

TEST REPORT

APPLICANT	Pycom Ltd	
PRODUCT NAME	Double Ne developme	twork (WiFi and Bluetooth) IoT ent Module powered by MicroPython.
MODEL NAME	WiPy 3.0	
BRAND NAME	Pycom	
FCC ID	2AJMTWIF	Y3R
STANDARD(S)	47 CFR Pa	art 15 Subpart C
TEST DATE	2017-11-06	6 to 2017-11-26
ISSUE DATE	2017-11-28	3

Tested by:

Tu Ya'nan

Tu Ya'nan (Test Engineer)

Approved by:

Andy Yeh (Technical Director)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

DIRECTORY

1. Technical Information4
1.1. Applicant and Manufacturer Information4
1.2. Equipment Under Test (EUT) Description4
1.3. Test Standards and Results5
1.4. Environmental Conditions5
2. 47 CFR Part 15C Requirements 6
2.1. Antenna requirement6
2.2. Number of Hopping Frequency6
2.3. Peak Output Power 10
2.4. 20dB Bandwidth 12
2.5. Carried Frequency Separation 19
2.6. Time of Occupancy (Dwell time) 22
2.7. Conducted Spurious Emissions 35
2.8. Restricted Frequency Bands 48
2.9. Conducted Emission65
2.10. Radiated Emission 69
Annex A Test Uncertainty91
Annex B Testing Laboratory Information92

Change History				
Issue	Date	Reason for change		
1.0	2017-11-28	First edition		

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	Pycom Ltd
Applicant Address:	High Point 9 Sydenham Road Guildford Surrey GU1 3RX UK
Manufacturer:	In-Tech Electronics Ltd
Manufacturer Address:	2/F Rhythm Home,119 Shazui Road, Futian, Shenzhen,
	Guangdong, P.R.China

1.2. Equipment Under Test (EUT) Description

Product Name:	Double Network (WiFi and Bluetooth) IoT development			
	Module powered by MicroPython.			
Serial No:	(N/A, marked #1 by test site)			
Hardware Version:	3.0r			
Software Version:	3.0			
Medulation Type:	Bluetooth: FHSS (GFSK(1Mbps), π/4-DQPSK(EDR 2Mbps),			
Modulation Type:	8-DPSK(EDR 3Mbps))			
	The frequency range used is 2402MHz – 2480MHz			
Operating Frequency Range:	(79 channels, at intervals of 1MHz);			
	The frequency block is 2400MHz to 2483.5MHz.			
Bluetooth Version:	Bluetooth 4.2(BR/EDR)			
Antenna1 Type:	Ceramic Antenna			
Antenna1 Gain:	-0.5 dBi			
Antenna 2 Type:	Rod Antenna			
Antenna 2 Gain:	2.0 dBi			

Note 1: The EUT contains Bluetooth Module operating at 2.4GHz ISM band; the frequencies is F(MHz)=2402+1*n (0<=n<=78). The lowest, middle, highest channel numbers of the Bluetooth Module used and tested in this report are separately 0 (2402MHz), 39 (2441MHz) and 78 (2480MHz).

Note 2: The EUT connected to the serial port of the computer with a serial communication cable, we use the dedicated software to control the EUT into the test mode, and then use MT8852B base station to control the EUT continuous transmission.

Note 3: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.3. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C (Bluetooth, 2.4GHz ISM band radiators) for the EUT FCC ID Certification:

No	Identity	Document Title				
1	47 CFR Part 15 (10-1-15 Edition)	Radio Frequency Devices				

Test detailed items/section required by FCC rules and results are as below:

No.	Section in CFR 47	Description	Test Date	Test Engineer	Result	
1	15.203	Antenna Requirement	N/A	N/A	PASS	
2	15.247(a)	Number of Hopping Frequency	Nov 06, 2017	Tu Ya'nan	PASS	
3	15.247(b)	Peak Output Power	Nov 06, 2017	Tu Ya'nan	PASS	
4	15.247(a)	20dB Bandwidth	Nov 06, 2017	Tu Ya'nan	PASS	
5	15.247(a)	Carrier Frequency Separation	Nov 06, 2017	Tu Ya'nan	PASS	
6	15.247(a)	Time of Occupancy (Dwell time)	Nov 06, 2017	Tu Ya'nan	PASS	
7	15.247(d)	Conducted Spurious Emission	Nov 06, 2017	Tu Ya'nan	PASS	
0	15 047(d)				D A O O	
8	15.247(d)	Restricted Frequency Bands	2017	wang Dalong	PASS	
0	15.209,	Dedicted Emission	Nov 10&26,	Wang Dalang		
9	15.247(d)		2017	wang Dalong	PASS	
10	15.207	Conducted Emission	Nov 10, 2017	Wang Dalong	PASS	

Note: The tests were performed according to the method of measurements prescribed in ANSI C63.10-2013.

1.4. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR Part 15C Requirements

2.1. Antenna requirement

2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

2.2. Number of Hopping Frequency

2.2.1. Requirement

According to FCC §15.247(a)(1)(iii), frequency hopping systems operating in the 2400MHz to 2483.5MHz bands shall use at least 15 hopping frequencies.

2.2.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.2.3. Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW \geq 1% of the span VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize

2.2.4. Test Result

The Bluetooth Module operates at hopping-on test mode; the frequencies number employed is counted to verify the Module's using the number of hopping frequency.

Test Mode	Frequency Block (MHz)	Measured Channel Numbers	Min. Limit	Refer to Plot	Verdict
GFSK	2400 - 2483.5	79	15	Plot A	PASS
π/4-DQPSK	2400 - 2483.5	79	15	Plot B	PASS
8-DPSK	2400 - 2483.5	79	15	Plot C	PASS

A. Test Verdict:

B. Test Plots:

(Plot A: GFSK)

(Plot B: $\pi/4$ -DQPSK)

(Plot C: 8- DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 E-mail: service@morlab.cn Http://www.morlab.cn

2.3. Peak Output Power

2.3.1. Requirement

According to FCC §15.247(b)(1), for frequency hopping systems that operates in the 2400MHz to 2483.5MHz band employing at least 75 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1Watt. For all other frequency hopping systems in the 2400MHz to 2483.5MHz band, it is 0.125Watts.

2.3.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.3.3. Test Result

The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the module.

GFSK Mode

A. Test Verdict:

Channel Frequency (MHz)		Measured Output Peak Power		Limit		Verdict
		dBm	W	dBm	W	
0	2402	2.41	0.00174			PASS
39	2441	3.45	0.00221	30	1	PASS
78	2480	2.45	0.00176			PASS

π/4-DQPSK Mode

B. Test Verdict:

Channel	Frequency (MHz)	Measured Output Peak Power		Limit		Verdict
		dBm	W	dBm	W	
0	2402	4.19	0.00262			PASS
39	2441	5.21	0.00332	20.97	0.125	PASS
78	2480	4.27	0.00267			PASS

8-DPSK Mode

C. Test Verdict:

Channel	Channel Frequency (MHz)		Measured Output Peak Power		Limit	
		dBm	W	dBm	W	
0	2402	4.52	0.00283			PASS
39	2441	5.49	0.00354	20.97	0.125	PASS
78	2480	4.61	0.00289			PASS

2.4.20dB Bandwidth

2.4.1. Definition

According to FCC \$15.247(a)(1), the 20dB bandwidth is known as the 99% emission bandwidth, or 20dB bandwidth (10*log1% = 20dB) taking the total RF output power.

2.4.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.4.3. Test Procedure

Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

2.4.4. Test Result

The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to record the 20dB bandwidth of the Module.

GFSK Mode

A. Test Verdict:

The maximum 20dB bandwidth measured is 0.9424 MHz according to the table below.

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot
0	2402	0.9424	Plot A
39	2441	0.9388	Plot B
78	2480	0.9408	Plot C

B. Test Plots:

(Plot A: Channel = 2402 @ GFSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Plot C: Channel = 2480 @ GFSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

π/4-DQPSK Mode

A. Test Verdict:

The maximum 20dB bandwidth measured is 1.315 MHz according to the table below.

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot
0	2402	1.311	Plot D
39	2441	1.312	Plot E
78	2480	1.315	Plot F

B. Test Plots:

(Plot D: Channel = 2402 @ $\pi/4$ -DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Plot F: Channel = 2480 @ $\pi/4$ -DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

8-DPSK Mode

A. Test Verdict:

The maximum 20dB bandwidth measured is 1.309 MHz according to the table below.

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot
0	2402	1.307	Plot G
39	2441	1.306	Plot H
78	2480	1.309	Plot I

B. Test Plots:

(Plot G: Channel = 2402 @ 8-DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Plot I: Channel = 2480 @ 8-DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.5. Carried Frequency Separation

2.5.1. Definition

According to FCC §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

2.5.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.5.3. Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) Bandwidth (RBW) \geq 1% of the span

Video (or Average) Bandwidth (VBW) ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.5.4. Test Result

The Bluetooth Module operates at hopping-on test mode. For any adjacent channels (e.g. the channel 39 and 40 as showed in the Plot A), the Module does have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel (refer to section 2.4.4), whichever is greater. So, the verdict is PASSING

	Measured	Carried	Pofor	20dB		
Test Mode	Channel	Frequency		bandwidth	Min. Limit	Verdict
	Numbers	Separation		(MHz)		
GFSK	39 and 40	1.002	Plot A	0.9388	two thirds of the	PASS
π/4-DQPSK	39 and 40	1.002	Plot B	1.311	20dP boodwidth	PASS
8-DPSK	39 and 40	1.002	Plot C	1.306	200B bandwidth	PASS

(Plot A: GFSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Marker	06:38:36 PMNov 06, 2017 TRACE 1 2 3 4 5 6	LIGNAUTO	Avg Typ	SENSE:INT	ЛНz	Δ 1.002000000 Ν	arker 2
Select Marker	TYPE MWWWWWW DET PNNNNN	100/100	Avg Hold	Trig: Free Run Atten: 24 dB	PNO: Fast 😱		
2	kr2 1.002 MHz 0.583 dB	ΔN				Ref Offset 2 dB Ref 15.00 dBm	dB/div
Norma	▲2∆1			1			
	and the second		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		and the state of the second	······································	
Delta							:0
Fixed							
Of							D.U
							o.U
Properties							D.U
More							
1 of 2	Span 3.000 MHz			0 BAUL-		41000 GHz	enter 2.4

(Plot B: $\pi/4$ -DQPSK)

(Plot C: 8-DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.6. Time of Occupancy (Dwell time)

2.6.1. Requirement

According to FCC §15.247(a) (1) (iii), frequency hopping systems in the 2400 - 2483.5MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

2.6.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.6.3. Test Procedure

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence. The average time of occupancy in the specified 31.6 second period (79 channel * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

2.6.4. Test Result

GFSK Mode

A. Test Verdict:

DH Packet	Pulse Width (msec)	Number of pulse in 3.16 seconds	Average Time of Occupancy in 3.16 seconds (sec)	Average Time of Occupancy in 31.6 seconds (sec)	Limit (sec)	Verdict
DH1	0.37	13	0.00481	0.0481		PASS
DH3	1.62	11	0.01782	0.1782	0.4	PASS
DH5	2.88	7	0.02016	0.2016		PASS

B. Test Plots:

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Plot A: DH1 @ GFSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Plot B: DH3 @ GFSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

(Plot C: DH5 @ GFSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

π/4-DQPSK Mode

A. Test Verdict:

DH Packet	Pulse Width (msec)	Number of pulse in 3.16 seconds	Average Time of Occupancy in 3.16 seconds (sec)	Average Time of Occupancy in 31.6 seconds (sec)	Limit (sec)	Verdict
DH1	0.39	15	0.00585	0.0585		PASS
DH3	1.64	10	0.01640	0.1640	0.4	PASS
DH5	2.91	10	0.02910	0.2910		PASS

B. Test Plots:

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Plot D: DH1 @ π/4-DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Plot E: DH3 @ π/4-DQPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fax:
 86-755

 Http://www.morlab.cn
 E-mail:
 ser

Fax: 86-755-36698525 E-mail: service@morlab.cn

(Plot F: DH5 @ π/4-DQPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

8-DPSK mode

A. Test Verdict:

DH Packet	Pulse Width (msec)	Number of pulse in 3.16 seconds	Average Time of Occupancy in 3.16 seconds (sec)	Average Time of Occupancy in 31.6 seconds (sec)	Limit (sec)	Verdict
DH1	0.39	13	0.00507	0.0507		PASS
DH3	1.64	10	0.01640	0.1640	0.4	PASS
DH5	2.88	7	0.02016	0.2016		PASS

B. Test Plots:

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Plot G: DH1 @ 8-DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Plot H: DH3 @ 8-DPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fax:
 86-755

 Http://www.morlab.cn
 E-mail:
 serv

Fax: 86-755-36698525 E-mail: service@morlab.cn

(Plot I: DH5 @ 8-DPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

2.7. Conducted Spurious Emissions

2.7.1. Requirement

According to FCC §15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.7.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.7.3. Test Procedure

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100 kHz VBW ≥ RBW Sweep = auto Detector function = peak

Trace = max hold Allow the trace to stabilize.

2.7.4. Test Result

The Bluetooth Module operates at hopping-off test mode. The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions.

GFSK Mode

A. Test Verdict:

Channel	Fraguanay	Measured Max.	Defer to	Limit		
	(MHz)	Out of Band		Carrier Level	Calculated	Verdict
		Emission (dBm)	FIUL		-20dBc Limit	
0	2402	-40.02	Plot A	1.58	-18.42	PASS
39	2441	-42.35	Plot B	2.60	-17.40	PASS
78	2480	-43.15	Plot C	1.25	-18.75	PASS

B. Test Plots:

Note: the power of the Module transmitting frequency should be ignored.

(Plot A: Channel = 0, 30MHz to 25GHz @ GFSK Mode)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: Http://www.morlab.cn E-ma

Fax: 86-755-36698525 E-mail: service@morlab.cn

(Channel = 0, Band edge with hopping on @ GFSK Mode)

MORLAB

Agilent Spectrum Analyzer - Swept SA				
ΙΧΙ RF 50Ω AC	SENSE:INT	ALIGNAUTO	04:46:49 PM Nov 06, 2017	Peak Search
Marker 4 816.555000000 MHZ PN IFG	0: Fast 🕞 Trig: Free Run ain:Low Atten: 24 dB	Avg Type: Log-Pwr Avg Hold: 17/100	TYPE MWWWW DET PNNNNN	
Ref Offset 2 dB 10 dB/div Ref 15.00 dBm			Mkr4 817 MHz -49.969 dBm	Next Peak
5.00 1 -5.00				Next Pk Right
-25.0 -35.0 -45.0				Next Pk Left
-55.0 -65.0	hanna an	ersonite the state of the second state of the		Marker Delta
Start 30 MHz #Res BW 100 kHz	#VBW 300 kHz	Sweep	Stop 25.00 GHz 2.386 s (2001 pts)	Mkr→CF
1 N 1 f 2,440 2 N 1 f 3261 3 N 1 f 4,887 4 N 1 f 317 5 5 6	GHz 2.595 dBm GHz -42.350 dBm GHz -45.348 dBm MHz -49.969 dBm			Mkr→RefLvl
7 8 9 9 10 11			>	More 1 of 2
MSG		STATUS	3	

(Plot B: Channel = 39, 30MHz to 25GHz @ GFSK Mode)

(Plot C: Channel = 78, 30MHz to 25GHz @ GFSK Mode)

(Channel = 78, Band edge @ GFSK Mode)

(Channel = 78, Band edge with hopping on @ GFSK Mode)

π/4-DQPSK Mode

A. Test Verdict:

Channel	Frequency (MHz)	Measured Max.	Deferte	Limit	(dBm)	
		Out of Band		Carrier	Calculated	Verdict
		Emission (dBm)	FIOL	Level	-20dBc Limit	
0	2402	-40.05	Plot D	-1.75	-21.75	PASS
39	2441	-42.23	Plot E	-0.75	-20.75	PASS
78	2480	-43.28	Plot F	-0.54	-20.54	PASS

B. Test Plots:

Note: the power of the Module transmitting frequency should be ignored.

(Plot D: Channel = 0, 30MHz to 25GHz @ π /4-DQPSK)

(Channel = 0, Band edge $@\pi/4$ -DQPSK)

(Channel = 0, Band edge with hopping on $@\pi/4$ -DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Plot E: Channel = 39, 30MHz to 25GHz @ $\pi/4$ -DQPSK)

(Plot F: Channel = 78, 30MHz to 25GHz $@\pi/4$ -DQPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 78, Band edge $@\pi/4$ -DQPSK)

(Channel = 78, Band edge with hopping on @ π /4-DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

8-DPSK Mode

A. Test Verdict:

Channel	Frequency (MHz)	Measured Max.		Lim	it (dBm)	
		Out of Band Refer to		Carrier	Calculated	Verdict
		Emission (dBm)		Level	-20dBc Limit	
0	2402	-40.04	Plot G	1.97	-18.03	PASS
39	2441	-42.43	Plot H	-0.17	-20.17	PASS
78	2480	-43.43	Plot I	-1.21	-21.21	PASS

B. Test Plots:

Note: the power of the Module transmitting frequency should be ignored.

(Plot G: Channel = 0, 30MHz to 25GHz @ 8-DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 0, Band edge @ 8-DPSK)

(Channel = 0, Band edge with hopping on @ 8-DPSK)

(Plot H: Channel = 39, 30MHz to 25GHz @ 8-DPSK)

(Plot I: Channel = 78, 30MHz to 25GHz @ 8-DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Agilent Spectrum Analyzer - Swept SA							
LXI RF 50 Ω AC	CH-	SENSE:IN	T Ava		04:58:02 PM Nov 06, 2	017	Marker
Marker 2 2.463500000000	PNO: Wide G	Trig: Free Run	n Avg	Hold:>100/100		N N	
	IFGain:Low	Atten: 24 db					Select Marker
Ref Offset 2 dB 10 dB/div Ref 15.00 dBm				IVIKT	-58.755 dB	m	2
5.00 -5.00							Normal
-25.0 -35.0 -45.0							Delta
-65.0 -75.0		2	Maria	······································	- Charman Charles Char	~~	Fixed⊵
Center 2.483500 GHz #Res BW 100 kHz	#VBW	300 kHz	SUNCTION	Sweep 1	Span 10.00 M .000 ms (1001 p	Hz ts)	Off
MKH MUDE THC SLL X 1 N 1 f 2.48 2 N 1 f 2.48 3 - - - - 4 - - - - 5 - - - - 6 - - - -	80 02 GHz 33 50 GHz	1.942 dBm -58.755 dBm	FUNCTION		FUNCTION VALUE		Properties►
7 8 9 10 11 10							More 1 of 2
<		Ш		CTATIO		•	
100				STATUS		_	

(Plot I.1: Channel = 78, Band edge @ 8-DPSK)

(Plot I.1: Channel = 78, Band edge with hopping on @ 8-DPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.8. Restricted Frequency Bands

2.8.1. Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

2.8.2. Test Description

A. Test Setup:

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under non hopping-on test mode transmitting 339 bytes DH5, 679 bytes 2DH5 and 1021 bytes 3DH5 packages at maximum power. For the Test Antenna:

Horn Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

B. Equipments List:

Please reference ANNEX A(1.5).

2.8.3. Test Procedure

Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 KHz for f < 1GHz VBW = 3 MHz for peak and 10Hz for average Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize.

2.8.4. Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; AT = L_{Cable loss} [dB] - G_{preamp} [dB]$

AT: Total correction Factor except Antenna

UR: Receiver Reading

Gpreamp: Preamplifier Gain

AFactor: Antenna Factor at 3m

Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

Result for Antenna1

2.8.4.1 GFSK Mode

A. Test Verdict:

Channel	Frequency (MHz)	Detector PK/ AV	Receiver Reading U _R (dBuV)	A _T (dB)	A _{Factor} (dB@3m)	Max. Emission E (dBµV/m)	Limit (dBµV/m)	Verdict
0	2380.85	PK	50.52	-47.23	32.6	35.89	74	Pass
0	2380.85	AV	38.10	-47.23	32.6	23.47	54	Pass
78	2486.23	PK	50.00	-47.31	32.6	35.29	74	Pass
78	2486.23	AV	37.96	-47.31	32.6	23.25	54	Pass

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

B. Test Plots:

11:12:31 PM Nov 10, 2017 TRACE 1 2 3 4 5 6 TYPE MMWWWW DET P P N N N N Marker Marker 1 2.380848000000 GHz Avg Type: Log-Pwi Avg|Hold:>100/100 PNO: Fast IFGain:Low Trig: Free Run Atten: 20 dB Select Marker Mkr1 2.380 848 GHz 50.518 dBµV Ref 110.00 dBµV 10 dB/div _og Normal Delta \Diamond^2 ۵ **Fixed** Start 2.30000 GHz #Res BW 1.0 MHz Stop 2.40400 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz Off 50.518 dBµV 50.341 dBµV 2.380 848 GHz 2.390 000 GHz N 1 f **Properties** More 1 of 2

(Channel = 0 PEAK @ GFSK)

(Channel = 0 AVERAGE @ GFSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Keysight Spectrum Analyzer - Swept SA				
Marker 2 2.486228000000	GHZ PNO: East Trig: Free F	Avg Type: Lo un Avg Hold:>10	11:33:02 PM Nov 10, 2013 og-Pwr TRACE 1 2 3 4 5 00/100 TYPE MM	6 ₩ ₩
	IFGain:Low Atten: 20 d	B	DET P P N N N	Select Marker
10 dB/div Ref 110.00 dBµV			Mkr2 2.486 228 GHz 50.002 dBµ\	2
Log				
				Normal
90.0				
80.0				
70.0				Dolta
60.0 1	2 			Della
50.0	in a series a free left of the series of the	and have been for any to be graph holes and agraph of	hangland and an an an and a start and a start and a start and a start a start a start a start a start a start a	
40.0				
30.0				Fixed⊳
20.0				
Start 2.47800 GHz			Stop 2.50000 GHz	
#Res BW 1.0 MHz	#VBW 3.0 MHz	Sw	eep 1.000 ms (1001 pts	Off
MKR MODE TRC SCL X	Y	FUNCTION FUNCTION	ON WIDTH FUNCTION VALUE	
1 N 1 f 2.483	500 GHz 50.275 dBµ 228 GHz 50.002 dBµ			
3				Properties >
6				
8				More
10				1 of 2

(Channel = 78 PEAK @ GFSK)

(Channel = 78 AVERAGE @ GFSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

2.8.4.2 π/4-DQPSK Mode

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	
0	2374.61	PK	50.12	-47.23	32.6	35.49	74	Pass
0	2377.21	AV	37.93	-47.23	32.6	23.30	54	Pass
78	2488.32	PK	49.83	-47.31	32.6	35.12	74	Pass
78	2488.54	AV	37.84	-47.23	32.6	23.13	54	Pass

B. Test Plots:

Marker	4Nov 10, 2017 E 1 2 3 4 5 6	11:19:05 PI TRAC	Type: Log-Pwr	NT AV	SENSE:I		00 GHz	lyzer - Swept SA 50 Ω AC 60800000	trum An RF 2.374	sight Spec
Select Marker		2.374 6	old:>100/100	n Avç	ig: Free Ru tten: 20 dB	ast 😱 _ow	PNO: Fa IFGain:L			
	1 dBµV	50.12					١V	10.00 dBµ	Ref	/div
Norm	$ \land$									
Del			1							
	-	man a la l		he who all a serve	Allow Marine		مهربادي. مرموني	waradaranafarata		ta filipante
Fixed										
c	400 GHz	Stop 2.40	Sween 1		MHz	#VBW 3	±		000 G	2.30
	DN VALUE	FUNCTIO	FUNCTION WIDTH	FUNCTION	Y		(×	SCL	
					121 dBµV 085 dBµV	z 5 z 4	374 608 GH 390 000 GH	2.3	f	N 1 N 1
Properties	=									
1 of										
					m					

(Channel = 0 PEAK @ π /4-DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

RI SPECTRUM Analyzer - Swept SA		CENCE-TM	7		11-10-20 DA	Nov 10, 2017	_	
deo BW 10 Hz	PNO: Fast	Trig: Free Run	Avg Avg	Type: Log-Pwr Hold:>100/100	TRAC TYP			BW
dBrein Def 110.00 dBul	IFGain:Low	Atten: 20 db		Mkr1	2.377 2	08 GHz 2 dBuV	Auto	1.0 MH <u>Ma</u>
							Auto	Video BI 10 H Ma
						\square	VBV Auto	V:3dB RB 10 Ma
.0 .0 .0			r Pa				Spa <u>Auto</u>	n:3dB RB 10 Ma
art 2.30000 GHz tes BW 1.0 MHz	#VB	W 10 Hz		Sweep	Stop 2.40 8.109 s (*	400 GHz 1001 pts)	RB	W Contro ssian3 dB
N 1 f 2.37 N 1 f 2.39 N 1 f 2.390	7 208 GHz 0 000 GHz	Υ 37.932 dΒμV 38.179 dΒμV	FUNCTION	FUNCTION WIDTH	FUNCTIC	IN VALUE		
						E.		

(Channel = 0 AVERAGE @ $\pi/4$ -DQPSK)

(Channel = 78 PEAK @ π/4-DQPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Fax: 86-755-36698525 E-mail: service@morlab.cn

	1-25-10 DM Ney 10, 2012	-		-	CENCEAN		t SA	Analyzer - Swep	t Spectrum	Keysight P I
Marker	TRACE 1 2 3 4 5 6 TYPE MMWWWWW	vr 0	Type: Log-P Hold:>100/10	Ave	Trig: Free Run	Hz PNO: Fast	0000 G	8853600	r 2 2.4	rker
Select Marker	DEI DEI NINININ				Atten: 20 dB	FGain:Low	IF			
2	488 536 GHz 37.837 dBμV	r2 2	Mk				dBμV	110.00	iv Re	dB/di
Norm										
Norm										
									_	0
Der										
					¢ ²		\bigcirc^1			4
Fixed										
1	op 2.50000 GHz	S				-		GHz	.47800	rt 2.
C	'15 s (1001 pts)	ep 1	Swe		0 Hz	#VBV		MHz	SW 1.0	es B
-	FUNCTION VALUE	DTH	FUNCTION WI	FUNCTION	Y		Х	1	E TRC SCI	
					8.192 dBµV 7.837 dBµV	00 GHz 36 GHz	2.483 5		1 f	N
Properties										
	E									
Mo										
1 01										
	+									

(Channel = 78 AVERAGE @ π /4-DQPSK)

2.8.4.3 8-DPSK Mode

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	Voraiot	
0	2377.21	PK	50.27	-47.23	32.6	35.64	74	Pass
0	2378.25	AV	37.86	-47.23	32.6	23.23	54	Pass
78	2487.33	PK	50.06	-47.31	32.6	35.35	74	Pass
78	2487.33	AV	37.87	-47.23	32.6	23.16	54	Pass

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel: 86-755-36698555
 Fax: 86-7

 Http://www.morlab.cn
 E-mail: set

Fax: 86-755-36698525 E-mail: service@morlab.cn

B. Test Plots:

11:57:10 AM Nov 04, 2017 TRACE 123456 TYPE M Trace/Detector Marker 2 2.390000000000 GHz Avg Type: Log-Pwi Avg|Hold:>100/100 Trig: Free Run Atten: 10 dB PNO: Fast 😱 IFGain:Low Select Trace Mkr2 2.390 000 GHz 45.386 dBµV Ref 100.00 dBµV 10 dB/div Log Detector Sample ► Man Auto Preset <mark>▲</mark>2 Detectors **Clear Trace** Start 2.30000 GHz Res BW 1.0 MHz Stop 2.40400 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz **Clear All Traces** 2.381 888 GHz 2.390 000 GHz 47.335 dBµV 45.386 dBµV f f Preset All Traces More 2 of 3

(Channel = 0 PEAK @ 8-DPSK Mode)

(Channel = 0 AVERAGE @ 8-DPSK Mode)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Keysight Spectrum Analyzer - Swept SA							- 7 -
RL RF 50Ω AC Marker 2 2.48633800000	0 GHz PNO: Fast	Trig: Free Ru	n Avg	J Type: Log-Pwr Hold:>100/100	12:15:03 PM N TRACE TYPE DET	ov 04, 2017 1 2 3 4 5 6 M W W W W	Marker
10 dB/div Ref 100.00 dBµ		Atten: 10 dB		Mkr2	2.486 33 47.028	8 GHz dBµV	Select Marker 2
- og 90.0 80.0							Norm
60.0 50.0 40.0	1	2 www.an.ontwork.ratingingingingingingingingingingingingingi	ant-steady mersy h	a source - Nevyeolant.com Par	Madricanter	engenes, filler, friede	Deli
30.0 20.0 10.0							Fixed
Start 2.47800 GHz Res BW 1.0 MHz	#VB	W 3.0 MHz		Sweep 1	Stop 2.500 .000 ms (10	00 GHz 01 pts)	c
MKR MODE TRC SCL X 1 N 1 f 2.48 2 N 1 f 2.48 3 J	33 500 GHz 36 338 GHz	Υ 47.560 dBμV 47.028 dBμV	FUNCTION	FUNCTION WIDTH	FUNCTION	VALUE	Properties
6 7 8 9						=	Мо
							1 of

(Channel = 78 PEAK @ 8-DPSK Mode)

(Channel = 78 AVERAGE @ 8-DPSK Mode)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

Result for Antenna2

2.8.4.4 GFSK Mode

A. Test Verdict:

Channel	Frequency (MHz)	Detector PK/ AV	Receiver Reading U _R (dBuV)	A _T (dB)	A _{Factor} (dB@3m)	Max. Emission E (dBµV/m)	Limit (dBµV/m)	Verdict
0	2382.26	PK	45.91	-47.23	32.6	31.28	74	Pass
0	2363.13	AV	32.73	-47.23	32.6	18.10	54	Pass
78	2488.66	PK	42.19	-47.31	32.6	27.48	74	Pass
78	2488.66	AV	31.92	-47.31	32.6	17.21	54	Pass

B. Test Plots:

Keysight Spe R L	ctrum Analyzer - S RF PRESEL 50	wept SA Ω AC		SENS	E:INT		02:06:26 A	4 Nov 26, 2017	
arker 1	2.382264	000000 NFE	GHz PNO: Fast	Trig: Free R	Av Run Avg	g Type: Voltage Hold:>100/100	TRAC TYP DE	E 1 2 3 4 5 6 E M WWWW T P P N N N N	Trace/Detector
0 dB/div	Ref 100.0	0 dBµV	IFGain:Low	Atten: 6 de	2	Mkr	1 2.382 2 45.90	64 GHz 7 dBμV	Select Trace
								^	Detecto Peal <u>Auto</u> Ma
0.0 0.0	Markan and a start and	t	an a fair france and the	The mark and a state of the sta	wanger and a stranger	an shi shi a shi	1 2 1	port-wheread	Prese Detectors
).0).0).0									Clear Tra
art 2.30 s BW ((000 GHz CISPR) 1 N	IHz	#VBV	V 3.0 MHz		Sweep	Stop 2.40 1.000 ms (9400 GHz 1001 pts)	Clear All Trace
R MODE TR	f f	× 2.382 2.390	2 264 GHz 0 000 GHz	Υ 45.907 dBμ\ 43.884 dBμ\	FUNCTION	FUNCTION WIDT	H FUNCTIO	E	Pres All Trac
									M a 2 o
1								-	20

(Channel = 0 PEAK @ GFSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

arker 1	2.36312	8000000 (GHz	SENSE:	Ave	g Type: Voltage	02:07:43 AM N TRACE	lov 26, 2017 1 2 3 4 5 6	Marker
		NFE	PNO: Fast (IFGain:Low	Trig: Free Ru Atten: 6 dB	in Avg	Hold:>100/100	TYPE	M WWWWWW P P N N N N	Select Marke
dB/div	Ref 100	.00 dBµV				Mkr1	2.363 12 32.730	8 GHz dBµV	
9 1.0 1.0									Norr
).0).0).0								A	De
									Fixe
art 2.3 es BW	0000 GHz (CISPR) 1	MHz	#VB	W 10 Hz		Sweep	Stop 2.404 11.93 s (10	00 GHz 001 pts)	-
R MODE T	RC SCL	× 2.363 ·	128 GHz	Υ 32.730 dBμV	FUNCTION	FUNCTION WIDTH	FUNCTION	VALUE	-
		2.350		32.013 UBµV				E.	Propertie

(Channel = 0 AVERAGE @ GFSK)

(Channel = 78 PEAK @ GFSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Keysight Spectru	m Analyzer - S	wept SA								- 7 🗙
deo BW 1	0 Hz	Ω AC	BNO: Fast (SENSE:IN	Avg	Type: Voltage	02:22:11 AM TRAC TYF	M Nov 26, 2017 E 1 2 3 4 5 6 E M W M M		BW
_	_	NFC	IFGain:Low	Atten: 6 dB			DE			Res BW
dB/div	lef 100.0	0 dBµV				Mkr2	2.488 6 31.91	62 GHz 5 dBµV	<u>Auto</u>	1 MH Mai
g 1.0										Video BV
.0									Auto	Ma
.0	and the second second								VBV	V:3dB RBV
			1						Auto	10. Ma
	1	(<u>)</u>				_				
.0									shu	
0									and a	
art 2.4780 s BW (CIS	0 GHz SPR) 1 M	1Hz	#VB	N 10 Hz		Sweep	Stop 2.50 2.523 s (0000 GHz 1001 pts)	RS	
R MODE TRC S	SCL	Х		Y	FUNCTION	FUNCTION WIDTH	FUNCTIO	ON VALUE .		
N 1 N 1	f f	2.483 2.488	500 GHz 662 GHz	32.674 dBµV 31.915 dBµV						
								40		
								+		
				m			-		1	

(Channel = 78 AVERAGE @ GFSK)

2.8.4.5 π/4-DQPSK Mode

C. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
Chamier	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	Verdict
0	2375.82	PK	43.92	-47.23	32.6	29.29	74	Pass
0	2374.26	AV	32.73	-47.23	32.6	18.10	54	Pass
78	2486.18	PK	42.89	-47.31	32.6	28.18	74	Pass
78	2486.18	AV	32.51	-47.23	32.6	17.80	54	Pass

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fax:
 86-75

 Http://www.morlab.cn
 E-mail:
 set

Fax: 86-755-36698525 E-mail: service@morlab.cn

D. Test Plots:

02:08:13 AM Nov 26, 2017 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P P N N N N Marker Avg Type: Voltage Avg|Hold:>100/100 Marker 1 2.375816000000 GHz Trig: Free Run Atten: 6 dB NFE PNO: Fast IFGain:Low Select Marker Mkr1 2.375 816 GHz 43.923 dBµV 10 dB/div -og Ref 100.00 dBµV Normal 1 Delta ^<mark>2</mark> **Fixed** Start 2.30000 GHz Res BW (CISPR) 1 MHz Stop 2.40400 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz Off FUN 2.375 816 GHz 2.390 000 GHz 43.923 dBµV 42.296 dBµV **Properties** More 1 of 2

(Channel = 0 PEAK @ $\pi/4$ -DQPSK)

(Channel = 0 AVERAGE @ $\pi/4$ -DQPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fax:
 86-755-36698555

 Http://www.morlab.cn
 E-mail:
 s

Fax: 86-755-36698525 E-mail: service@morlab.cn

Marker	1 Nov 26, 2017	02:20:06 A	W K		E:INT	SEN	-	pt SA AC	n Analyzer - Swi RESEL 50 Ω	ht Spectrur RF P	Keysigh
Select Marker	E 1 2 3 4 5 6 E M P P N N N N	TRAC TYF DE	>100/100	Avg Ho	Run B	Trig: Free Atten: 6 d	Z NO: Fast G Gain:Low	NFE PI	8617600	er 2 2.4	larke
2	76 GHz 7 dBµV	2.486 1 42.88	Mkr2					dBµV	ef 100.00	liv R	10 dB/d
Norma											- og 90.0 80.0
Delta		A- De J - D - D -					2	1			70.0 60.0 50.0
Fixed											40.0
no	0000 GHz 1001 pts)	Stop 2.50 000 ms (Sweep 1.			3.0 MHz	#VBW	z) GHz PR) 1 MH	2.4780 W (CIS	Start 2 Res Bl
	N VALUE	FUNCTIO	ICTION WIDTH	TION	FUN	Y 42.262 dBj	0 GHz	× 2.483 50			MKR MOD
Properties						42.887 UB)		2.480 17			3 4 5
Mor 1 of 2											7 8 9
											11

(Channel = 78 PEAK @ π/4-DQPSK)

(Channel = 78 AVERAGE@ $\pi/4$ -DQPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.8.4.6 8-DPSK Mode

C. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	, eraiet
0	2363.65	PK	42.79	-47.23	32.6	28.16	74	Pass
0	2352.10	AV	32.78	-47.23	32.6	18.15	54	Pass
78	2488.24	PK	44.64	-47.31	32.6	29.93	74	Pass
78	2488.24	AV	31.98	-47.23	32.6	17.27	54	Pass

D. Test Plots:

(Channel = 0 PEAK @ 8-DPSK Mode)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Marker	v 26, 2017	02:10:11 AM N		U	SENSE(IN		50 Ω AC	RF PRESEL :	LR
Warker	23456	TRACE	Type: Voltage Hold:>100/100	Avg	Trig: Free Run	GHz PNO: Fast	4000000 NFE	2.35210	ker 12
Select Marke		DET		_	Atten: 6 dB	IFGain:Low			
	dBµV	2.352 104 32.778	Mkr1				.00 dBµV	Ref 100	B/div
Norn									
De	$-\Delta$								
		2			1_				
	\ \				Y			-	
Fixe									
		24an 2 40Â							4.0.000
ç	01 pts)	5top 2.404 11.93 s (10	Sweep		10 Hz	#VB	MHz	SPR) 1	BW (C
	ALUE	FUNCTION	FUNCTION WIDTH	FUNCTION	Y		x	C SCL	MODE TRO
					32.778 dBµV 32.024 dBuV	2 104 GHz	2.352	f	N 1 N 1
Propertie									
	E								
-									
Mo									
14.0									

(Channel = 0 AVERAGE @ 8-DPSK Mode)

(Channel = 78 PEAK @ 8-DPSK Mode)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Keysight Spectrum Analyzer -	Swept SA								
RL RF PRESEL 50	Ω AC		SENSE(IN	Avg Avg	Type: Voltage	02:19:38 AM N TRACE	ov 26, 2017 1 2 3 4 5 6		BW
	NFE	IFGain:Low	Atten: 6 dB		1000.2100/100	DET	PPNNNN		Res BW
dB/div Ref 100.	00 dBµV				Mkr2	2.488 24 31.976	4 GHz dBµV	<u>Auto</u>	1 MH Mai
99 1.0									Video BV
0.0								Auto	Ma
								VBW	1:3dB RBV
		1	2					Auto	10.0 Mai
	~X							Spo	1 DILE ROV
.u. .0.								<u>815</u>	
art 2.47800 GHz s BW (CISPR) 1 N	VIHz	#VB	W 10 Hz		Sweep	Stop 2.500 2.523 s (10	00 GHz 01 pts)	RD	Alberto
R MODE TRC SCL	Х		Y	FUNCTION	FUNCTION WIDTH	FUNCTION 1	VALUE 🔺		
N 1 f N 1 f	2.483	3 500 GHz 3 244 GHz	32.707 dBµV 31.976 dBµV						
4									
6									
8									
							-		
			m			-	- *·		

(Channel = 78 AVERAGE @ 8-DPSK Mode)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.9. Conducted Emission

2.9.1. Requirement

According to RSS-GEN section 8.8, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).

Frequency ra	ange	Conducted Limit (dBµV)	
(MHz)		Quai-peak	Average
0.15 - 0.50		66 to 56	56 to 46
0.50 - 5		56	46
5- 30		60	50

NOTE:

(a) The lower limit shall apply at the band edges.

(b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

2.9.2. Test Description

A. Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10: 2013.

The factors of the site are calibrated to correct the reading. During the measurement, the Bluetooth

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

EUT is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under hopping-on test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.9.3. Test Result

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

A. Test setup:

The EUT configuration of the emission tests is $\underline{\text{EUT} + \text{Link.}}$ **Note:** The test voltage is AC 120V/60Hz.

B. Test Plots:

NO.	Fre. (MHz)	Emission Level (dBµV)		Limit (dBµV)		Power-line	Verdict
		Quai-peak	Average	Quai-peak	Average		
1	0.15	35.09	27.15	66.00	56.00	Line	PASS
2	0.5858	32.02	25.17	56.00	46.00		PASS
3	2.1678	32.19	26.40	56.00	46.00		PASS
4	4.765	27.04	21.01	56.00	46.00		PASS
5	8.214	20.51	14.37	60.00	50.00		PASS
6	13.7956	28.26	21.74	60.00	50.00		PASS

(Plot B: N Phase)

NO.	Fre. (MHz)	Emission Level (dBµV)		Limit (dBµV)		Power-line	Verdict
		Quai-peak	Average	Quai-peak	Average		_
1	0.1524	36.10	30.35	65.87	55.87	Line	PASS
2	0.223	32.54	26.77	62.71	52.71		PASS
3	1.2684	41.68	35.97	56.00	46.00		PASS
4	3.4238	30.97	23.49	56.00	46.00		PASS
5	7.263	24.86	19.53	60.00	50.00		PASS
6	13.8872	29.43	22.54	60.00	50.00		PASS

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.10. Radiated Emission

2.10.1. Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note:

- 1. For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

2.10.2. Test Description

A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

3) For radiated emissions above 1GHz

The RF absorbing material used on the reference ground plane and on the turntable have a maximum height (thickness) of 30 cm (12 in) and have a minimum-rated attenuation of 20 dB at all frequencies from 1 GHz to 18 GHz. Test site have a minimum area of the ground plane covered with RF absorbing material as specified in Figure 6 of ANSI C63.4: 2014.

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10 (2013). For radiated emissions below or equal to 1GHz, the EUT was set-up on insulator 80cm above the Ground Plane, For radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

(a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.

(b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Place the test antenna at 3m away from area of the EUT, while keeping the test antenna aimed at the source of emissions at each frequency of significant

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

emissions, with polarization oriented for maximum response. The test antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final test antenna elevation shall be that which maximizes the emissions. The test antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The emission levels at both horizontal and vertical polarizations should be tested.

B. Equipments List:

Please reference ANNEX A(1.5).

2.10.3. Test Procedure

Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz VBW \ge RBW Sweep = auto Detector function = peak Trace = max hold

2.10.4. Test Result

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading

G_{preamp}: Preamplifier Gain

A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor AT and A_{Factor} were built in test software.

Note: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

The low frequency, which started from 9KHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

Result for Antenna 1

GFSK Mode:

A. Test Plots for the Whole Measurement Frequency Range:

Plots for Channel = 0

(30MHz to 25GHz, Antenna Vertical @ GFSK, channel 0)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Plot for Channel = 39

(30MHz to 25GHz, Antenna Horizontal @ GFSK, channel 39)

(30MHz to 25GHz, Antenna Vertical @ GFSK, channel 39)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Plot for Channel = 78

(30MHz to 25GHz, Antenna Horizontal @ GFSK, channel 78)

(30MHz to 25GHz, Antenna Vertical @ GFSK, channel 78)

MORLAB

π/4-DQPSK Mode:

Plots for Channel = 0

(30MHz to 25GHz, Antenna Horizontal @ π/4-DQPSK, channel 0)

(30MHz to 25GHz, Antenna Vertical @ π/4-DQPSK, channel 0)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Plot for Channel = 39

(30MHz to 25GHz, Antenna Horizontal @ π /4-DQPSK, channel 39)

(30MHz to 25GHz, Antenna Vertical @ π /4-DQPSK, channel 39)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Plot for Channel = 78

(30MHz to 25GHz, Antenna Horizontal @ π /4-DQPSK, channel 78)

(30MHz to 25GHz, Antenna Vertical @ π /4-DQPSK, channel 78)

MORLAB

8-DPSK Mode:

Plots for Channel = 0

(30MHz to 25GHz, Antenna Horizontal @8-DPSK, channel 0)

(30MHz to 25GHz, Antenna Vertical @8-DPSK, channel 0)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Plot for Channel = 39

(30MHz to 25GHz, Antenna Horizontal @8-DPSK, channel 39)

(30MHz to 25GHz, Antenna Vertical @8-DPSK, channel 39)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Plot for Channel = 78

(30MHz to 25GHz, Antenna Horizontal @8-DPSK, channel 78)

(30MHz to 25GHz, Antenna Vertical @8-DPSK, channel 78)

Result for Antenna 2

GFSK Mode:

A. Test Plots for the Whole Measurement Frequency Range:

Plots for Channel = 0

(30MHz to 25GHz, Antenna Vertical @ GFSK, channel 0)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525 E-mail: service@morlab.cn

Page **82** 0f **94**

Plot for Channel = 39

(30MHz to 25GHz, Antenna Horizontal @ GFSK, channel 39)

(30MHz to 25GHz, Antenna Vertical @ GFSK, channel 39)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Plot for Channel = 78

(30MHz to 25GHz, Antenna Horizontal @ GFSK, channel 78)

(30MHz to 25GHz, Antenna Vertical @ GFSK, channel 78)

π/4-DQPSK Mode:

Plots for Channel = 0

(30MHz to 25GHz, Antenna Horizontal @ π/4-DQPSK, channel 0)

(30MHz to 25GHz, Antenna Vertical @ π/4-DQPSK, channel 0)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Plot for Channel = 39

(30MHz to 25GHz, Antenna Horizontal @ π /4-DQPSK, channel 39)

(30MHz to 25GHz, Antenna Vertical @ π /4-DQPSK, channel 39)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Plot for Channel = 78

(30MHz to 25GHz, Antenna Horizontal @ π /4-DQPSK, channel 78)

(30MHz to 25GHz, Antenna Vertical @ π /4-DQPSK, channel 78)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

8-DPSK Mode:

Plots for Channel = 0

(30MHz to 25GHz, Antenna Horizontal @8-DPSK, channel 0)

(30MHz to 25GHz, Antenna Vertical @8-DPSK, channel 0)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn

Plot for Channel = 39

(30MHz to 25GHz, Antenna Horizontal @8-DPSK, channel 39)

(30MHz to 25GHz, Antenna Vertical @8-DPSK, channel 39)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Plot for Channel = 78

(30MHz to 25GHz, Antenna Horizontal @8-DPSK, channel 78)

(30MHz to 25GHz, Antenna Vertical @8-DPSK, channel 78)

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty
Number of Hopping Frequency	±5%
Peak Output Power	±2.22dB
20dB Bandwidth	±5%
Carrier Frequency Separation	±5%
Time of Occupancy (Dwell time)	±5%
Conducted Spurious Emission	±2.77 dB
Restricted Frequency Bands	±5%
Radiated Emission	±2.95dB
Conducted Emission	±2.44dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.				
Department:	Morlab Laboratory				
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang				
	Road, Block 67, BaoAn District, ShenZhen, GuangDong				
	Province, P. R. China				
Responsible Test Lab	Mr. Su Feng				
Manager:					
Telephone:	+86 755 36698555				
Facsimile:	+86 755 36698525				

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
	Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang
	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

3. Facilities and Accreditations

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Spectrum Analyzer	MY45101810	E4407B	Agilent	2017.05.24	2018.05.23
Power Splitter	NW521	1506A	Weinschel	2017.05.24	2018.05.23
Attenuator 1	(N/A.)	10dB	Resnet	2017.05.24	2018.05.23
Attenuator 2	(N/A.)	3dB	Resnet	2017.05.24	2018.05.23
EXA Signal	MV52470926	N9010A	Agilent	2016.12.07	2017.12.06
Analzyer	MT55470650				
Bluetooth Test	6K00006210	MT8852B	Anritsu	2017.05.24	2018.05.23
Set	000000210				
USB Wideband	MV54210011	U2021XA	Agilent	2017.05.24	2018.05.23
Power Sensor	IVE 10011				
RF cable	CD01		Mariah	N1/A	N1/A
(30MHz-26GHz)	CBUI	KFUI	Monab	IN/A	N/A
Coaxial cable	CB02	RF02	Morlab	N/A	N/A
SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A

4.2 Conducted Emission Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	US44210471	E7405A	Agilent	2017.05.17	2018.05.16
LISN	812744	NSLK 8127	Schwarzbeck	2017.05.17	2018.05.16
Service Supplier	100448	CMU200	R&S	2017.05.17	2018.05.16
Pulse Limiter	9391	VTSD	Sebwarzback	2017 05 17	2019 05 16
(20dB)		9561-D	Schwarzbeck	2017.05.17	2018.05.10
Coaxial cable(BNC)	CB01	EMC01		N/A	N/A
(30MHz-26GHz)					

4.3Auxiliary Test Equipment

Equipment Name	Model No.	Brand Name	Manufacturer	Cal.Date	Cal.Due Date
Computer	T430i	Think Pad	Lenovo	N/A	N/A

4.4 Radiated Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal.Due Date
System Simulator	GB45360846	8960-E5515C	Agilent	2017.05.17	2018.05.16
Receiver	MY54130016	N9038A	Agilent	2017.05.17	2018.05.16
Test Antenna - Bi-Log	N/A	VULB9163	Schwarzbeck	2016.12.09	2017.12.08
Test Antenna - Horn	9170C-531	BBHA9170	Schwarzbeck	2017.03.30	2018.03.29
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2017.03.30	2018.03.29
Test Antenna - Horn	1774	BBHA 9120D	Schwarzbeck	2017.09.13	2018.09.12
Coaxial cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial cable(N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde& Schwarz	2017.05.17	2018.05.16
18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde& Schwarz	2017.05.17	2018.05.16
Climate Chamber	2004012	HL4003T	Yinhe	2017.01.11	2018.01.10
Vibration Table	N/A	ACT2000-S01 5L	CMI-COM	2017.01.11	2018.01.10
Anechoic Chamber	N/A	9m*6m*6m	Changning	2017.01.11	2018.01.10

____ END OF REPORT

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn