

RF EXPOSURE **EVALUATION REPORT**

APPLICANT Pycom Ltd

Double Network (WiFi and Bluetooth) PRODUCT NAME

development Module powered by MicroPython.

MODEL NAME W01 1.0

TRADE NAME WiPy OEM

BRAND NAME Pycom

FCC ID 2AJMTWIPY01R

47CFR 2.1091

STANDARD(S) KDB 447498 D01 General RF Exposure Guidance

v06

ISSUE DATE 2017-10-11

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

DIRECTORY

TEST REPORT DECLARATION
1. TECHNICAL INFORMATION3
1.1. IDENTIFICATION OF APPLICANT4
1.2. IDENTIFICATION OF MANUFACTURER4
1.3. EQUIPMENT UNDER TEST (EUT)4
1.3.1. PHOTOGRAPHS OF THE EUT5
1.3.2. IDENTIFICATION OF ALL USED EUT6
1.4. APPLIED REFERENCE DOCUMENTS6
2. DEVICE CATEGORY AND RF EXPOSURE LIMIT7
3. MEASUREMENT OF CONDUCTED PEAK OUTPUT POWER8
4. RF EXPOSURE EVALUATION9
ANNEX C GENERAL INFORMATION10

Change History					
Issue Date Reason for change					
1.0 2017-10-11 First edition		First edition			

TEST REPORT DECLARATION

Applicant	Pycom Ltd
Applicant Address	Highpoint, 9 Sydenham Road, GU1 3RX Guildford, Surrey UK
Manufacturer	In-Tech Electronics Ltd
Manufacturer Address	2/F Rhythm Home, 119 Shazui Road,Futian,Shenzhen,Guangdong,P.R.China
Product Name	Double Network (WiFi and Bluetooth) IoT development Module powered by MicroPython.
Model Name	W01 1.0
Brand Name	Pycom
HW Version	1.0r
SW Version	1.0
Test Standards	47CFR 2.1091; KDB 447498 D01 General RF Exposure Guidance v06
Issue Date	2017-10-11
SAR Evaluation	Not Required

Tested by	:	l'eng hunei
		Peng Fuwei (Test engineer)
Approved by	:	Peng Hu:
		Peng Huarui (Supervisor)

1. TECHNICAL INFORMATION

Note: the following data is based on the information by the applicant.

1.1. Identification of Applicant

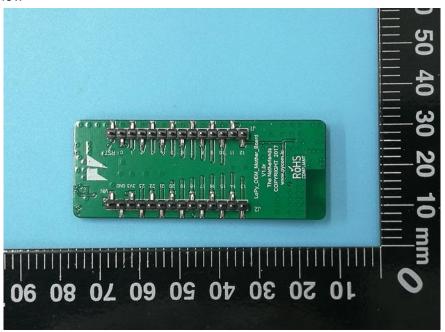
Company Name:	Pycom Ltd
Address:	Highpoint, 9 Sydenham Road, GU1 3RX Guildford, Surrey UK

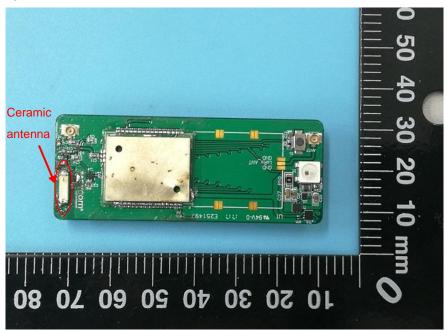
1.2. Identification of Manufacturer

Company Name:	In-Tech Electronics Ltd	
Address:	2/F Rhythm Home,	
	119 Shazui Road,Futian,Shenzhen,Guangdong,P.R.China	

1.3. Equipment Under Test (EUT)

Model Name:	Double Network (WiFi and Bluetooth) IoT development Module powered by MicroPython.		
Trade Name:	WiPy OEM		
Brand Name:	Pycom		
Hardware Version:	1.0r		
Software Version:	1.0		
Frequency Bands:	Bluetooth 4.0:2402-2480MHz;		
	Wifi802.11b/g/n:2412-2462MHz;		
Modulation Mode: Bluetooth 4.0: GFSK;			
	Wifi802.11b: DSSS; Wifi802.11g/n: OFDM;		
Antenna 1 type:	Ceramic Antenna		
Antenna 1 Gain:	-0.5dBi		
Antenna 2 type:	External Antenna		
Antenna 2 type:	2.0dBi		





1.3.1. Photographs of the EUT

1. EUT rear view

2. EUT front view

3. EUT External antenna view

1.3.2. Identification of all used EUT

The EUT identity consists of numerical and letter characters, the letter character indicates the test sample, and the following two numerical characters indicate the software version of the test sample.

EUT Identity	Hardware Version	Software Version
1#	1.0r	1.0

1.4. Applied Reference Documents

Leading reference documents for testing:

		9		
No.	Identity	Document Title		
1	47 CFR§2.1091	Radiofrequency Radiation Exposure Evaluation: mobile		
		devices		
2	KDB 447498 D01v06	General RF Exposure Guidance		

RFPORT No.: \$717050133\$05A

2. DEVICE CATEGORY AND RF EXPOSURE LIMIT

Per user manual, Based on 47CFR 2.1091, this device belongs to mobile device category with General Population/Uncontrolled exposure.

Mobile Devices:

47CFR 2.1091(b)

For purposes of this section, a mobile device is defined as a transmitting device designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimeters is normally maintained between the transmitter's radiating structure(s) and the body of the user or nearby persons. In this context, the term "fixed location" means that the device is physically secured at one location and is not able to be easily moved to another location. Transmitting devices designed to be used by consumers or workers that can be easily re-located, such as wireless devices associated with a personal computer, are considered to be mobile devices if they meet the 20 centimeter separation requirement.

GENERAL POPULATION / UNCONTROLLED EXPOSURE

The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Warning labels placed on low-power consumer devices such as cellular telephones are not considered sufficient to allow the device to be considered under the occupational/controlled category, and the general population/uncontrolled exposure limits apply to these devices.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m) 3) Limits for General	Magnetic field strength (A/m) Population/Uncontro	Power density (mW/cm²)	Averaging time (minutes)
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	-	-	f/1500	30
1500-100,000	-	-	1.0	30

f = frequency in MHz

^{* =} Plane-wave equivalent power density

3. MEASUREMENT OF CONDUCTED PEAK OUTPUT POWER

1. Bluetooth Average output power

Dond	Channel	Frequency (MHz)	Output Power(dBm)		
Band			GFSK	π/4-DQPSK	8-DPSK
BT 2.1+EDR	0	2402	5.01	6.86	7.19
	19	2440	5.15	7.02	7.29
	39	2480	4.49	6.26	6.62

Band	Channel	Frequency (MHz)	Output Power(dBm) GFSK
	0	2402	-2.31
BT4.0	19	2440	-1.52
	39	2480	-0.65

2. Wifi Average output power

Band Channel		Frequency (MHz)	Output Power(dBm)			
	Channel		802.11b	802.11g	802.11n20	
			(DSSS)	(OFDM)	(OFDM)	
	1	2412	9.41	9.09	9.03	
Wifi	6	2437	10.84	10.59	10.53	
	11	2462	13.39	12.94	13.09	

Band	Channel		Output	
		Frequency	Power(dBm)	
		(MHz)	802.11n40	
			(OFDM)	
	3	2422	6.91	
Wifi	6	2437	7.93	
	9	2452	9.11	

4 RF EXPOSURE EVALUATION

Standalone transmission MPE evaluation Antenna 1:

Bands	Frequency (MHz)	Antenna Gain (dBi)	Conducted Average Power (dBm)	Time -averaging EIRP (mW)	Power density (mW/cm²)	Limit for MPE (mW/cm²)
BT2.1+EDR	2440	-0.5	7.29	0.44	0.0001	2.705
BT4.0	2480	-0.5	-0.65	0.77	0.0002	2.736
2.4GHz	2462	-0.5	13.39	19.45	0.0039	2.722

Antenna 2:

Bands	Frequency (MHz)	Antenna Gain (dBi)	Conducted Average Power (dBm)	Time -averaging EIRP (mW)	Power density (mW/cm²)	Limit for MPE (mW/cm²)
BT2.1+EDR	2440	2.0	7.29	7.09	0.0014	2.705
BT4.0	2480	2.0	-0.65	1.36	0.0003	2.736
2.4GHz	2462	2.0	13.39	34.59	0.0069	2.722

ANNEX C GENERAL INFORMATION

1. Identification of the Responsible Testing Laboratory

Traditation of the Responsible recting Laboratory			
Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.		
Department:	Morlab Laboratory		
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang		
	Road, Block 67, BaoAn District, ShenZhen, GuangDong		
	Province, P. R. China		
Responsible Test Lab Manager:	Mr. Su Feng		
Telephone:	+86 755 36698555		
Facsimile:	+86 755 36698525		

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
	Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang
	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

**** END OF REPORT ****

