

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Client

BTL Inc.

Certificate No:

Z18-60374

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1221

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

September 28, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standard	ds	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter	NRP2	102083	01-Nov-17 (CTTL, No.J17X08756)	Oct-18
Power sensor	NRP-Z91	100542	01-Nov-17 (CTTL, No.J17X08756)	Oct-18
ReferenceProbe	EX3DV4	SN 7514	27-Aug-18(SPEAG,No.EX3-7514_Aug18)	Aug-19
DAE4		SN 1555	20-Aug-18(SPEAG,No.DAE4-1555_Aug18)	Aug-19
Secondary Stan	dards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generato	or E4438C	MY49071430	23-Jan-18 (CTTL, No.J18X00560)	Jan-19
NetworkAnalyze	erE5071C	MY46110673	24-Jan-18 (CTTL, No.J18X00561)	Jan-19

Calibrated by:

Zhao Jing

SAR Test Engineer

Reviewed by:

Lin Hao

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: September 31, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-60374 Page 2 of 15

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.1.1476
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.1 ± 6 %	4.75 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.71 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	76.8 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.21 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.0 mW /g ± 24.2 % (k=2)

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	4.86 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.94 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	79.0 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.27 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.6 mW /g ± 24.2 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.5 ± 6 %	5.19 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.07 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	80.3 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.31 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	23.0 mW /g ± 24.2 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.3 ± 6 %	5.41 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	•
SAR measured	100 mW input power	7.72 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	76.9 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.20 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.9 mW /g ± 24.2 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.3 ± 6 %	5.34 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.22 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	72.0 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.06 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.5 mW /g ± 24.2 % (k=2)

Certificate No: Z18-60374 Page 5 of 15

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.1 ± 6 %	5.48 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.56 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	75.4 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.15 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.4 mW /g ± 24.2 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

70000	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.5 ± 6 %	5.88 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	#### /	

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.96 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	79.3 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.25 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.4 mW /g ± 24.2 % (k=2)

Certificate No: Z18-60374 Page 6 of 15

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.0 ± 6 %	6.18 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.51 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	74.8 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.11 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	21.0 mW /g ± 24.2 % (k=2)

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	52.3Ω - 9.30jΩ	
Return Loss	- 20.6dB	

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	52.9Ω - 1.49jΩ	
Return Loss	- 29.9dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	54.4Ω - 3.77jΩ
Return Loss	- 25.2dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	53.4Ω +3.99jΩ
Return Loss	- 25.9dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	51.3Ω - 8.42jΩ	
Return Loss	- 21.5dB	

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	51.8Ω + 1.03jΩ	
Return Loss	- 33.7dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	54.6Ω - 2.05jΩ	
Return Loss	- 26.4dB	

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	53.0Ω + 4.83jΩ	
Return Loss	- 25.1dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.054 ns
The state of the s	1.00 110

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1221

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz,

Date: 09.27.2018

Frequency: 5600 MHz, Frequency: 5800 MHz,

Medium parameters used: f = 5200 MHz; σ = 4.748 S/m; ϵ_r = 35.09; ρ = 1000 kg/m3, Medium parameters used: f = 5300 MHz; σ = 4.864 S/m; ϵ_r = 34.85; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 5.193 S/m; ϵ_r = 34.51; ρ = 1000 kg/m3, Medium parameters used: f = 5800 MHz; σ = 5.411 S/m; ϵ_r = 34.3; ρ = 1000 kg/m3,

Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(5.05, 5.05, 5.05) @ 5200 MHz; Calibrated: 8/27/2018, ConvF(4.99, 4.99, 4.99) @ 5300 MHz; Calibrated: 8/27/2018, ConvF(4.41, 4.41, 4.41) @ 5600 MHz; Calibrated: 8/27/2018, ConvF(4.42, 4.42) @ 5800 MHz; Calibrated: 8/27/2018,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Dipole Calibration /Pin=100mW, d=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.34 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 32.0 W/kg

SAR(1 g) = 7.71 W/kg; SAR(10 g) = 2.21 W/kg

Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.74 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 34.7 W/kg

SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.27 W/kg

Maximum value of SAR (measured) = 19.4 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan.

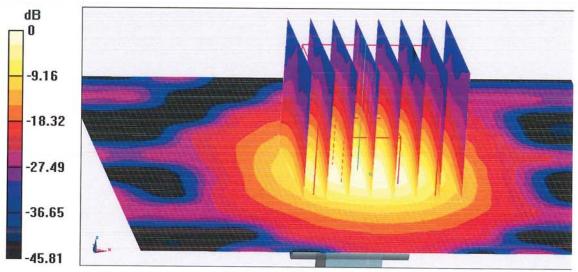
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.14 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 37.5 W/kg

SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.31 W/kg

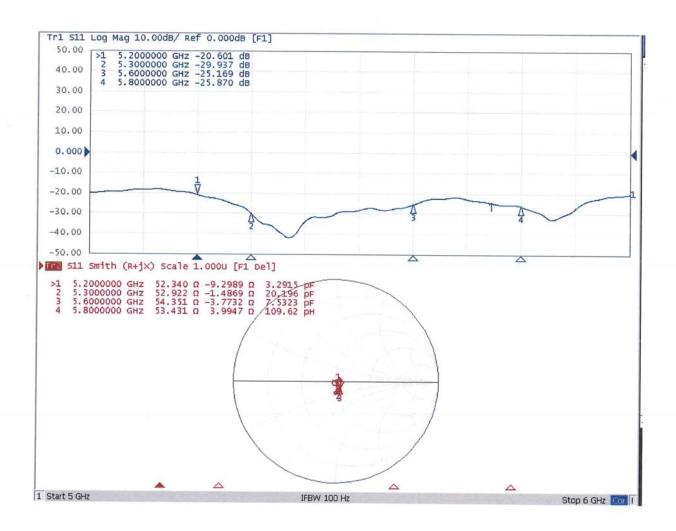
Maximum value of SAR (measured) = 19.8 W/kg


Dipole Calibration /Pin=100mW, d=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.94 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 37.4 W/kg


SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.2 W/kg Maximum value of SAR (measured) = 19.3 W/kg

0 dB = 19.3 W/kg = 12.86 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 09.25.2018

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1221

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz,

Frequency: 5600 MHz, Frequency: 5800 MHz,

Medium parameters used: f = 5200 MHz; σ = 5.344 S/m; $\epsilon_{\rm f}$ = 48.26; ρ = 1000 kg/m3, Medium parameters used: f = 5300 MHz; $\sigma = 5.475$ S/m; $\epsilon_r = 48.09$; $\rho =$ 1000 kg/m3, Medium parameters used: f = 5600 MHz; $\sigma = 5.88$ S/m; $\epsilon_r = 47.47$; $\rho =$ 1000 kg/m3, Medium parameters used: f = 5800 MHz; σ = 6.175 S/m; ϵ_r = 46.98; ρ = 1000 kg/m3

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(4.59, 4.59, 4.59) @ 5200 MHz; Calibrated: 8/27/2018, ConvF(4.49, 4.49, 4.49) @ 5300 MHz; Calibrated: 8/27/2018, ConvF(4, 4, 4) @ 5600 MHz; Calibrated: 8/27/2018, ConvF(3.94, 3.94) @ 5800 MHz; Calibrated: 8/27/2018,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Dipole Calibration /Pin=100mW, d=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.19 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 28.0 W/kg

SAR(1 g) = 7.22 W/kg; SAR(10 g) = 2.06 W/kg

Maximum value of SAR (measured) = 17.1 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.08 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 30.7 W/kg

SAR(1 g) = 7.56 W/kg; SAR(10 g) = 2.15 W/kg

Maximum value of SAR (measured) = 18.4 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 62.98 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 35.3 W/kg

SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.25 W/kg

Maximum value of SAR (measured) = 19.7 W/kg

Certificate No: Z18-60374

Page 13 of 15

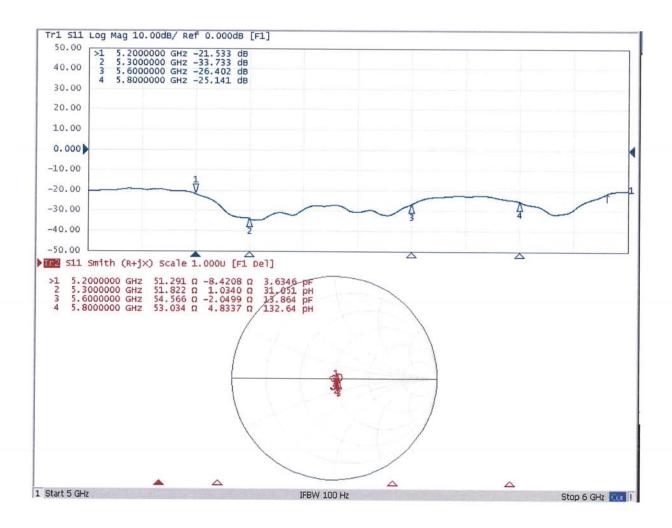
Dipole Calibration /Pin=100mW, d=10mm, f=5800 MHz/Zoom Scan,

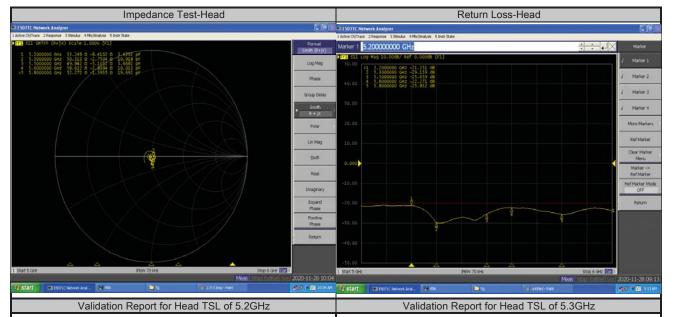

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.20 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 35.7 W/kg

SAR(1 g) = 7.51 W/kg; SAR(10 g) = 2.11 W/kg


Maximum value of SAR (measured) = 19.0 W/kg


0 dB = 19.0 W/kg = 12.79 dBW/kg

Impedance Measurement Plot for Body TSL

3TL		Dipole Internal C	alibration Record		
Asset No. :	E-436	Model No. :	D5GHzV2	Serial No. :	1221
Environmental	23.1°C, 50 %	Original Cal. Date:	September 28, 2018	Next Cal. Date :	September 27, 2021
		Standa	ard List		
		IEEE Recommended F	Practice for Determining	the Peak Spatial-Avera	ged Specific Absorpiton
1	IEEE Std 1528-2013	Rate(SAR) in the I	Human Head from Wireld Texhniques	ess Communication Dev June 2013	vices: Measurement
	150,00000	Procedure to deterr	nine the Specific Absorp		eless communication
2	IEC 62209-2	devices used in close	e proximity to the humar	body(frequency range	of 30 MHz to 6 GHz),
3	KDB865664		R Measurement Require		
	1	Eguipment	Information		
Equipment :	Manufacturer :	Model No. :	Serial No. :	Cal.Organization:	Cal. Date :
Power Amplifier	Mini-Circuits	ZHL-42W+	QA1333003	N/A	March 10, 2020
DC Source metter	Iteck	IT6154	006104126768201001	N/A	July 25, 2020
Power Meter	Anritsu	ML2495A	1128008	N/A	June 11, 2020
Power Sensor	Anritsu	MA2411B	1126001	N/A	June 11, 2020
Power Meter	Anritsu	MA2487A	6K00004714	N/A	September 3, 2020
Power Sensor	Anritsu	MA2491A	1725282	N/A	September 3, 2020
Directional Coupler	Woken	TS-PCC0M-05	107090019	N/A	March 1, 2020
Signal Generator	R&S	N5172B	MY53051229	N/A	June 20, 2020
ENA Network Analyzer	Agilent	E5071C	MY46524658	N/A	April 7, 2020
	- Julian		For Head Tissue		1
Model No	Item	Originak Cal. Result	Verified on 2020/11/28	Deviation	Result
	Impedance,	52.3Ω-9.30jΩ	53.2Ω-8.41jΩ	<5Ω	Pass
	transformed to feed	52.312-9.30]12	55.212-6.41]12	<207	Pass
D5GHzV2(5.2GHz)	Return Loss(dB)	-20.6	-21.251	3.2%	Pass
	SAR Value for	7.71	7.57	-1.8%	Pass
	SAR Value for	2.21	2.2	-0.5%	Pass
	Impedance, transformed to feed	52.9Ω-1.49jΩ	50.3Ω-2.75jΩ	<5Ω	Pass
D5GHzV2(5.3GHz)	Return Loss(dB)	-29.9	-29.159	-2.5%	Pass
,	SAR Value for	7.94	7.67	-3.4%	Pass
	SAR Value for	2.27	2.15	-5.3%	Pass
	Impedance, transformed to feed	54.4Ω-3.77jΩ	58.6Ω-2.84jΩ	<5Ω	Pass
D5GHzV2(5.6GHz)	Return Loss(dB)	-25.2	-22.271	-11.6%	Pass
20011212(0.00112)	SAR Value for	8.07	8.23	2.0%	Pass
	SAR Value for	2.31	2.3	-0.4%	Pass
	Impedance, transformed to feed	53.4Ω+3.99jΩ	52.3Ω-1.40jΩ	<5Ω	Pass
D5GHzV2(5.8GHz)	Return Loss(dB)	-25.9	-25.852	-0.2%	Pass
20311212(0.00112)	SAR Value for	7.72	7.48	-3.1%	Pass
	SAR Value for	2.2	2.12	-3.6%	Pass

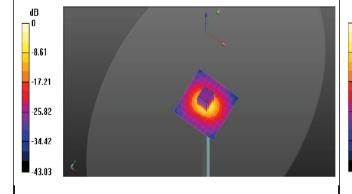
Date: 2020/11/28

System Check_H5G

Test Laboratory: BTL

Frequency: 5200 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid Temperature: 22.0°C

Medium parameters used: f = 5200 MHz; σ = 4.701 S/m; ϵ_r = 36.241; ρ = 1000 kg/m³ DASY5 Configuration:


- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1486; Calibrated: 2020/6/4
- Probe: EX3DV4 SN7369; ConvF(5.13, 5.13, 5.13) @ 5200 MHz; Calibrated: 2020/5/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

Configuration/Pin=100mW/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 12.4 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm Reference Value = 63.67 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 31.7 W/kg SAR(1 g) = 7.57 W/kg; SAR(10 g) = 2.2 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 54.9% Maximum value of SAR (measured) = 20.3 W/kg

Test Laboratory: BTL

Date: 2020/11/28

System Check_H5G

Frequency: 5300 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid Temperature: 22.0°C

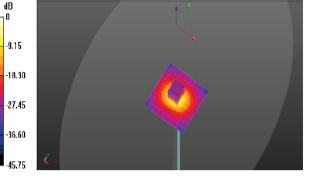
Medium parameters used (interpolated): f = 5300 MHz; σ = 4.821 S/m; ϵ_r = 36.025; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1486; Calibrated: 2020/6/4
- Probe: EX3DV4 SN7369; ConvF(4.96, 4.96, 4.96) @ 5300 MHz; Calibrated: 2020/5/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

Configuration/Pin=100mW/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 12.3 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:


dx=4mm, dy=4mm, dz=2mm Reference Value = 62.31 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 31.8 W/kg SAR(1 g) = 7.67 W/kg; SAR(10 g) = 2.15 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm

Ratio of SAR at M2 to SAR at M1 = 54.1%

Maximum value of SAR (measured) = 20.0 W/kg

Validation Report for Head TSL of 5.6GHz

Test Laboratory: BTL Date: 2020/11/28

System Check_H5G

Frequency: 5600 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid Temperature: 22.0°C

Medium parameters used: f = 5600 MHz; $\sigma = 5.193 \text{ S/m}$; $\epsilon_r = 35.307$; $\rho = 1000 \text{ kg/m}^3$ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

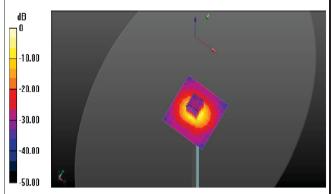
- Electronics: DAE4 Sn1486; Calibrated: 2020/6/4
- Probe: EX3DV4 SN7369; ConvF(4.7, 4.7, 4.7) @ 5600 MHz; Calibrated: 2020/5/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

Configuration/Pin=100mW/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 12.4 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 59.53 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 33.7 W/kg

SAR(1 g) = 8.23 W/kg; SAR(10 g) = 2.3 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm

Ratio of SAR at M2 to SAR at M1 = 51.3%

Maximum value of SAR (measured) = 20.2 W/kg

Validation Report for Head TSL of 5.8GHz

Test Laboratory: BTL

Date: 2020/11/28

System Check_H5G

Frequency: 5800 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid Temperature: 22.0°C

Medium parameters used: f = 5800 MHz; $\sigma = 5.418 \text{ S/m}$; $\epsilon_r = 34.89$; $\rho = 1000 \text{ kg/m}^3$ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1486; Calibrated: 2020/6/4
- Probe: EX3DV4 SN7369; ConvF(4.68, 4.68, 4.68) @ 5800 MHz; Calibrated: 2020/5/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

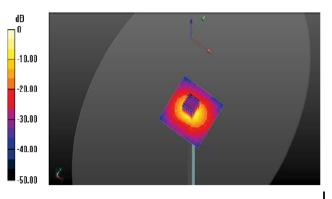
Configuration/Pin=100mW/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 12.3 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 57.59 V/m; Power Drift = 0.09 dB


Peak SAR (extrapolated) = 34.2 W/kg

SAR(1 g) = 7.48 W/kg; SAR(10 g) = 2.12 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm

Ratio of SAR at M2 to SAR at M1 = 49.6%

Maximum value of SAR (measured) = 19.9 W/kg

Calibrator:

Aven Ho

Approver:

Voter Chen

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Client

BTL Inc .

Certificate No:

Z19-60205

CALIBRATION CERTIFICATE

Tel: +86-10-62304633-2079

E-mail: cttl@chinattl.com

Object

D750V3 - SN: 1145

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

June 12, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	20-Aug-18 (CTTL, No.J18X06862)	Aug-19
Power sensor NRP8S	104291	20-Aug-18 (CTTL, No.J18X06862)	Aug-19
Reference Probe EX3DV4	SN 7514	27-Aug-18(SPEAG,No.EX3-7514_Aug18)	Aug-19
DAE4	SN 1556	20-Aug-18(SPEAG,No.DAE4-1556_Aug18)	Aug-19
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-19 (CTTL, No.J19X00336)	Jan-20
NetworkAnalyzer E5071C	MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan-20

Calibrated by:

Name

Function

Signature

Zhao Jing

SAR Test Engineer

Reviewed by:

Lin Hao

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: June 17, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORMx,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1504
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	0.87 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.65 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.82 W/kg ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	0.95 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.19 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.82 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.83 W/kg ±18.7 % (k=2)

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.2Ω- 4.19jΩ	
Return Loss	- 27.6dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.9Ω- 5.53jΩ	
Return Loss	- 24.9dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	0.897 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SDEAC
Manadata by	SPEAG

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1145

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 750 MHz; $\sigma = 0.872$ S/m; $\varepsilon_r = 41.05$; $\rho = 1000$ kg/m³

Phantom section: Right Section

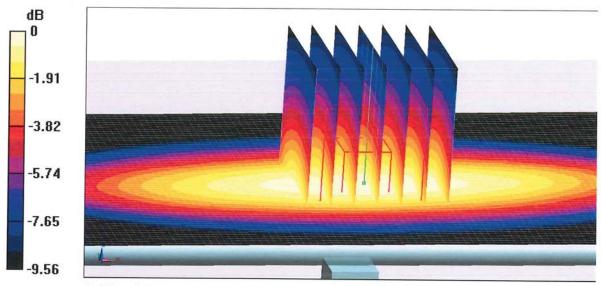
DASY5 Configuration:

 Probe: EX3DV4 - SN7514; ConvF(9.47, 9.47, 9.47) @ 750 MHz; Calibrated: 8/27/2018

Date: 06.12.2019

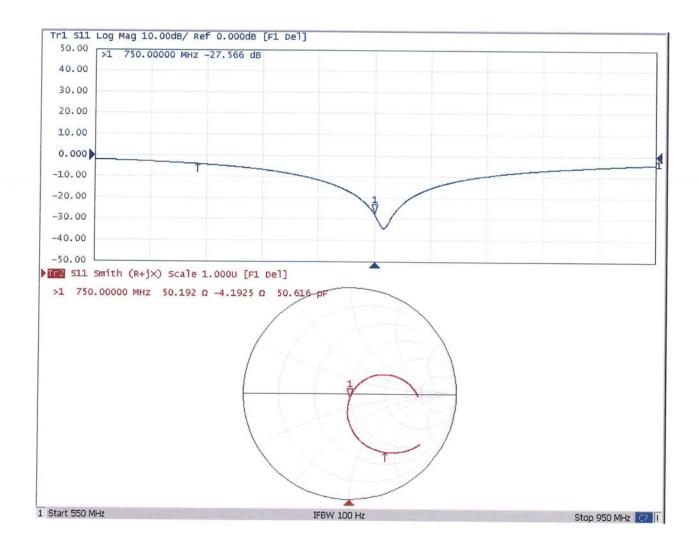
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 55.17 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.17 W/kg


SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.44 W/kg

Maximum value of SAR (measured) = 2.81 W/kg

0 dB = 2.81 W/kg = 4.49 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1145

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 750 MHz; $\sigma = 0.949$ S/m; $\varepsilon_r = 54.91$; $\rho = 1000$ kg/m³

Phantom section: Center Section

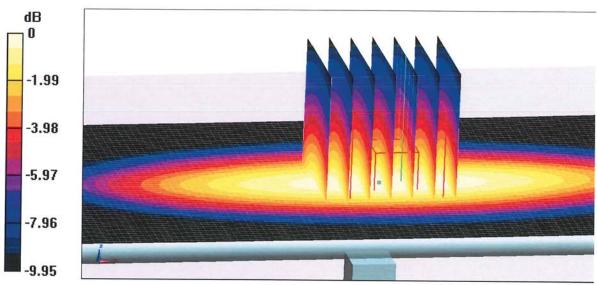
DASY5 Configuration:

 Probe: EX3DV4 - SN7514; ConvF(9.68, 9.68, 9.68) @ 750 MHz; Calibrated: 8/27/2018

Date: 06.12.2019

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

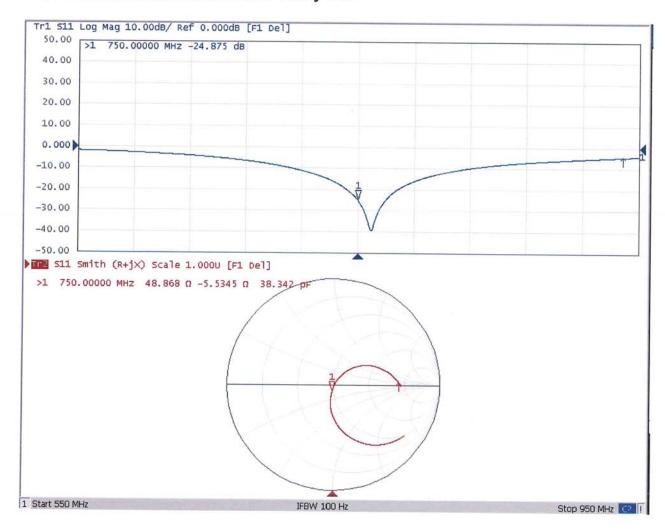
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 54.39 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.34 W/kg

SAR(1 g) = 2.19 W/kg; SAR(10 g) = 1.45 W/kg


Maximum value of SAR (measured) = 2.95 W/kg

0 dB = 2.95 W/kg = 4.70 dBW/kg


Certificate No: Z19-60205 Page 7 of 8

Impedance Measurement Plot for Body TSL

<u> </u>		Dipole Internal C	Calibration Record	<u> </u>		
Asset No. :	E-429 Model No. :		D750V3	Serial No. :	1145	
Environmental	23.3°C, 51 %	Original Cal. Date :	June 12, 2019	Next Cal. Date :	June 12, 2022	
			ard List			
1	IEEE Std 1528-2013	IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absor Rate(SAR) in the Human Head from Wireless Communication Devices: Measuremen Texhniques, June 2013				
2	IEC 62209-2	Procedure to determine the Specific Absorption Rate (SAR) for wireless communication				
3	KDB865664 SAR Measurement Requirements for 100 MHz to 6 GHz					
		Equipment	Information			
Equipment :	Manufacturer :	Model No. :	Serial No. :	Cal.Organization:	Cal. Date :	
Power Amplifier	Mini-Circuits	ZHL-42W+	QA1333003	NA	February 25, 2019	
DC Source	Iteck	OT6154	M00157	NA	August 3, 2019	
P-series power meter	Agilent	N1911A	MY45100473	NA	September 23, 201	
wideband power	Agilent	N1921A	MY51100041	NA	September 23, 201	
Smart Power Sensor	R&S	NRP-Z21	102209	NA	March 1, 2019	
Dual directional	Woken	TS-PCC0M-05	107090019	NA	March 10, 2019	
			101000010		Water 10, 2010	
Signal Generator	Agilent	E4438C	MY4907131	NA	Mar. 10, 2019	
ENA Network Analyzer	Agilent	E5071C	MY46102965	NA	March 10, 2019	
Model No			For Head Tissue			
	Item	Originak Cal. Result	Verified on 2019/12/2	Deviation	Result	
	Impedance,	50.2Ω-4.19ϳΩ	54 702O 4 22iO	<5Ω	Pass	
	transformed to feed	50.212-4.19]12	51.702Ω-1.32jΩ	<207		
	Return Loss(dB)	-27.6	-30.339	9.9%	Pass	
	SAR Value for 1g(mW/g)	2.06	2.14	3.9%	Pass	
	SAR Value for 10g(mW/g)	1.38	1.42	2.9%	Pass	
D750V3	For Body Tissue					
	Item	Originak Cal. Result	Verified on 2019/12/2	Deviation	Result	
	Impedance,	Originak Gai. Nesuit	Verified off 2010/12/2	Deviation	resuit	
	transformed to feed	48.9Ω-5.53jΩ	46.248Ω-2.18jΩ	<5Ω	Pass	
	Return Loss(dB)	-24.9	-28.952	16.3%	Pass	
	SAR Value for				1 433	
	1g(mW/g)	2.08	2.17	4.3%	Pass	
	SAR Value for					
	10g(mW/g)	1.39	1.42	2.2%	Pass	
	Impedance Test-Head			Return Loss-Head		
E5071C Network Analyzer	impedance restricad		SE E SO T 1 C Network Analyzer SE E SO T 1 C Network Analyzer	Ttetam 2000 Flead		
ctive Ch/Trace 2 Response 3 Stimulus 4 Mkr/Analysis 5 Inst	r Sate		1 Active Ch/Trace 2 Response 3 Stimulus 4 Mir/Analysis 5 Inc			
rl S11 Smith (R+j×) Scale 1.0000 [F1] >1 750.00000 MHz 51.702 Ω -1.3154 Ω 3	161:32 pF	Format Smith (R+jX)	Trl S11 Log Mag 10.00dB/ Ref -20.00dB [F 30.00 >1 750.00000 MHz -30.339 dB	1,	E5071C Mer	
		Log Mag			Measureme	
		Phase	20.00		S11 Format	
		Group Delay	10.00		Log Mag	
		_ Smith			Scale	
Polar Lin Mag SMR Real Imagnary Espand Phase			0.000		Display	
			-10.00		Average	
					Calibratio	
			-20.00		Stimulus	
			-30.00	$\sqrt{\frac{1}{\sqrt{2}}}$		
					Sweep Set	
			-40.00		Trigger	
					Marker	
		Positive Phase	-50.00		Marker Sea	
		Return	-60.00		Marker Func	
Start 550 MHz	IFEW 70 MHz	Stop 950 MHz Cor T	-70.00	IFBW 70 kHz	Stop 950 MHz Cor T	

Impedance Test-Body	Return Loss-Body
© E5071C Network Analyzer	E5071C Network Analyzer
recorded as a second and the first of the second	1 Stin Chitera 2 Samona 2 Similar & Michigani of State Sala

Validation Report for Head TSL

Test Laboratory: BTL Inc. Date: 2019/12/02

System Check_H750 1202

DUT: Dipole 750 MHz D750V3;\$N:1095;

Communication System: UID 0, CW (0); Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; σ = 0.895 S/m; ϵ_r = 41.486; ρ = 1000 kg/m³ Ambient Temperature: 23.1 °C; Liquid Temperature: 22.5 °C

DASY Configuration:

- Probe: EX3DV4 SN7544; ConvF(10.49, 10.49, 10.49) @ 750 MHz; Calibrated: 2019/9/9
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1390; Calibrated: 2019/10/29
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1222
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (7x15x1): Interpolated grid: dx=15 mm, dy=15 mm Maximum value of SAR (interpolated) = 3.04 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 56.92 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 4.13 W/kg

SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.42 W/kgMaximum value of SAR (measured) = 3.06 W/kg

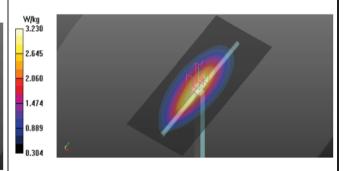
W/kg 3.060 2.504 1.948 1.393 0.837 0.281

Date: 2019/12/02 Test Laboratory: BTL Inc.

System Check_B750_1202

DUT: Dipole 750 MHz D750V3;\$N:1095;

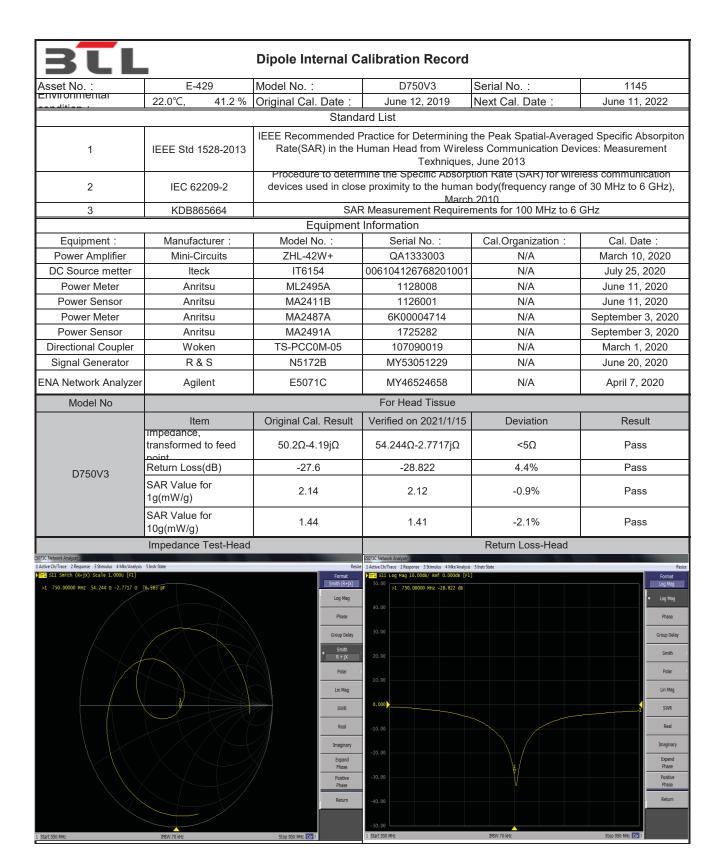
Communication System: UID 0, CW (0); Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; σ = 0.97 S/m; ϵ_r = 54.362; ρ = 1000 kg/m³ Ambient Temperature: 23.1 °C; Liquid Temperature: 22.3 °C


DASY Configuration:

- Probe: EX3DV4 SN7544; ConvF(10.48, 10.48, 10.48) @ 750 MHz; Calibrated: 2019/9/9
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1390; Calibrated: 2019/10/29
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1222
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (7x15x1): Interpolated grid: dx=15 mm, dy=15 mm Maximum value of SAR (interpolated) = 3.21 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 56.82 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 4.28 W/kg


SAR(1 g) = 2.17 W/kg; SAR(10 g) = 1.42 W/kg Maximum value of SAR (measured) = 3.23 W/kg

Rot - Liang Calibrator:

Approver:

Herbert lin

Validation Report for Head TSL

Test Laboratory: BTL

Date: 2021/1/15

System Check_H750

Frequency: 750 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used: f = 750 MHz; σ = 0.903 S/m; g_c = 41.769; ρ = 1000 kg/m³

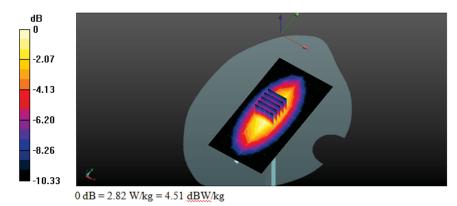
DASY5 Configuration:

- -Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Electronics: DAE4 Sn1486; Calibrated: 2020/6/4
 Probe: EX3DV4 SN7369; ConvF(10.24, 10.24, 10.24) @ 750 MHz; Calibrated: 2020/5/29
 Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
 - Phantom: SAM Twin Phantom V5.0; Type: QD 000 P40 C; Serial: TP-1897

Configuration/Pin=250mW/Area Scan (7x13x1): Measurement grid: dx=15mm,

Maximum value of SAR (measured) = 2.79 W/kg


Configuration/Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm Reference Value = 55.25 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 3.18 W/kg SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.41 W/kg Smallest distance from peaks to all points 3 dB below = 17.6 mm

Ratio of SAR at M2 to SAR at M1 = 66.5%

Maximum value of SAR (measured) = 2.82 W/kg

Calibrator:

Approver:

Peter Cher

Tel: +86-10-62304633-2079

E-mail: cttl@chinattl.com

In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Client

BTL Inc .

Certificate No:

Z19-60206

CALIBRATION CERTIFICATE

Object

D900V2 - SN:1d185

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

June 13, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	20-Aug-18 (CTTL, No.J18X06862)	Aug-19
Power sensor NRP8S	104291	20-Aug-18 (CTTL, No.J18X06862)	Aug-19
Reference Probe EX3DV4	SN 7514	27-Aug-18(SPEAG,No.EX3-7514_Aug18)	Aug-19
DAE4	SN 1556	20-Aug-18(SPEAG,No.DAE4-1556_Aug18)	Aug-19

Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-19 (CTTL, No.J19X00336)	Jan-20
NetworkAnalyzer E5071C	MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan-20
		*	

Calibrated by:

Name Function Signature

Zhao Jing

SAR Test Engineer

Reviewed by:

Lin Hao

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: June 17, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z19-60206

Page 1 of 8