst case emissions are reported. For modulation of 256QAM, the maximum power of 256QAM is lower than other modulation (QPSK/16QAM/64QAM), therefore, for Normal Mode, according to engineering evaluation, we choose higher power (QPSK/16QAM/64QAM) to perform all tests and show in the report. | | | | | | 4M), | | | | | | | | | | | ## 2.2 Connection Diagram of Test System ## 2.3 Support Unit used in test configuration and system | ŀ | tem | Equipment Brand Name | | Equipment Brand Name Mo | | Equipment Brand Name Model N | | Model No. | I No. FCC ID Data Cak | | Power Cord | |---|-----|----------------------|---------|-------------------------|-----|------------------------------|-------------------|-----------|-----------------------|--|------------| | | 1. | Earphone | SONY | MH750 | N/A | Unshielded, 1.2 m | N/A | | | | | | | 2. | System Simulator | Anritsu | MT8821C | N/A | N/A | Unshielded, 1.8 m | | | | | Report No.: FG1O2302E ## 2.4 Frequency List of Low/Middle/High Channels | LTE Band 30 Channel and Frequency List | | | | | | | | | |---|-----------|--------|-------|----------------------|--|--|--|--| | BW [MHz] Channel/Frequency(MHz) Lowest Middle Highest | | | | | | | | | | 10 | Channel | - | 27710 | - | | | | | | 10 | Frequency | - | 2310 | Highest 27735 2312.5 | | | | | | - | Channel | 27685 | 27710 | -
-
27735 | | | | | | 5 | Frequency | 2307.5 | 2310 | 2312.5 | | | | | TEL: 0800-800005 Page Number : 9 of 18 FAX: 886-3-327-0855 Issued Date : Feb. 22, 2022 ## 3 Conducted Test Items ## 3.1 Measuring Instruments See list of measuring instruments of this test report. ### 3.1.1 Test Setup ### 3.1.2 Conducted Output Power Report No.: FG1O2302E ### 3.1.3 Test Result of Conducted Test Please refer to Appendix A. TEL: 0800-800005 Page Number : 10 of 18 FAX: 886-3-327-0855 Issued Date : Feb. 22, 2022 E-mail: Alex@sporton.com.tw Report Version : 01 E-mail : Alex@sporton.com.tw Report Template No.: BU5-FGLTE27D Version 2.4 ### 3.2 Conducted Output Power Measurement ### 3.2.1 Description of the Conducted Output Power Measurement A base station simulator was used to establish communication with the EUT. Its parameters were set to transmit the maximum power on the EUT. The measured power in the radio frequency on the transmitter output terminals shall be reported. Report No.: FG102302E #### 3.2.2 Test Procedures - 1. The transmitter output port was connected to the system simulator. - 2. Set EUT at maximum power through the system simulator. - 3. Select lowest, middle, and highest channels for each band and different modulation. - 4. Measure and record the power level from the system simulator. TEL: 0800-800005 Page Number : 11 of 18 FAX: 886-3-327-0855 Issued Date : Feb. 22, 2022 ## 3.3 Effective Isotropic Radiated Power ### 3.3.1 Description of Effective Isotropic Radiated Power For mobile and portable stations transmitting in the 2305-2315 MHz band or the 2350-2360 MHz band, the average EIRP must not exceed 50 milliwatts within any 1 megahertz of authorized bandwidth, except that for mobile and portable stations compliant with 3GPP LTE standards or another advanced mobile broadband protocol that avoids concentrating energy at the edge of the operating band the average EIRP must not exceed 250 milliwatts within any 5 megahertz of authorized bandwidth but may exceed 50 milliwatts within any 1 megahertz of authorized bandwidth. For mobile and portable stations using time division duplexing (TDD) technology, the duty cycle must not exceed 38 percent in the 2305-2315 MHz and 2350-2360 MHz bands. Mobile and portable stations using FDD technology are restricted to transmitting in the 2305-2315 MHz band. Power averaging shall not include intervals in which the transmitter is off. Report No.: FG102302E **Remark:** EIRP use worst case measure the total power to cover per 5MHz Power. According to KDB 412172 D01 Power Approach, $EIRP = P_T + G_T - L_C$, where P_T = transmitter output power in dBm G_T = gain of the transmitting antenna in dBi L_C = signal attenuation in the connecting cable between the transmitter and antenna in dB #### 3.3.2 Test Procedures The testing follows ANSI C63.26-2015 Section 5.2.4.5 1. Determine the EIRP by adding the effective antenna gain to the adjusted power level. TEL: 0800-800005 Page Number : 12 of 18 FAX: 886-3-327-0855 Issued Date : Feb. 22, 2022 ### 4 Radiated Test Items ## 4.1 Measuring Instruments See list of measuring instruments of this test report. ### 4.1.1 Test Setup #### For radiated test below 30MHz Report No.: FG1O2302E #### For radiated test from 30MHz to 1GHz TEL: 0800-800005 Page Number : 13 of 18 FAX: 886-3-327-0855 Issued Date : Feb. 22, 2022 E-mail: Alex@sporton.com.tw Report Version : 01 #### For radiated test from 1GHz to 18GHz Report No.: FG102302E #### For radiated test above 18GHz ### 4.1.2 Test Result of Radiated Test Please refer to Appendix B. #### Note: The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported. There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar. TEL: 0800-800005 Page Number : 14 of 18 FAX: 886-3-327-0855 Issued Date : Feb. 22, 2022 ## 4.2 Radiated Spurious Emission Measurement ### 4.2.1 Description of Radiated Spurious Emission Measurement The radiated spurious emission was measured by substitution method according to ANSI / TIA-603-E The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 70 + 10 log (P) dB. Report No.: FG102302E : 01 Report Version The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic. #### 4.2.2 Test Procedures The testing follows FCC KDB 971168 D01 v03r01 Section 7 and ANSI / TIA-603-E Section 2.2.12. - The EUT was placed on a turntable with 0.8 meter height for frequency below 1GHz and 1.5 meter height for frequency above 1GHz respectively above ground. - 2. The EUT was set 3 meters from the receiving antenna mounted on the antenna tower. - 3. The table was rotated 360 degrees to determine the position of the highest spurious emission. - 4. The height of the receiving antenna is varied between 1m to 4m to search the maximum spurious emission for both horizontal and vertical polarizations. - 5. During the measurement, the system simulator parameters were set to force the EUT transmitting at maximum output power. - 6. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission. - 7. A horn antenna was substituted in place of the EUT and was driven by a signal generator. - 8. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission. ``` EIRP (dBm) = S.G. Power – Tx Cable Loss + Tx Antenna Gain ERP (dBm) = EIRP - 2.15 ``` The RF fundamental frequency should be excluded against the limit line in the operating frequency band. The limit line is derived from 70 + 10log(P)dB below the transmitter power P(Watts) - = P(W) [70 + 10log(P)] (dB) - = [30 + 10log(P)] (dBm) [70 + 10log(P)] (dB) - = -40 dBm. TEL: 0800-800005 Page Number : 15 of 18 FAX: 886-3-327-0855 Issued Date : Feb. 22, 2022 E-mail : Alex@sporton.com.tw Report Template No.: BU5-FGLTE27D Version 2.4 ## 5 List of Measuring Equipment | Instrument | Brand Name | Model No. | Serial No. | Characteristics | Calibration
Date | Test Date | Due Date | Remark | |-------------------------|--------------------|-------------------------------------|-------------|-------------------------------|---------------------|---------------------------------|---------------|--------------------------| | Loop Antenna | Rohde &
Schwarz | HFH2-Z2 | 100488 | 9kHz~30MHz | Sep. 07, 2021 | Dec. 03, 2021~
Jan. 14, 2022 | Sep. 06, 2022 | Radiation
(03CH13-HY) | | Bilog Antenna | TESEQ | CBL
6111D&00800
N1D01N-06 | 40103 & 07 | 30MHz~1GHz | Apr. 28, 2021 | Dec. 03, 2021~
Jan. 14, 2022 | Apr. 27, 2022 | Radiation
(03CH13-HY) | | Bilog Antenna | TESEQ | CBL
6111D&00800
N1D01N-06 | 41912 & 05 | 30MHz~1GHz | Feb. 08, 2021 | Dec. 03, 2021~
Jan. 14, 2022 | Feb. 07, 2022 | Radiation
(03CH13-HY) | | Amplifier | SONOMA | 310N | 371607 | 9kHz~1GHz | Jul. 05, 2021 | Dec. 03, 2021~
Jan. 14, 2022 | Jul. 04, 2022 | Radiation
(03CH13-HY) | | Horn Antenna | SCHWARZBE
CK | BBHA 9120 D | 9120D-1212 | 1GHz~18GHz | May 18, 2021 | Dec. 03, 2021~
Jan. 14, 2022 | May 17, 2022 | Radiation
(03CH13-HY) | | Horn Antenna | SCHWARZBE
CK | BBHA 9120 D | 9120D-1241 | 1GHz~18GHz | Jul. 13, 2021 | Dec. 03, 2021~
Jan. 14, 2022 | Jul. 12, 2022 | Radiation
(03CH13-HY) | | Preamplifier | MITEQ | AMF-7D-0010
1800-30-10P | 1590074 | 1GHz~18GHz | May 18, 2021 | Dec. 03, 2021~
Jan. 14, 2022 | May 17, 2022 | Radiation
(03CH13-HY) | | Preamplifier | Keysight | 83017A | MY53270147 | 1GHz~26.5GHz | Oct. 26, 2021 | Dec. 03, 2021~
Jan. 14, 2022 | Oct. 25, 2022 | Radiation
(03CH13-HY) | | SHF-EHF Horn
Antenna | SCHWARZBE
CK | BBHA 9170 | BBHA9170576 | 18GHz~40GHz | May 21, 2021 | Dec. 03, 2021~
Jan. 14, 2022 | May 20, 2022 | Radiation
(03CH13-HY) | | SHF-EHF Horn
Antenna | SCHWARZBE
CK | BBHA 9170 | 00994 | 18GHz~40GHz | Nov. 04, 2021 | Dec. 03, 2021~
Jan. 14, 2022 | Nov. 03, 2022 | Radiation
(03CH13-HY) | | Preamplifier | EMEC | EM18G40G | 060801 | 18GHz~40GHz | Jun. 22, 2021 | Dec. 03, 2021~
Jan. 14, 2022 | Jun. 21, 2022 | Radiation
(03CH13-HY) | | Spectrum
Analyzer | Keysight | N9010A | MY55370526 | 10Hz~44GHz | Mar. 18, 2021 | Dec. 03, 2021~
Jan. 14, 2022 | Mar. 17, 2022 | Radiation
(03CH13-HY) | | Signal
Generator | Anritsu | MG3694C | 163401 | 0.1Hz~40GHz | Jan. 31, 2021 | Dec. 03, 2021~
Jan. 14, 2022 | Jan. 30, 2022 | Radiation
(03CH13-HY) | | Filter | Wainwright | WHKX12-1080
-1200-15000-6
0SS | SN3 | 1.2GHz High
Pass Filter | Jul. 01, 2021 | Dec. 03, 2021~
Jan. 14, 2022 | Jun. 30, 2022 | Radiation
(03CH13-HY) | | Filter | Wainwright | WHKX12-2700
-3000-18000-6
0SS | SN2 | 3GHz High Pass
Filter | Jul. 12, 2021 | Dec. 03, 2021~
Jan. 14, 2022 | Jul. 11, 2022 | Radiation
(03CH13-HY) | | RF Cable | HUBER +
SUHNER | SUCOFLEX
104 | MY9837/4PE | 9kHz~30MHz | Mar. 11, 2021 | Dec. 03, 2021~
Jan. 14, 2022 | Mar. 10, 2022 | Radiation
(03CH13-HY) | | RF Cable | HUBER +
SUHNER | SUCOFLEX
126E | 0030/126E | 30MHz~18GHz | Feb. 10, 2021 | Dec. 03, 2021~
Jan. 14, 2022 | Feb. 09, 2022 | Radiation
(03CH13-HY) | | RF Cable | HUBER +
SUHNER | SUCOFLEX
104 | 804793/4 | 30MHz~18GHz | Feb. 10, 2021 | Dec. 03, 2021~
Jan. 14, 2022 | Feb. 09, 2022 | Radiation
(03CH13-HY) | | RF Cable | HUBER +
SUHNER | SUCOFLEX
104 | MY24961/4 | 30MHz~18GHz | Feb. 10, 2021 | Dec. 03, 2021~
Jan. 14, 2022 | Feb. 09, 2022 | Radiation
(03CH13-HY) | | RF Cable | HUBER +
SUHNER | SUCOFLEX
102 | 505134/2 | 30MHz~40GHz | Feb. 22, 2021 | Dec. 03, 2021~
Jan. 14, 2022 | Feb. 21, 2022 | Radiation
(03CH13-HY) | | RF Cable | HUBER +
SUHNER | SUCOFLEX
102 | MY4274/2 | 30MHz~40GHz | Mar. 11, 2021 | Dec. 03, 2021~
Jan. 14, 2022 | Mar. 10, 2022 | Radiation
(03CH13-HY) | | Hygrometer | TECPEL | DTM-303B | TP161243 | N/A | Sep. 02, 2021 | Dec. 03, 2021~
Jan. 14, 2022 | Sep. 01, 2022 | Radiation
(03CH13-HY) | | Controller | EMEC | EM1000 | N/A | Control Turn table & Ant Mast | N/A | Dec. 03, 2021~
Jan. 14, 2022 | N/A | Radiation
(03CH13-HY) | | Antenna Mast | EMEC | AM-BS-4500-B | N/A | 1m~4m | N/A | Dec. 03, 2021~
Jan. 14, 2022 | N/A | Radiation
(03CH13-HY) | | Turn Table | EMEC | TT2000 | N/A | 0~360 Degree | N/A | Dec. 03, 2021~
Jan. 14, 2022 | .N/A | Radiation
(03CH13-HY) | | Software | Audix | E3
6.2009-8-24 | RK-000992 | N/A | N/A | Dec. 03, 2021~
Jan. 14, 2022 | N/A | Radiation
(03CH13-HY) | Report No. : FG1O2302E TEL: 0800-800005 Page Number : 16 of 18 FAX: 886-3-327-0855 Issued Date : Feb. 22, 2022 E-mail: Alex@sporton.com.tw Report Version : 01 | Instrument | Brand Name | Model No. | Serial No. | Characteristics | Calibration
Date | Test Date | Due Date | Remark | |-------------------------------------|------------|-----------|------------|---|---------------------|---------------------------------|---------------|------------------------| | Radio
Communicatio
n Analyzer | Anritsu | MT8821C | 6201664755 | 2/3/4G/LTE
FDD/TDD
with44)/LTE-3C
C DLCA/2CC
ULCA,
CatM1/NB1/NB2 | Jul. 21, 2021 | Feb. 09, 2022~
Feb. 15, 2022 | Jul. 20, 2022 | Conducted
(TH03-HY) | Report No. : FG1O2302E TEL: 0800-800005 Page Number : 17 of 18 FAX: 886-3-327-0855 Issued Date : Feb. 22, 2022 E-mail: Alex@sporton.com.tw Report Version : 01 ## 6 Uncertainty of Evaluation ### Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz) | Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y)) | 3.45 dB | |---|---------| | 301111001100 01 00 /8 (S = 200(y)) | | Report No.: FG1O2302E ### Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz) | Measuring Uncertainty for a Level of | 3.73 dB | |--------------------------------------|---------| | Confidence of 95% (U = 2Uc(y)) | 3.73 UB | ### **Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)** | Measuring Uncertainty for a Level of | 4.00 dB | |--------------------------------------|---------| | Confidence of 95% (U = 2Uc(y)) | 4.00 dB | TEL: 0800-800005 Page Number : 18 of 18 FAX: 886-3-327-0855 Issued Date : Feb. 22, 2022 ## **Appendix A. Test Results of Conducted Test** ## Conducted Output Power(Average power & EIRP) ### <Main Antenna> | | | D 1 00 1 | | D. | [.ID | LOT LO | 0.0 (D) | | | |----------|---------|-----------|-----------|------------|-----------|------------|------------|----------|--| | | LIE | Band 30 N | laximum A | Average Po | wer [dBm] | (GT - LC : | = 0.6 dB) | | | | BW [MHz] | RB Size | RB Offset | Mod | Lowest | Middle | Highest | EIRP (dBm) | EIRP (W) | | | 10 | 1 | 0 | | | 21.60 | | | | | | 10 | 1 | 25 | | | 21.88 | | | | | | 10 | 1 | 49 | | | 21.72 | | | | | | 10 | 25 | 0 | QPSK | | 20.56 | | 22.48 | 0.1770 | | | 10 | 25 | 12 | | - | 20.55 | - | | | | | 10 | 25 | 25 | | | 20.50 | | | | | | 10 | 50 | 0 | | | 20.52 | | | | | | 10 | 1 | 0 | 16-QAM | | 21.10 | | 21.70 | 0.1479 | | | 10 | 1 | 0 | 64-QAM | | 19.64 | | 20.68 | 0.1169 | | | Limit | EIRP | < 250mW/ | 5MHz | Result | | | Pass | | | Report No. : FG1O2302E | | LTE Band 30 Maximum Average Power [dBm] (GT - LC = 0.6 dB) | | | | | | | | | | | |----------|--|-----------|--------|--------|--------|---------|------------|----------|--|--|--| | BW [MHz] | RB Size | RB Offset | Mod | Lowest | Middle | Highest | EIRP (dBm) | EIRP (W) | | | | | 5 | 1 | 0 | QPSK | 21.66 | 21.83 | 21.82 | 22.47 | 0.1766 | | | | | 5 | 1 | 0 | 16-QAM | 21.17 | 21.15 | 21.22 | 21.82 | 0.1521 | | | | | 5 | 1 | 0 | 64-QAM | 20.00 | 20.05 | 20.08 | 20.76 | 0.1191 | | | | | Limit | imit EIRP < 250mW/5MHz | | | | Result | Pass | | | | | | ### <MIMO2 Antenna> | | | | | | | 1 (OT : C | 0.0 (5) | | |----------|---------|-----------|-----------|--------|--------|-----------|------------|----------| | | | | laximum A | | | | | | | BW [MHz] | RB Size | RB Offset | Mod | Lowest | Middle | Highest | EIRP (dBm) | EIRP (W) | | 10 | 1 | 0 | | | 21.32 | | | | | 10 | 1 | 25 | | | 21.27 | | | | | 10 | 1 | 49 | | | 21.23 | | | | | 10 | 25 | 0 | QPSK | | 20.27 | | 22.12 | 0.1629 | | 10 | 25 | 12 | | | 20.22 | | | | | 10 | 25 | 25 | | | 20.10 | | | | | 10 | 50 | 0 | | | 20.23 | | | | | 10 | 1 | 0 | | | 20.48 | | | | | 10 | 1 | 25 | | | 20.52 | | | | | 10 | 1 | 49 | | | 20.46 | | | | | 10 | 25 | 0 | 16-QAM | | 19.28 | | 21.32 | 0.1355 | | 10 | 25 | 12 | | | 19.22 | | | | | 10 | 25 | 25 | | | 19.07 | | | | | 10 | 50 | 0 | | | 19.22 | | | | | 10 | 1 | 0 | | - | 19.32 | - | | | | 10 | 1 | 25 | | | 19.39 | | | | | 10 | 1 | 49 | | | 19.33 | | | | | 10 | 25 | 0 | 64-QAM | | 18.28 | | 20.19 | 0.1045 | | 10 | 25 | 12 | | | 18.23 | | | | | 10 | 25 | 25 | | | 18.06 | | | | | 10 | 50 | 0 | | | 18.21 | | | | | 10 | 1 | 0 | | | 17.09 | | | | | 10 | 1 | 25 | | | 16.94 | | | | | 10 | 1 | 49 | | | 16.87 | | | | | 10 | 25 | 0 | 256-QAM | | 16.83 | | 17.89 | 0.0615 | | 10 | 25 | 12 | | | 16.59 | | | | | 10 | 25 | 25 | | | 16.82 | | | | | 10 | 50 | 0 | | | 16.58 | | | | | Limit | EIRP | < 250mW/ | 5MHz | | Result | _ | Pa | ISS | Report No. : FG1O2302E | | LTE | Band 30 N | Maximum A | verage Po | wer [dBm |] (GT - LC : | = 0.8 dB) | | |----------|---------|-----------|-----------|-----------|----------|--------------|------------|----------| | BW [MHz] | RB Size | RB Offset | Mod | Lowest | Middle | Highest | EIRP (dBm) | EIRP (W) | | 5 | 1 | 0 | | 21.02 | 21.21 | 21.17 | | | | 5 | 1 | 12 | | 21.03 | 21.22 | 21.15 | | | | 5 | 1 | 24 | | 21.02 | 21.03 | 21.07 | | 0.1592 | | 5 | 12 | 0 | QPSK | 20.01 | 20.21 | 20.15 | 22.02 | | | 5 | 12 | 7 | | 20.05 | 20.22 | 20.04 | _ | | | 5 | 12 | 13 | | 20.16 | 20.03 | 20.02 | | | | 5 | 25 | 0 | | 20.13 | 20.03 | 20.10 | | | | 5 | 1 | 0 | | 20.24 | 20.40 | 20.36 | | | | 5 | 1 | 12 | | 20.33 | 20.41 | 20.22 | 21.25 | 0.1334 | | 5 | 1 | 24 | | 20.25 | 20.45 | 20.39 | | | | 5 | 12 | 0 | 16-QAM | 19.26 | 19.26 | 19.23 | | | | 5 | 12 | 7 | | 19.05 | 19.03 | 19.03 | | | | 5 | 12 | 13 | | 19.10 | 19.12 | 19.05 | | | | 5 | 25 | 0 | | 19.00 | 19.02 | 19.10 | | | | 5 | 1 | 0 | | 19.21 | 19.25 | 19.18 | | 0.1012 | | 5 | 1 | 12 | | 19.08 | 19.20 | 19.18 | | | | 5 | 1 | 24 | | 19.22 | 19.25 | 19.06 | | | | 5 | 12 | 0 | 64-QAM | 18.12 | 18.19 | 18.14 | 20.05 | | | 5 | 12 | 7 | | 18.11 | 18.15 | 18.06 | | | | 5 | 12 | 13 | | 18.07 | 18.18 | 18.08 | | | | 5 | 25 | 0 | | 18.19 | 18.19 | 18.04 | | | | 5 | 1 | 0 | | 16.99 | 17.09 | 16.93 | | | | 5 | 1 | 12 | | 16.79 | 16.81 | 16.67 | | | | 5 | 1 | 24 | | 16.64 | 16.76 | 16.74 | | | | 5 | 12 | 0 | 256-QAM | 16.82 | 16.82 | 16.63 | 17.89 | 0.0615 | | 5 | 12 | 7 | | 16.39 | 16.54 | 16.54 | | | | 5 | 12 | 13 | | 16.58 | 16.72 | 16.65 | | | | 5 | 25 | 0 | | 16.32 | 16.51 | 16.33 | | | | Limit | EIRP | < 250mW/ | 5MHz | | Result | | Pa | ISS | Report No. : FG1O2302E ## Appendix B. Test Results of Radiated Test <Main Antenna> ## LTE Band 30 Report No.: FG1O2302E | | | | L | TE Band 30 | / 5MHz / QP | SK | | | | |---------|--------------------|---------------|------------------|-------------------------|-------------------------|--------------------------|----------------------------|-----------------------------|-----------------------| | Channel | Frequency
(MHz) | EIRP
(dBm) | Limit
(dBm) | Over
Limit
(dB) | SPA
Reading
(dBm) | S.G.
Power
(dBm) | TX Cable
loss
(dB) | TX Antenna
Gain
(dBi) | Polarization
(H/V) | | | 4608 | -53.97 | -40 | -13.97 | -45.37 | -64.02 | 2.05 | 12.10 | Н | | | 6916 | -62.56 | -40 | -22.56 | -60.3 | -71.15 | 2.39 | 10.98 | Н | | | 9216 | -59.15 | -40 | -19.15 | -61.3 | -69.06 | 2.23 | 12.14 | Н | | Lawast | | | | | | | | | Н | | Lowest | 4608 | -50.09 | -40 | -10.09 | -42.2 | -60.14 | 2.05 | 12.10 | V | | | 6916 | -59.78 | -40 | -19.78 | -58.14 | -68.37 | 2.39 | 10.98 | V | | | 9216 | -59.43 | -40 | -19.43 | -61.03 | -69.34 | 2.23 | 12.14 | V | | | | | | | | | | | V | | | 4616 | -55.31 | -40 | -15.31 | -46.75 | -65.35 | 2.06 | 12.10 | Н | | | 6924 | -61.82 | -40 | -21.82 | -59.58 | -70.40 | 2.39 | 10.98 | Н | | | 9231 | -59.16 | -40 | -19.16 | -61.34 | -69.06 | 2.22 | 12.12 | Н | | | | | | | | | | | Н | | Middle | 4616 | -49.41 | -40 | -9.41 | -41.56 | -59.45 | 2.06 | 12.10 | V | | | 6924 | -59.85 | -40 | -19.85 | -58.22 | -68.43 | 2.39 | 10.98 | V | | | 9231 | -59.85 | -40 | -19.85 | -61.44 | -69.75 | 2.22 | 12.12 | V | | | | | | | | | | | V | | | 4620 | -53.83 | -40 | -13.83 | -45.3 | -63.87 | 2.06 | 12.10 | Н | | | 6930 | -61.97 | -40 | -21.97 | -59.75 | -70.54 | 2.40 | 10.97 | Н | | | 9241 | -59.35 | -40 | -19.35 | -61.55 | -69.24 | 2.22 | 12.11 | Н | | | | | | | | | | | Н | | Highest | 4620 | -48.18 | -40 | -8.18 | -40.36 | -58.22 | 2.06 | 12.10 | V | | | 6930 | -59.23 | -40 | -19.23 | -57.63 | -67.80 | 2.40 | 10.97 | V | | | 9241 | -59.49 | -40 | -19.49 | -61.07 | -69.38 | 2.22 | 12.11 | V | | | | | | | | | | | V | Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line. TEL: 0800-800005 Page Number : B1 of B2 FAX: 886-3-327-0855 E-mail: Alex@sporton.com.tw | | LTE Band 30 / 10MHz / QPSK | | | | | | | | | | | | |----------|----------------------------|---------------|------------------|-------------------------|-------------------------|--------------------------|----------------------|-----------------------------|-----------------------|--|--|--| | Channel | Frequency
(MHz) | EIRP
(dBm) | Limit
(dBm) | Over
Limit
(dB) | SPA
Reading
(dBm) | S.G.
Power
(dBm) | TX Cable loss (dB) | TX Antenna
Gain
(dBi) | Polarization
(H/V) | | | | | | 4611 | -53.52 | -40 | -13.52 | -44.94 | -63.56 | 2.06 | 12.10 | Н | | | | | | 6917 | -61.29 | -40 | -21.29 | -59.03 | -69.88 | 2.39 | 10.98 | Н | | | | | | 9222 | -59.38 | -40 | -19.38 | -61.54 | -69.29 | 2.23 | 12.13 | Н | | | | | NAC LUL. | | | | | | | | | Н | | | | | Middle | 4611 | -46.69 | -40 | -6.69 | -38.82 | -56.73 | 2.06 | 12.10 | V | | | | | | 6917 | -59.68 | -40 | -19.68 | -58.03 | -68.27 | 2.39 | 10.98 | V | | | | | | 9222 | -59.89 | -40 | -19.89 | -61.49 | -69.80 | 2.23 | 12.13 | V | | | | | | | | | | | | | | V | | | | Report No.: FG1O2302E Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line. #### <MIMO2 Antenna> ## LTE Band 30 | | | | Ľ | TE Band 30 | / 10MHz / QF | PSK | | | | |--------------|--------------------|-----------------|------------------|-------------------------|-------------------------|--------------------------|----------------------|-----------------------------|-----------------------| | Channel | Frequency
(MHz) | EIRP
(dBm) | Limit
(dBm) | Over
Limit
(dB) | SPA
Reading
(dBm) | S.G.
Power
(dBm) | TX Cable loss (dB) | TX Antenna
Gain
(dBi) | Polarization
(H/V) | | | 4611 | -66.26 | -40 | -26.26 | -57.68 | -76.30 | 2.06 | 12.10 | Н | | | 6917 | -63.48 | -40 | -23.48 | -61.22 | -72.07 | 2.39 | 10.98 | Н | | | 9222 | -59.77 | -40 | -19.77 | -61.93 | -69.68 | 2.23 | 12.13 | Н | | NA: al all a | | | | | | | | | Н | | Middle | 4611 | -65.74 | -40 | -25.74 | -57.87 | -75.78 | 2.06 | 12.10 | V | | | 6917 | -62.28 | -40 | -22.28 | -60.63 | -70.87 | 2.39 | 10.98 | V | | | 9222 | -59.82 | -40 | -19.82 | -61.42 | -69.73 | 2.23 | 12.13 | V | | | | • | | | | | | | V | $Remark: Spurious\ emissions\ within\ 30\text{-}1000MHz\ were\ found\ more\ than\ 20dB\ below\ limit\ line.$ TEL: 0800-800005 Page Number : B2 of B2 FAX: 886-3-327-0855 E-mail: Alex@sporton.com.tw