Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client BTL-TW (Auden)

Certificate No: DAE4-1486_Jun20

CALIBRATION CERTIFICATE

Object	DAE4 - SD 000 D0	94 BM - SN: 1486	
Calibration procedure(s)	QA CAL-06.v30 Calibration proced	ure for the data acquisition electroni	cs (DAE)
Calibration date:	June 04, 2020		
The measurements and the uncert	ainties with confidence pro ed in the closed laboratory	hal standards, which realize the physical units of r bability are given on the following pages and are facility: environment temperature (22 \pm 3)°C and	part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	03-Sep-19 (No:25949)	Sep-20
	Torre en		Outradiated Charaly
Secondary Standards	ID #	Check Date (in house)	Scheduled Check In house check: Jan-21
Auto DAE Calibration Unit Calibrator Box V2.1	SE UWS 053 AA 1001 SE UMS 006 AA 1002	09-Jan-20 (in house check) 09-Jan-20 (in house check)	In house check: Jan-21
	Name	Function	Signature
Calibrated by:	Dominique Steffen	Laboratory Technician	Reg
Approved by:	Sven Kühn	Deputy Manager	VR Mun
			Issued: June 4, 2020
This calibration certificate shall no	t be reproduced except in	full without written approval of the laboratory.	

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE dat Connector angle info

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity:* Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation:* Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption:* Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV
DASY measurement p	parameters: Aut	o Zero Time: 3	sec; Measuring	time: 3 sec

Calibration Factors	X	Y	Z
High Range	403.918 ± 0.02% (k=2)	403.989 ± 0.02% (k=2)	403.711 ± 0.02% (k=2)
Low Range	3.98220 ± 1.50% (k=2)	3.99075 ± 1.50% (k=2)	3.96242 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	32.5 $^{\circ}$ \pm 1 $^{\circ}$

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199995.84	0.57	0.00
Channel X + Input	20002.47	0.37	0.00
Channel X - Input	-19998.44	2.86	-0.01
Channel Y + Input	199994.95	-0.26	-0.00
Channel Y + Input	20000.95	-1.06	-0.01
Channel Y - Input	-19999.05	2.40	-0.01
Channel Z + Input	199996.51	1.20	0.00
Channel Z + Input	20000.28	-1.64	-0.01
Channel Z - Input	-20002.04	-0.50	0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2003.16	1.98	0.10
Channel X + Input	201.77	0.29	0.14
Channel X - Input	-198.01	0.31	-0.15
Channel Y + Input	2002.30	1.28	0.06
Channel Y + Input	201.12	-0.32	-0.16
Channel Y - Input	-198.46	-0.04	0.02
Channel Z + Input	2002.11	1.10	0.05
Channel Z + Input	200.53	-0.89	-0.44
Channel Z - Input	-199.44	-0.95	0.48

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-0.61	-2.03
	- 200	3.68	2.09
Channel Y	200	-20.57	-20.61
	- 200	20.33	20.15
Channel Z	200	-4.02	-4.33
	- 200	2.21	1.94

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	=	-0.83	-3.77
Channel Y	200	6.20	-	0.30
Channel Z	200	10.81	3.97	-

Certificate No: DAE4-1486_Jun20

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16081	14302
Channel Y	16434	12565
Channel Z	15997	15570

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10M Ω

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.34	-0.34	1.03	0.24
Channel Y	0.12	-0.67	1.20	0.33
Channel Z	-0.41	-1.18	0.61	0.35

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	and a second
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

the annia chi scola

С

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- S Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Client BTL-TW (Auden)

Certificate No: EX3-7369_May20

CALIBRATION CERTIFICATE

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Object	
--------	--

EX3DV4 - SN:7369

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes

Calibration date:

May 29, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: CC2552 (20x)	31-Mar-20 (No. 217-03106)	Apr-21
DAE4	SN: 660	27-Dec-19 (No. DAE4-660_Dec19)	Dec-20
		31-Dec-19 (No. ES3-3013_Dec19)	Dec-20
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20

	Name	Function	Signature	
Calibrated by:	Michael Weber	Laboratory Technician	Miller	
Approved by:	Katja Pokovic	Technical Manager	Jelly.	
This calibration certificate	shall not be reproduced except in full	without written approval of the laboratory	Issued: June 1, 2020 /.	

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura S
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv: tissue simulating liquid TSL NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point crest factor (1/duty_cycle) of the RF signal CF modulation dependent linearization parameters A, B, C, D Polarization ϕ o rotation around probe axis 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 9 i.e., $\vartheta = 0$ is normal to probe axis

information used in DASY system to align probe sensor X to the robot coordinate system **Connector Angle**

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Accreditation No.: SCS 0108

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7369

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.39	0.49	0.39	± 10.1 %
DCP (mV) ^B	105.2	95.2	107.6	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Unc [⊢] (k=2)
0 0	CW	X	0.0	0.0	1.0	0.00	143.0	± 3.3 %	± 4.7 %
		Y	0.0	0.0	1.0		139.1		
		Z	0.0	0.0	1.0		148.5		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).

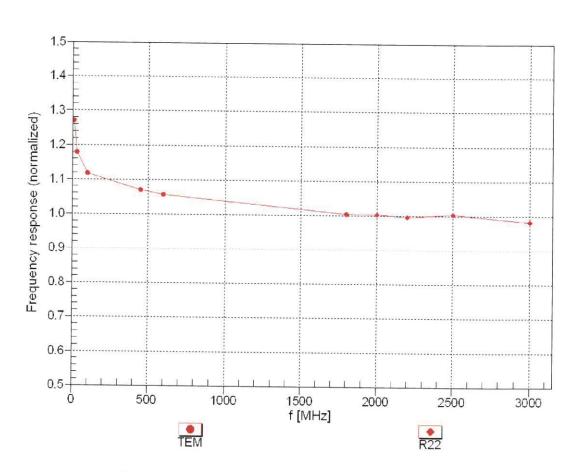
^E Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7369

Other Probe Parameters

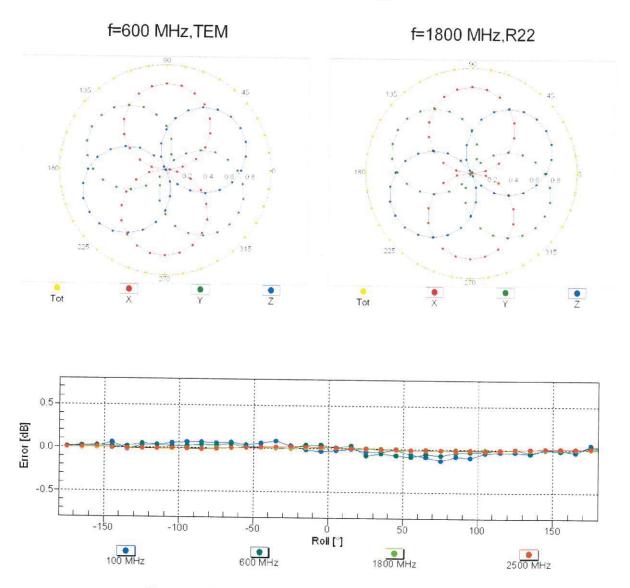
Sensor Arrangement	Triangular
Connector Angle (°)	65.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7369


f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.24	10.24	10.24	0.37	0.96	± 12.0 %
835	41.5	0.90	9.96	9.96	9.96	0.49	0.80	± 12.0 %
900	41.5	0.97	9.75	9.75	9.75	0.46	0.82	± 12.0 %
1450	40.5	1.20	8.94	8.94	8.94	0.38	0.80	± 12.0 %
1750	40.1	1.37	8.63	8.63	8.63	0.38	0.86	± 12.0 %
1900	40.0	1.40	8.32	8.32	8.32	0.38	0.86	± 12.0 %
2100	39.8	1.49	8.31	8.31	8.31	0.25	0.86	± 12.0 %
2300	39.5	1.67	7.92	7.92	7.92	0.34	0.90	± 12.0 %
2450	39.2	1.80	7.60	7.60	7.60	0.33	0.90	± 12.0 %
2600	39.0	1.96	7.44	7.44	7.44	0.37	0.90	± 12.0 %
3300	38.2	2.71	7.01	7.01	7.01	0.30	1.35	± 13.1 %
3500	37.9	2.91	6.92	6.92	6.92	0.30	1.35	± 13.1 %
3700	37.7	3.12	6.75	6.75	6.75	0.35	1.35	± 13.1 %
3900	37.5	3.32	6.49	6.49	6.49	0.35	1.50	± 13.1 %
4200	37.1	3.63	6.40	6.40	6.40	0.35	1.50	± 13.1 %
4400	36.9	3.84	6.02	6.02	6.02	0.40	1.60	± 13.1 %
4600	36.7	4.04	5.98	5.98	5.98	0.40	1.60	± 13.1 %
4800	36.4	4.25	5.85	5.85	5.85	0.40	1.80	± 13.1 %
4950	36.3	4.40	5.66	5.66	5.66	0.40	1.80	± 13.1 %
5200	36.0	4.66	5.13	5.13	5.13	0.40	1.80	± 13.1 %
5300	35.9	4.76	4.96	4.96	4.96	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.70	4.70	4.70	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.68	4.68	4.68	0.40	1.80	± 13.1 %

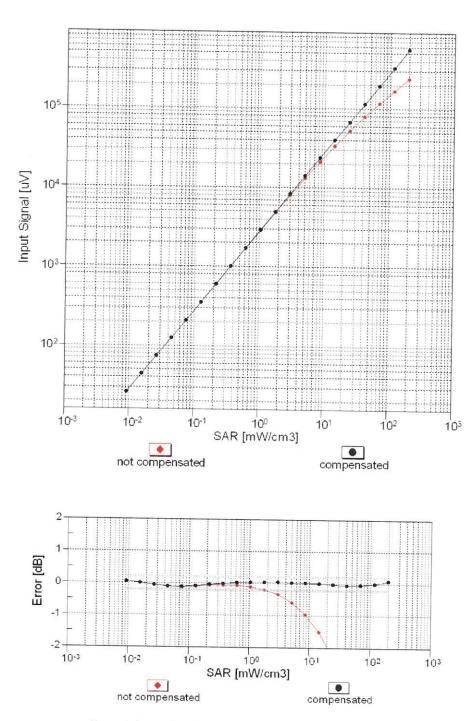
Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

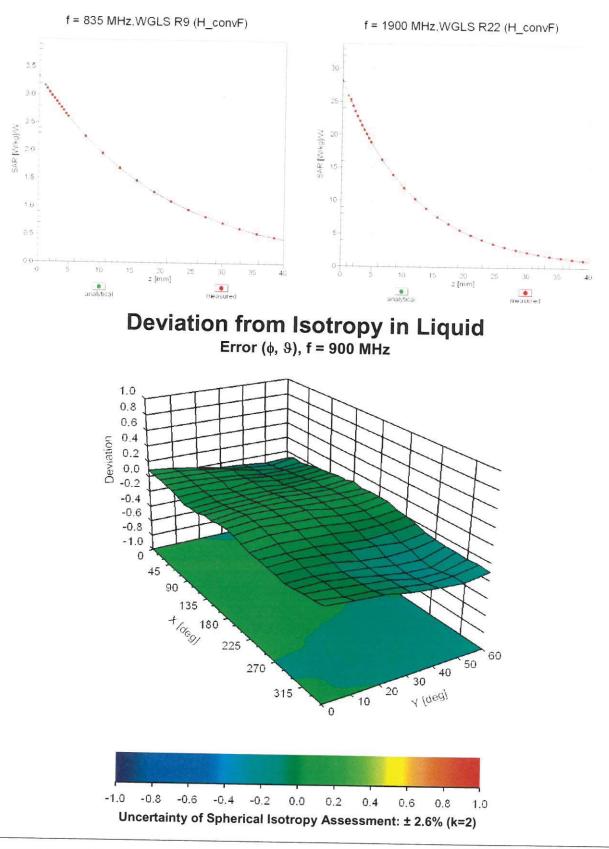

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if ilquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (φ), θ = 0°


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

May 29, 2020

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Certificate No: EX3-7369_May20

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

BTL Inc. Client

Fax: +86-10-62304633-2504 http://www.chinattl.cn

In Collaboration with

BRATION LABOR

Certificate No:

Z18-60373

CALIBRATION CERTIFICATE Object D2450V2 - SN: 973 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: September 21, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Power Meter NRVD 102083 01-Nov-17 (CTTL, No.J17X08756) Oct-18 Power sensor NRV-Z5 100542 01-Nov-17 (CTTL, No.J17X08756) Oct-18 Reference Probe EX3DV4 SN 7514 27-Aug-18(SPEAG, No.EX3-7514 Aug18) Aug-19 20-Aug-18(SPEAG, No. DAE4-1555_Aug18) DAE4 SN 1555 Aug-19 Secondary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Signal Generator E4438C MY49071430 23-Jan-18 (CTTL, No.J18X00560) Jan-19 NetworkAnalyzer E5071C MY46110673 24-Jan-18 (CTTL, No.J18X00561) Jan-19 Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: September 23, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

CALIBRATION LABORATORY I, Haidian District, Beijing, 100191, China

e

In Collaboration with

D

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comFax: +86-10-62304633-2504http://www.chinattl.cn

Glossary:

TSLtissue simulating liquidConvFsensitivity in TSL / NORMx,y,zN/Anot applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

In Collaboration with
S D C ALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comhttp://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.1.1476
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.0 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.1 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	51.9 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.12 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.4 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.2 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition		
SAR measured	250 mW input power	12.8 mW / g 50.9 mW /g ± 18.8 % (k=2)	
SAR for nominal Body TSL parameters	normalized to 1W		
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition		
SAR measured	250 mW input power	5.93 mW / g	
SAR for nominal Body TSL parameters	normalized to 1W	23.7 mW /g ± 18.7 % (k=2)	

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comFax: +86-10-62304633-2504http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9Ω+ 2.01jΩ		
Return Loss	- 29.3dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.9Ω+ 4.38jΩ	
Return Loss	- 27.2dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.021 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

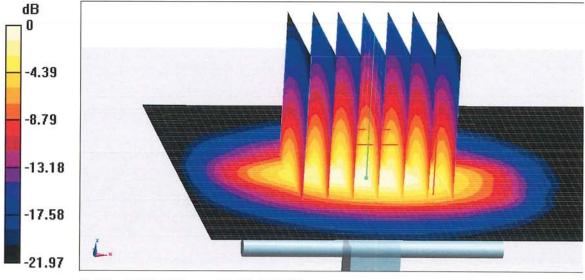
Additional EUT Data

12021 20 10000	
Manufactured by	SPEAG

S D CALIBRATION LABORATORY

In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn


- Probe: EX3DV4 SN7514; ConvF(6.95, 6.95, 6.95) @ 2450 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

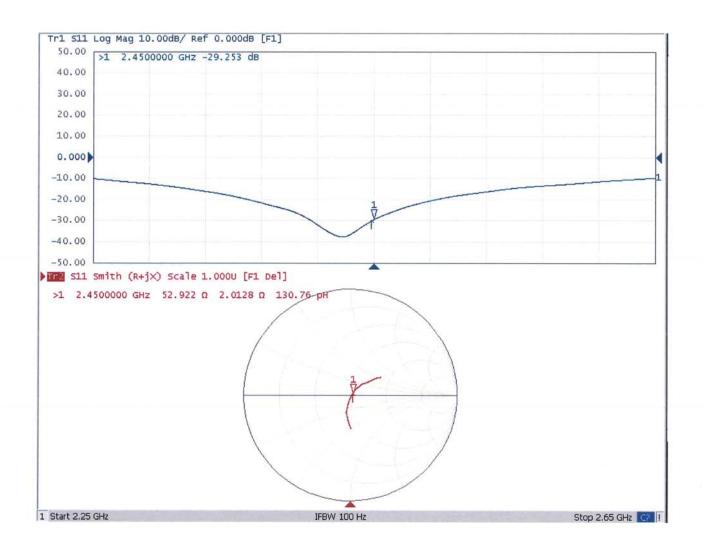
Reference Value = 99.86 V/m; Power Drift = 0.00 dBPeak SAR (extrapolated) = 27.0 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.12 W/kg

Maximum value of SAR (measured) = 21.9 W/kg

0 dB = 21.9 W/kg = 13.40 dBW/kg

Date: 09.20.2018



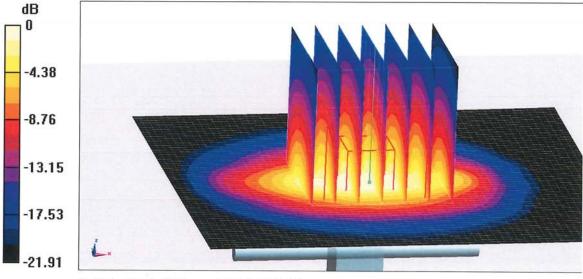
In Collaboration with е S а g D CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

S P C A G CALIBRATION LABORATORY

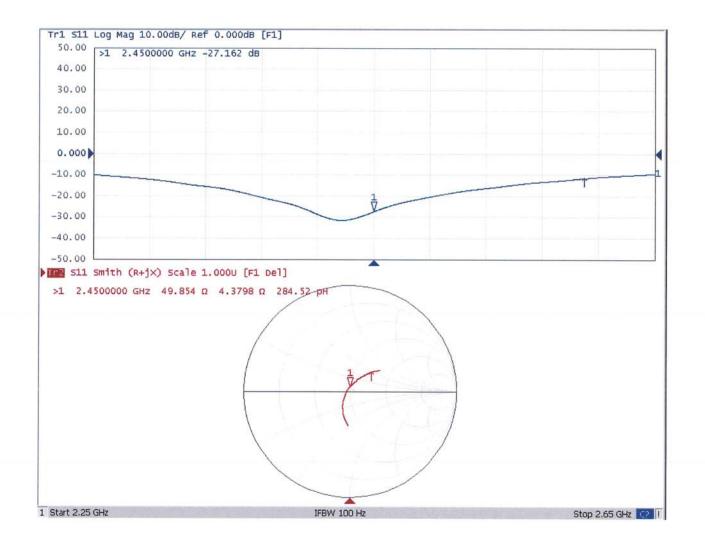

In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

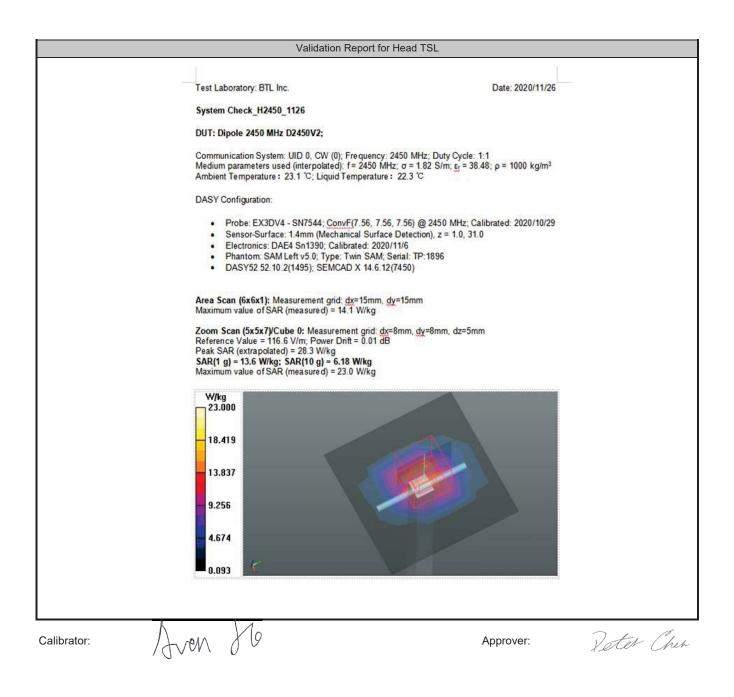
- Probe: EX3DV4 SN7514; ConvF(7.13, 7.13, 7.13) @ 2450 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.27 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 26.5 W/kg SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.93 W/kg Maximum value of SAR (measured) = 21.3 W/kg



0 dB = 21.3 W/kg = 13.28 dBW/kg



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

BLL	1	Dipole Internal C			
Asset No. :	E-434	Model No. :	D2450V2	Serial No. :	973
	22.9°C, 52 %	Original Cal. Date :	September 21, 2018	Next Cal. Date :	September 20, 2021
		Standa	rd List		
1	IEEE Std 1528-2013	IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorpiton Rate(SAR) in the Human Head from Wireless Communication Devices: Measurement Texhniques, June 2013			
2	IEC 62209-2	Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body(frequency range of 30 MHz to 6 GHz), March 2010			
3	KDB865664		R Measurement Requirer	ments for 100 MHz to 6	GHz
		Equipment I	nformation		
Equipment :	Manufacturer :	Model No. :	Serial No. :	Cal.Organization :	Cal. Date :
Power Amplifier	Mini-Circuits	ZHL-42W+	QA1333003	N/A	March 10, 2020
DC Source metter	lteck	IT6154	006104126768201001	N/A	July 25, 2020
Power Meter	Anritsu	ML2495A	1128008	N/A	June 11, 2020
Power Sensor	Anritsu	MA2411B	1126001	N/A	June 11, 2020
Power Meter	Anritsu	MA2487A	6K00004714	N/A	September 3, 2020
Power Sensor	Anritsu	MA2491A	1725282	N/A	September 3, 2020
Directional Coupler	Woken	TS-PCC0M-05	107090019	N/A	March 1, 2020
Signal Generator	R & S	N5172B	MY53051229	N/A	June 20, 2020
ENA Network Analyzer	Agilent	E5071C	MY46524658	N/A	April 7, 2020
Model No			For Head Tissue		
	Item	Original Cal. Result	Verified on 2020/11/26	Deviation	Result
	transformed to feed	52.9Ω+2.01jΩ	52.4Ω+2.83jΩ	<5Ω	Pass
D2450V2	Return Loss(dB)	-29.3	-28.15	3.9%	Pass
	SAR Value for 1g(mW/g)	13.1	13.6	3.8%	Pass
	SAR Value for 10g(mW/g)	6.12	6.18	1.0%	Pass
	Impedance Test-Head			Return Loss-Head	
			E5071C Network Analyzer		61
n E5071C Network Analyzer 1 Active ChilTrace 2 Response 3 Stimulus 4 Mir/Analysis 5 Instr Sta	de		1 Active Ch/Trace 2 Response 3 Stimulus 4 Mkr/Analysis 5 Instr	State	
Trl sl1 smith (R+j×) scale 1.0000 [F1] >1 2.4500000 GHz 52.439 Ω 2.8295 Ω 3.83	BL DH	Format Smith (R+jX)	Marker 1 2,450000000 GHz		Marker
		Log Mag	50.00 >1 2.4500000 GHz -28.150 dB		√ Marker 1
		Phase	40.00		Marker 2
		Group Delay			Marker 3
		• Smith R + 1X	30.00		Marker 4
		Polar	20.00		More Markers
		Lin Mag	10.00		Ref Marker
		SWR			Clear Marker Menu
		Real	0.000		Marker -> Ref Marker
		Imaginary	-10.00		a Ref Marker Mode
		Expand	-20.00		OFF Return
		Phase Positive			rigitari i
-30.00					
		Return			
			-40.00		
	EDM 20 km		-40.00		
1 Start 225 GH:	JFW 70 kHz	Stop 2.65 GHz [27] 1 Meas Stop ExtRef Svc 2020-11-25 17:32		FEW 70 Link	Stop 2.65 GH: Cor Meas. Stoc Ent/Ed] Sw(2020-11-26 16:5

