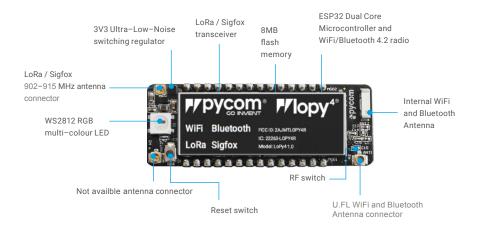
Flopy⁴

Datasheet Version 1.0


F/ py	COM GO INVENT
--------------	------------------

1.0	Overview	03
2.0	Features	03
3.0	Specifications	04
3.1	CPU	04
3.2	Memory	04
3.3	WiFi	04
3.4 3.5	Bluetooth	04 04
3.5 3.6	LoRa Sigfox	04
3.7	RTC	04
3.8	Security	04
3.9	Hash / encryption	04
4.0	Block Diagram	04
5.0	Pinout	05
6.0	Pin Details	06
6.1	Remapping Pins	07
7.0	ESP32 Peripherals	08
7.1	RTC	08
8.0	Programming the device	09
8.1	UART	09
8.2	Wi-Fi	09
8.2.1	Telnet	09
8.2.2	FTP	09
9.0	Boot modes	09
9.1	Bootloader mode	09
9.2	Safe boot	09
10.0	Power	10
10.1	Current consumption by power modes/features measured at 5V	10
11.0	Memory Map	11
11.1	Flash	11
11.2	RAM	11
11.3	ROM and eFuses	11
12.0	WiFi	12
12.1	Supported features	12
12.2	Specifications	12

13.0	Bluetooth	13
13.1 13.2 13.2.1 13.2.2 13.2.3 13.2.4 13.2.5 13.2.6	Supported features Specification Receiver – Basic Data Rate Receiver – Enhanced Data Rate Receiver – Bluetooth LE Transmitter – Basic Data Rate Transmitter – Enhanced Data Rate Transmitter – Bluetooth LE	13 13 14 15 16 17 18
14.0	LoRa	18
14.1 14.2	Supported features Specifications	18 19
15.0	Sigfox	22
15.1 15.2	Frequencies Specifications	22 22
16.0	6LoWPAN	23
17.0	Electrical Characteristics	23
17.1 17.2	Absolute maximum ratings Input/Output characteristics	23 23
18.0	Minimum Recommended Circuit	24
19.0	Mechanical Specifications	25
20.0	Recommended Land Patterns	25
20.1	Through hole	25
21.0	Soldering Profile	27
21.1 21.2	With headers Without headers	27 27
22.0	Ordering Information	28
23.0	Packaging	28
24.0	Certification	29
24.1 24.2	EU Regulatory Conformance Federal Communication Commission	32
24.2.1	Interference Statement RF Warning Statement	29 29
24.2.2	9	29
24.2.3 24.2.4	End Product Labelling Manual Information to the End User	29 29
25.0	Revision History	30

Size 55mm x 20mm x 3.5mm (excluding headers) Operating temperature: -40 to 85 degrees celsius

1.0 Overview

The LoPy4 is a quadruple bearer MicroPython enabled development board (LoRa, Sigfox, WiFi, Bluetooth) – perfect enterprise grade loT platform for your connected Things. With the latest Espressif chipset the LoPy4 offers a perfect combination of power, friendliness and flexibility. Create and connect your things everywhere. Fast.

2.0 Features

- Powerful CPU, BLE and state of the art WiFi radio.
- Simultaneous LoRa and Sigfox connectivity
- Can also double up as a Nano LoRa gateway
- MicroPython enabled
- Fits in a standard breadboard (with headers)
- Ultra-low power usage: a fraction compared to other connected micro controllers
- Available with or without pin headers soldered on

3.0 Specifications

3.1 CPU

- Xtensa® dual-core 32-bit LX6 microprocessor(s), up to 600 DMIPS
- Hardware floating point acceleration
- Python multi-threading
- An extra ULP-coprocessor that can monitor GPIOs, the ADC channels and control most of the internal peripherals during deep-sleep mode while only consuming ~25uA.

3.2 Memory

- RAM: 520KB + 4MB
- External flash: 8MB

3.3 WiFi

- 802.11b/g/n 16mbps

3.4 Bluetooth

Low energy and classic

3.5 LoRa

- LoRaWAN 1.0.2 stack Class A and C devices
- Node range: Up to 40km
- Nano-gateway: Up to 22km (Capacity up to 100 nodes)

3.6 Sigfox

- Class 0 device.
- Node range: Up to 50km

3.7 RTC

Running at 150kHz

3.8 Security

- SSL/TLS support
- WPA Enterprise security

3.9 Hash / encryption

- SHA - MD5
- DES
- AES
- AES

5.0

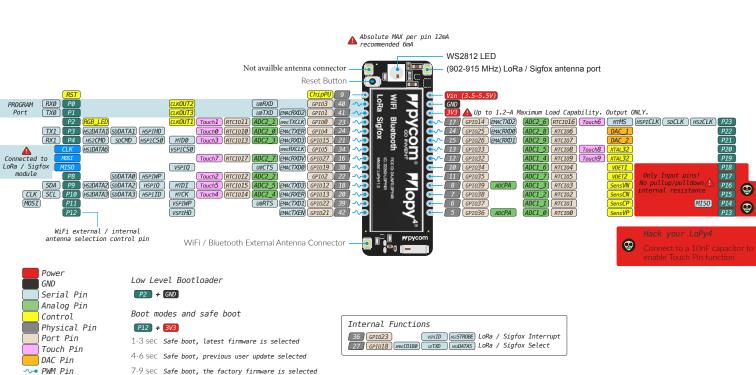

Pinout

Figure 2 -

I.

Version

1.0

22/03/18

6.0 Pin Details

Table 1 – Module pinout

Module Pin	ESP32 GPIO	Pin Name	Default Function	ADC	PWM	RTC†	Notes
1	_	-	Reset				Active Low, connected to on-board button
2	3	P0	RX0 (Programming)		٠		Used by the bootloader and to program the module
3	1	P1	TX0 (Programming)		٠		Used by the bootloader and to program the module
4	0	P2		2*	٠	٠	If tied to GND during boot the device will enter bootloader mode, Connected to the on–board RGB LED
5	4	P3	TX1	2*	٠	٠	
6	15	P4	RX1	2*	٠	•	JTAG TDO, SD card CMD
7	5	_	LoRa/Sigfox radio SPI CLK		٠		Not recommended for external use
8	27	_	LoRa/Sigfox radio SPI MOSI	2*	٠	•	Not recommended for external use
9	19	_	LoRa/Sigfox radio SPI MISO		٠		Not recommended for external use
10	2	P8		2*	٠	٠	SD card DAT0
11	12	P9	SDA	2*	٠	٠	JTAG TDI
12	13	P10	SCL (I2C) / CLK (SPI)	2*	٠	٠	JTAG TCK
13	22	P11	MOSI		٠		
14	21	P12			٠		If tied to 3.3V during boot the device enters safe boot mode, JTAG MISO
15	36	P13		1		٠	Input only
16	37	P14	MISO	1		٠	Input only
17	38	P15		1		٠	Input only
18	39	P16		1		٠	Input only
19	35	P17		1		٠	Input only
20	34	P18		1		٠	Input only
Version 1.0							06

6.0 Pin Details

Table 1 – Module pinout

Module Pin	ESP32 GPIO	Pin Name	Default Function	ADC	PWM	RTC†	Notes
21	32	P19		1	٠	٠	
22	33	P20		1	٠	•	
23	26	P21		2*	٠	•	DAC,
24	25	P22		2*	٠	•	DAC
25	14	P23		2*	٠	•	JTAG TMS, SD card SCLK
26	_	_	Regulated 3.3V supply				Output only, do not feed 3.3V into this pin or you can damage the regulator
27	_	_	Ground				
28	_	_	Voltage Input				Accepts a voltage between 3.5V and 5.5V
_	18	_					LoRa reset
_	16	_					External WiFi/BT antenna switch, Low = on–board, High = U.FL
_	23	_					LoRa/Sigfox radio interrupt
_	17	_					LoRa/Sigfox radio chip select

+ The pins on the RTC power domain can be used during deep sleep, specifically GPIO pins will maintain their state while in deep sleep.

* ADC2 is currently not supported in the micropython firmware

6.1 Remapping Pins

The ESP32 features comprehensive pin remapping functionality. This allows peripherals to be mapped onto almost any available GPIO pins. The above table merely shows the default assignments. For example, the default mapping has the SPI and I2C clocks overlapping, meaning both cannot be used simultaneously without remapping one to a different pin. For a detailed guide of what peripheral can be assigned to what pins please read "Appendix A – ESP32 Pin Lists" of the ESP32 datasheet.

7.0 ESP32 Peripherals

Table 2 – Peripherals

Peripheral	Count	Pins
UART	3	Remappable to any GPIO. Note: P13–18 can only be mapped to RX or CTS since they are input only.
I2C	2	Remappable to any GPIO except P13-18 since they are input only and I2C is bi-directional.
SPI	3	Remappable to any GPIO. Note: P13–18 can only be mapped to MISO since they are input only.
CAN*	1	Remappable to any GPIO. Note: P13–18 can only be mapped to RX since they are input only.
JTAG	1	TDO = P4, TDI = P9, TCK = P10, TMS = P24
PWM	1	All GPIO except P13-18 which are input only
ADC	18	Fixed mapping, see Table 1, Only ADC 1 is supported in our micropython firmware.
DAC	2	Only available on P21 and P22
SD	1	DAT0 = P8, SCLK = P23, CMD = P4

* Requires an external CAN bus transceiver, we recommend the SN65HVD230 from Texas Instruments.

For a more detailed description of the ESP32 peripherals along with peripherals not currently supported by our firmware, please check the ESP32 datasheet.

7.1 RTC

Our modules by default all use the internal RC oscillator at 150kHz for the RTC. If you require better accuracy/ stability you can connect a 32.768 kHz crystal (or TCXO) externally on pins P19 and P20 (or P19 for a TXCO)

8.0 Programming the device

8.1 UART

By default, the modules run an interactive python REPL on UART0 which is connected to P0 (RX) and P1 (TX) running at 115200 baud. The easiest way to connect to the LoPy4 is via our expansion board, but any USB UART adapter will suffice. Code can be run via this interactive REPL or you can use our PyMakr plugin for Atom or Visual Studio Code to upload code to the board.

8.2 Wi-Fi

By default, the LoPy4 also acts as a Wi-Fi access point. SSID: lopy4-wlan-XXXX

Password: www.pycom.io

Once connected to the LoPy4's Wi-Fi network you can access it in two ways.

9.0 Boot modes

9.1 Bootloader mode

In order to update the firmware of the LoPy4 device, it needs to be placed into bootloader mode. In order to do this, P2 needs to be connected to ground when the device reboots. Once in bootloader mode you can use the Pycom firmware update tool to update to the latest official firmware. If you are developing your own firmware based on our open-source firmware, a flashing script is provided with the source code.

Table 3 – Boot modes

0-3 Seconds3-6 SecondsCurrent firmware without running
boot.py or main.pyPrevious firmware if the firmware was uploaded via OTA
(without running boot.py and main.py)

8.2.1 Telnet

Running on port 23 is a telnet server. This acts in a very similar way to the UART. It presents you with an interactive REPL and can also be used to upload code via PyMakr.

8.2.2 FTP

The LoPy4 also runs a FTP server that allows you to copy files to and from the device, include an SD card if one is connected. To connect to this FTP server, you need to use plain FTP (un-encrypted) with the following credentials: User: micro Password: python

9.2 Safe boot

The micropython firmware features a safe boot feature that skips the boot.py and main.py scripts and goes straight to the REPL. This is useful if the device is programmed with code that causes the device to crash or become inaccessible. To access this mode, you need to connect P12 to 3.3V and reset the device. Upon entering safe boot mode, the on-board LED will begin to blink orange. Depending on the duration the pin is held at 3.3V, a different firmware will be run.

10.0 Power

The LoPy4 features an on-board voltage regulator that takes 3.4V - 5.5V from the VIN pin and regulates it to 3.3V. It is important to only use the 3.3V as an output and not try to feed 3.3V into this pin as this could damage the regulator.

10.1 Currenctonsumption by power modes/features measured

Table 4 – Power consumption by feature

Mode	Min	Avg.	Max	Units
Idle (no radios)	-	35.4	-	mA
LoRa Transmit†	-	108	-	mA
Sigfox Transmit*	-	91.6	-	mA
WiFi AP	-	104	-	mA
WiFi client	-	99.0	-	mA
Bluetooth	-	97.5	-	mA
Deep sleep	-	18.5	-	μΑ

† More details can be found in section 14.2

* More details can be found in section 15.2

11.0 Memory Map

11.1 Flash

Table 5 – Flash memory map

Name	Description	Start address	Size
NVS	Non-volatile RAM area. Used by the NVS API	0x9000	0x7000
Firmware Slot 0	First firmware slot. Factory firmware is flashed here	0x10000	0x180000
OTA info	Information about the current active firmware	0x190000	0x1000
Firmware Slot 1	Second firmware slot	0x1A0000	0x180000
File system	504KB file system on devices with 4MB flash	0x380000	0x7F000
Config	Config area for LoRa, Sigfox and LTE	0x3FF000	0x1000

11.2 RAM

Table 6 – RAM memory map

Name	Description	Size
On-chip SRAM	Internal RAM memory used by the 2 xtensa CPUs	520KB
Fast RTC RAM	Fast RAM area accessible by the xtensa cores during boot and sleep modes	8KB
Slow RTC RAM	Slow RAM area accessible by the Ultra–Low Power Coprocessor during deep sleep	8KB
External pSRAM	External QSPI RAM memory clocked @ 40MHz	4MB

11.3 ROM and eFuses

Table 7 – Miscellaneous memory

Name	Description	Size
On-chip ROM	Contains core functions and boot code.	448KB
eFuse	256 bits are used for the system (MAC address and chip configuration) and the remaining 768 bits are reserved for customer applications, including Flash– Encryption and Chip–ID	1kbit

12.0 WiFi

12.1 Supported features

- 802.11 b/g/n
- 802.11 n (2.4 GHz), up to 150 Mbps
- 802.11 e: QoS for wireless multimedia technology
- WMM-PS, UAPSD
- A-MPDU and A-MSDU aggregation
- Block ACK
- Fragmentation and defragmentation

12.2 Specifications

Table 8 – WiFi specifications

- Automatic Beacon monitoring/scanning
 802.11 i security features: pre-authentication and TSN
- Wi-Fi Protected Access (WPA)/WPA2/WPA2-Enterprise/Wi-Fi Protected Setup (WPS)
- Infrastructure BSS Station mode/SoftAP mode
- Wi-Fi Direct (P2P), P2P Discovery, P2P Group Owner mode and P2P Power Management

Description	Min	Тур.	Max	Unit
Input Frequency	2412	-	2462	MHz

Output power of PA for 11b mode	20	20.50	21	dBm
	Sens	sitivity		
DSSS, 1Mbps	_	-	-98	dBm
CCK, 11 Mbps	_	_	-91	dBm
OFDM, 6 Mbps	_	_	-93	dBm
OFDM, 54 Mbps	_	_	-75	dBm
HT20, MCS0	_	_	-93	dBm
HT20, MCS7	_	_	-73	dBm
HT40, MCS0	_	_	-90	dBm
HT40, MCS7	_	_	-70	dBm
MCS32	_	_	-89	dBm
	Adjacent cha	annel rejection		
OFDM, 6 Mbps	_	37	_	dB
OFDM, 54 Mbps	_	21	_	dB
HT20, MCS0	_	37	_	dB
HT20, MCS7	_	20	_	dB

13.0 Bluetooth

13.1 Supported features

- Compliant with Bluetooth v4.2 BR/EDR and BLE specification
- class-2 transmitter without
- external power amplifier
- Enhanced power control
- +6 dBm transmitting power
- NZIF receiver with -97 dBm sensitivityAdaptive Frequency Hopping (AFH)
- Standard HCI based on SDIO/SPI/UART
- High-speed UART HCl, up to 4 Mbps
- BT 4.2 controller and host stack

13.2 Specification

13.2.1 Receiver – Basic Data Rate

Table 9 - Receiver (basic data rate) specifications

- Service Discover Protocol (SDP)
- General Access Profile (GAP)
- Security Manage Protocol (SMP)
- ATT/GATT
- HID
- All GATT-based profile supported
- SPP-like GATT-based profile
- BLE Beacon
- A2DP/AVRCP/SPP, HSP/HFP, RFCOMM
- CVSD and SBC for audio codec
- Bluetooth Piconet and Scatternet

Parameter		Min	Тур.	Max	Unit
Sensitivity @0.1% BER		_	-94	_	dBm
Maximum received signal @0.1% BER		0	_	_	dBm
Co-channel C/I		_	+7	_	dB
Adjacent channel selectivity C/I	F = F0 + 1 MHz	_	_	-6	dB
	F = F0 - 1 MHz	_	_	-6	dB
	F = F0 + 2 MHz	-	-	-25	dB
	F = F0 - 2 MHz	_	_	-33	dB
	F = F0 + 3 MHz	_	_	-25	dB
	F = F0 - 3 MHz	_	_	-45	dB
	30Mhz ~ 2000MHz	-10	_	_	dBm
Out–of–band blocking performance	2000MHz ~ 2400MHz	-27	_	_	dBm
	2500MHz ~ 3000MHz	-27	_	-	dBm
	3000MHz ~ 12.5GHz	-10	_	_	dBm
Intermodulation		-36	_	_	dBm

13.2.2 Receiver - Enhanced Data Rate

Table 10 – Receiver (basic data rate) specifications

Parameter		Min	Тур.	Мах	Unit			
π/4 DQPSK								
Sensitivity @0.1% BER		_	-90	-	dBm			
Maximum received signal @0.1% BER		_	0	_	dBm			
Co-channel C/I		_	11	-	dB			
Adjacent channel selectivity C/I	F = F0 + 1 MHz	_	-7	-	dB			
	F = F0 - 1 MHz	_	-7	-	dB			
	F = F0 + 2 MHz	_	-25	-	dB			
	F = F0 - 2 MHz	_	-35	-	dB			
	F = F0 + 3 MHz	_	-25	-	dB			
	F = F0 - 3 MHz	_	-45	-	dB			
8DPSK								
Sensitivity @0.1% BER		_	-84	-	dBm			
Maximum received signal @0.1% BER		_	-5	_	dBm			
C/I c-channel		_	18	-	dB			
	F = F0 + 1 MHz	_	2	-	dB			
	F = F0 - 1 MHz	_	2	-	dB			
Adjacent channel selectivity C/I	F = F0 + 2 MHz	_	-25	_	dB			
Augusent shanner selectivity 0/1	F = F0 - 2 MHz	_	-25	_	dB			
	F = F0 + 3 MHz	_	-25	_	dB			
	F = F0 – 3 MHz	_	-38	_	dB			

13.2.3 Receiver - Bluetooth LE

Table 11 – Receiver (BLE) specifications

	_	-97	_	dBm
	0	-	_	dBm
	-	+10	-	dB
F = F0 + 1MHz	-	-5	-	dB
F = F0 - 1MHz	_	-5	-	dB
F = F0 + 2MHz	_	-25	-	dB
F = F0 - 2MHz	-	-35	-	dB
F = F0 + 3MHz	-	-35	-	dB
F = F0 - 3MHz	-	-45	-	dB
30MHz ~ 2000MHz	-10	-	-	dB
2000MHz ~ 2400MHz	-27	-	_	dBm
2500MHz ~ 3000MHz	-27	-	-	dBm
3000MHz ~ 12.5GHZ	-10	-	-	dBm
	-36	_	_	dBm
	F = F0 - 1MHz F = F0 + 2MHz F = F0 - 2MHz F = F0 + 3MHz F = F0 - 3MHz 30MHz ~ 2000MHz ~ 2400MHz ~ 2500MHz ~ 3000MHz ~ 3000MHz ~	0 - F = F0 + 1MHz - F = F0 - 1MHz - F = F0 - 1MHz - F = F0 + 2MHz - F = F0 - 2MHz - F = F0 - 2MHz - F = F0 - 3MHz - 2000MHz - 2000MHz - 2000MHz - 2000MHz - 212.5GHZ -10	0- $ +10$ $F = F0 + 1MHz$ $ F = F0 - 1MHz$ $ - 5$ $ F = F0 - 2MHz$ $ - 25$ $ F = F0 - 2MHz$ $ - 35$ $ F = F0 - 3MHz$ $ - 10$ $- 35$ $F = F0 - 3MHz$ $- 10$ $2000MHz$ -27 $2000MHz$ -27 $2000MHz$ -27 $2500MHz$ -27 $2500MHz$ -10 $2500MHz$ -10 -27 -10	0 - - - +10 - F = F0 + 1MHz - -5 - F = F0 - 1MHz - -5 - F = F0 + 2MHz - -25 - F = F0 + 2MHz - -35 - F = F0 - 2MHz - -35 - F = F0 - 3MHz - -35 - F = F0 - 3MHz - -45 - 300MHz ~ -10 - - 2000MHz ~ -27 - - 2500MHz ~ -27 - - 3000MHz ~ -10 - - 3000MHz ~ -10 - -

13.2.4 Transmitter – Basic Data Rate

Table 12 – Transmitter (basic data rate) specifications

Parameter		Min	Тур.	Max	Unit
RF transmit power		_	2.5	_	dBm
RF power control range		2.0	-	3.0	dBm
Adjacent channel transmit power	F = F0 + 1 MHz	-	-24	_	dBm
	F = F0 - 1 MHz	-	-16.1	_	dBm
	F = F0 + 2 MHz	_	-40.8	_	dBm
	F = F0 - 2 MHz	_	-35.6	_	dBm
	F = F0 + 3 MHz	-	-45.7	-	dBm
	F = F0 - 3 MHz	-	-40.2	-	dBm
	F = F0 + >3 MHz	-	45.6	-	dBm
	F = F0 - >3 MHz	_	44.6	-	dBm
$\Delta f1_{avg}$		-	-	155	KHz
$\Delta f2_{max}$		133.7			KHz
$\Delta f2_{avg}/\Delta f1_{avg}$		-	0.92	-	-
ICFT		_	-7	_	KHz
Drift rate		_	0.7	_	KHz/50µs
Drift (1 slot packet)		_	6	_	KHz
Drift (5 slot packet)		_	6	_	KHz

13.2.5 Transmitter – Enhanced Data Rate

Table 13 – Transmitter (enhanced data rate) specifications

Parameter		Min	Тур.	Мах	Unit
RF transmit power		-	4	_	dBm
RF power control range		1	_	6	dBm
π/4 DQPSK max w0		_	-0.72	_	KHz
π/4 DQPSK max wi		_	-6	_	KHz
π/4 DQPSK max wi + w0		-	-7.42	-	KHz
8DPSK max w0		-	0.7	-	KHz
8DPSK max wi		-	-9.6	-	KHz
8DPSK max wi + w0			-10		KHz
π/4 DQPSK modulation accuracy	RMS DEVM	-	4.28	-	%
	99% DEVM	_	-	30	%
	Peak DEVM	_	13.3	-	%
	RMS DEVM	-	5.8	-	%
8 DPSK modulation accuracy	99% DEVM	_		20	%
	Peak DEVM	_	14	_	%
	F = F0 + 1MHz	_	-34	_	dBm
	F = F0 - 1MHz	-	-40.2	_	dBm
	F = F0 + 2MHz	_	-34	_	dBm
In-band spurious emissions	F = F0 - 2MHz	_	-36	_	dBm
	F = F0 + 3MHz	_	-38	_	dBm
	F = F0 - 3MHz	_	-40.3	_	dBm
	F = F0 ± >3MHz	_	_	-41.5	dBm
EDR differential phase coding		_	100	_	%

13.2.6 Transmitter - Bluetooth LE

Table 14 – Transmitter (BLE) specifications

Parameter		Min	Тур.	Max	Unit
RF transmit power(Conducted)		_	2.5	_	dBm
RF power control range		2.0	_	3.0	dBm
Adjacent channel transmit power	F = F0 + 1MHz	_	-14.6	_	dBm
	F = F0 - 1MHz	_	-12.7	_	dBm
	F = F0 + 2MHz	_	-44.3	_	dBm
	F = F0 - 2MHz	-	-38.7	_	dBm
	F = F0 + 3MHz	_	-49.2	_	dBm
	F = F0 - 3MHz	-	-44.7	_	dBm
	F = F0 + >3MHz	-	-50	-	dBm
	F = F0 - >3MHz	_	-50	_	dBm
$\Delta f1_{avg}$		-	-	265	KHz
$\Delta f2_{max}$		247	-	-	KHz
$\Delta f2_{avg}/\Delta f1_{avg}$		_	-0.92	_	-
ICFT		_	-10	_	KHz
Drift rate		_	0.7	_	KHz/50µs
Drift		_	2	_	KHz

14.0 LoRa

14.1 Supported features

Table 15 – Supported LoRa features

Part Number	Frequency Range	LoRa Parameters			
		Spreading factor	Bandwidth	Effective Bitrate	Sensitivity
Semtech SX1276	902-915 MHz	6 - 12	125 – 500 kHz	0.018 – 37.5 kpbs	−111 to −136 dBm

The current micropython firmware supports LoRaWAN 1.0 acting as either a Class A or Class C node.

F/lopy^₄

14.2 Specifications

Table 16 – LoRa electrical characteristics

	dBm dBm dBm dBm dBm dBm dBm dBm
- - - - -	dBm dBm dBm dBm dBm dBm
- - - - -	dBm dBm dBm dBm dBm
- - - -	dBm dBm dBm dBm dBm
	dBm dBm dBm dBm
-	dBm dBm dBm
-	dBm dBm
-	dBm
_	dBm
_	dBm
_	dB
	_

14.2 Specifications

Table 16 – LoRa electrical characteristics

Symbol	Description	Conditions	Min	Тур.	Max	Unit
ACR_LCW	Adjacent channel rejection	Interferer is 1.5*BW_L from the wanted signal centre frequency 1% PER, Single CW tone = Sensitivity + 3dB				
	FRF = 903 MHz	SF = 7	_	60	_	dB
		SF = 12	_	72	_	dB
IMR_LCW	Image rejection after calibration	1% PER, Single CW tone = sensitivity + 3dB	_	66	_	dB
	Maximum tolerated frequency offset between transmitter and receiver, no sensitivity degradation, SF6 thru 12	All BW, +/–25% of BW The tighter limit applies (see below)	-	±25%	-	BW
FERR_L	Maximum tolerated frequency	SF = 12	-50	_	50	ppm
	offset between transmitter and receiver, no sensitivity	SF = 11	-100	_	100	ppm
	degradation, SF10 thru 12	SF = 10	-200	_	200	ppm
		SF = 10	-200	_	200	ppm

14.2 Specifications

Table 17 – LoRa power consumption

IDDIDLE Supply	current in sleep mode current in idle mode current in standby	RC oscillator enabled	-	0.2	1	μΑ
		RC oscillator enabled	_	1.5	_	
Supply	current in standby				—	μA
IDDST supply mode		Crystal oscillator enabled	_	1.6	1.8	mA
IDDFS Supply mode	current in synthesizer	FSRx	_	5.8	_	mA
IDDR Supply mode	current in receive	Bands 3	-	12.0	_	mA
		RFOP=+ 20 dBm on PA_BOOST	_	125	_	mA
	current in transmit	RFOP=+ 17 dBm on PA_BOOST	-	90	_	mA
matchir	vith impedance ng	RFOP=+ 13 dBm on RFO pin	_	28	_	mA
		RFOP=+ 7 dBm on RFO pin	_	18	_	mA

15.0 Sigfox

15.1 Frequencies

Table 18 – Supported Sigfox regions

Region	Uplink Frequency (kHz)	Downlink Frequency (kHz)
RCZ2 (US)	902.225	904.675

15.2 Specifications

Table 19 – Sigfox modem performance

Parameter		Min	Тур.	Max	Unit
	RCZ1(EU)	-	100	-	bps
Data Rate	RCZ2(US)	-	600	-	bps
	RCZ3(RCM)	-	100	_	bps
	RCZ4(RCM)	-	600	_	bps
TX Power	RCZ1(EU)	-	+14	_	dBm
	RCZ2(US)	-	+20	_	dBm
	RCZ3(RCM)	-	+14	_	dBm
	RCZ4(RCM)	-	+20	_	dBm
RX Sensitivity		-	-126	_	dBm
	RCZ1 TX	-	42	_	mA
	RCZ1 RX	-	11.2	_	mA
	RCZ2 TX	-	125	_	mA
Current Draw	RCZ2 RX	-	11.2	_	mA
our on oran	RCZ3 TX	_	42	_	mA
	RCZ3 RX	-	11.2	_	mA
	RCZ4 TX	-	125	_	mA
	RCZ4 RX	-	11.2	_	mA

16.0 6LoWPAN

Pycom is currently working on adding 6LoWPAN support to this module and plan to release a new firmware with this functionality in Q2 2018.

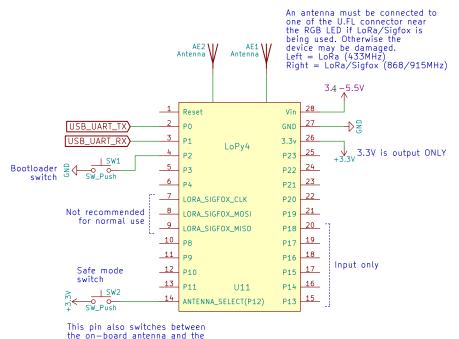
17.0 Electrical Characteristics

17.1 Absolute maximum ratings

Table 20 – Absolute maximum ratings

Parameter	Symbol	Min	Тур.	Max	Unit
Supply Input Voltage	V _{IN}	3.4	-	5.5	V
Supply Output Current	I _{OUT}	_	_	1.2	А
Supply Output Voltage	V_{3V3}	_	3.3	_	V
Storage Temperature	T _{str}	_	-	_	°C
Operating Temperature	T _{opr}	-40	_	85	°C
Moisture Sensitivity Level	MSL	_	1	_	_

17.2 Input/Output characteristics


Table 21 – Input/Output characteristics

Parameter	Symbol	Min	Тур.	Max	Unit
Input low voltage	VIL	-0.3	-	0.25×V _{3V3}	V
Input high voltage	VIH	0.75×V _{3V3}	_	V _{3V3} +0.3	V
Max Input sink current	I _{sink}	_	6	12	mA
Input leakage current	I _{IL}	_	-	50	nA
Input pin capacitance	C_{pin}	_	-	2	pF
Output low voltage	V _{OL}	0.1×V _{3V3}	-	_	V
Output high voltage	V _{OH}	0.8×V _{3V3}	_	_	V
Max Output source current	ISOURCE	_	6	12	mA

18.0 Minimum Recommended Circuit

This pin also switches between the on-board antenna and the U.FL connector. For this reason it is not recommended for normal use.

Figure 4 – Minimum required circuit

19.0 Mechanical Specifications

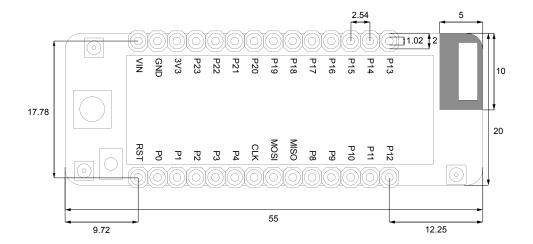


Figure 5 – Mechanical drawing (top down view) – Units: mm

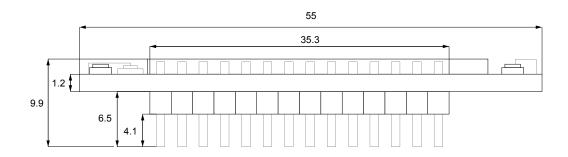


Figure 6 – Mechanical drawing (side view) – Units: mm

20.0 Recommended Land Patterns

20.1 Through hole

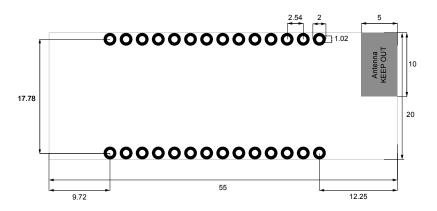


Figure 7 – Recommended land pattern (through hole) – Units: mm

20.2 Surface mount (LoPy without headers only)

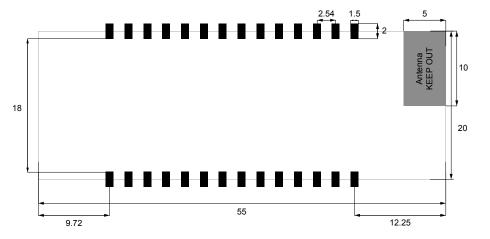
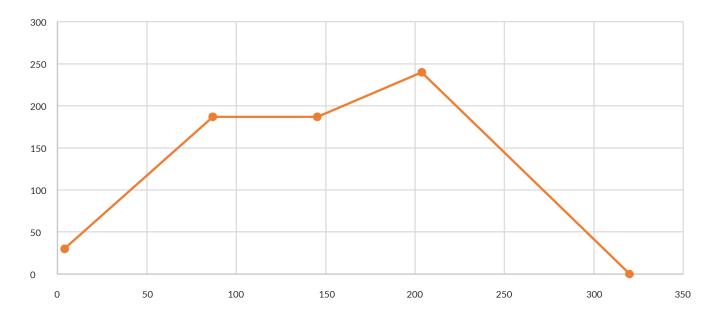


Figure 8 – Recommended land pattern (surface mount) – Units: mm



21.0 Soldering Profile

21.1 With headers

This device is not recommended for reflow soldering. The plastic of the pin headers will melt, instead please hand solder the module or use sockets.

21.2 Without headers

Table 22 – Soldering profile temperatures

Stage	Duration/Rate	Temperature
Ramp to soak	2°C/s	Ambient – 185°C
Soak	60s	185°C
Ramp to peak	1°C/s	240°C
Reflow	45s	>225°C
Cool down	2°C/s	

The above profile is based on Alpha CVP-390 solder paste, which has been successfully tested with our devices.

22.0 Ordering Information

Table 23 – Ordering information

Description	Bundle	Contents
LoPy4 1.0 with Headers		1x LoPy4
		1x Expansion Board or
LoPy4 1.0 without		Pysense or Pytrack
headers	LoPy4 Multi–Pack	1x LoRa/Sigfox antenna
LoRa/Sigfox		Available in quantities of 1, 2 or 5
	LoPy4 1.0 with Headers LoPy4 1.0 without headers	LoPy4 1.0 with Headers LoPy4 1.0 without headers LoRa/Sigfox

For more product accessories like expansion board or cases visit our website: http://www.pycom.io

IP67 Antenna Pigtail

23.0 Packaging

0700461341697

Figure 10 – Mechanical drawing of packaging – Units: mm

The module will come inside a reusable anti-static bag. If the module has headers it

will also be inserted into anti-static foam.

Total weight inc. packaging (with headers): 31g

Total weight inc. packaging (without headers): 29g

24.0 Certification

FCC 2AJMTLOPY4R

IC 22263-LOPY4R

Regulator Information

24.1 EU Regulatory Conformance

Hereby, Pycom Ltd declares that this device is in compliance with the essential requirements and other relevant provisions of Directive 2014/53/Eu

24.2 Federal Communication Commission Interference Statement

CAUTION: Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This device complies with Part 15 of FCC rules. Operation is subject to the following two conditions:

1. this device may not cause harmful interference and

2. this device must accept any interference received, including interference that may cause undesired operation.

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

24.2.1 RF Warning Statement

To comply with FCC RF exposure compliance requirements, the antennas used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter.

24.2.2 OEM integrator conditions

This device complies with Part 15.247/15.249 of the FCC rules and RSS-247/RSS-210 of ISED rules.

- 1. The module have an extennal antenna with maximum gain 0.87dBi for LoRa and Sigfox.
- 2. The module have an extennal antenna with maximum gain 1.3dBi for BT and Wi-Fi.

This device is intended only for OEM integrators under the following conditions:

- 1. The antenna must be installed such that 20 cm is maintained between the antenna and users, and
- 2. The transmitter module may not be co-located with any other transmitter or antenna.

As long as the two conditions above are met, further transmitter test will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed. To ensure compliance with all non-transmitter functions the host manufacturer is responsible for ensuring compliance with the module(s) installed and fully operational. For example, if a host was previously authorized as an unintentional radiator under the Declaration of Conformity procedure without a transmitter certified module and a module is added, the host manufacturer is responsible for ensuring that the after the module is installed and operational the host continues to be compliant with the Part 15B unintentional radiator requirements.

The module is limited to OEM installation ONLY. The module is limited to installation in mobile or fixed application. We hereby acknowledge our responsibility to provide guidance to the host manufacturer in the event that they require assistance for ensuring compliance with the Part 15 Subpart B requirements.

IMPORTANT NOTE: In the event that these conditions cannot be met (for example certain laptop configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization.

24.2.3 Product Labelling

This transmitter module is authorized only for use in device where the antenna may be installed such that 20 cm may be maintained between the antenna and users. The final end product must be labelled in a visible area with the following: "Contains FCC ID: 2AJMTLOPY4R" and "Contains IC: 22263-LOPY4R". The grantee's FCC ID and IC can be used only when all FCC and ISED compliance requirements are met.

24.2.4 Manual Information to the User

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module.

In the user manual of the end product, the end user has to beinformed that the equipment complies with FCC radiofrequency exposure guidelines set forth for an uncontrolled environment.

The end user has to also be informed that any changes or modifications not expressly approved by the manufacturer could void the user's authority to operate this equipment.

The end user manual shall include all required regulatory information/warning as show in this manual.

The maximum operating ambient temperature of the equipment declared by the manufacturer is -40~+85C

Receiver category 3

ISED RSS Warning:

This device complies with Innovation, Science and Economic Development Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions:

(1) this device may not cause interference, and

(2) this device must accept any interference, including interference that may cause undesired operation of the device. Le présent appareil est conforme aux CNR d'ISED applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:

(1) l'appareil ne doit pas produire de brouillage, et

(2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

ISED RF exposure statement:

This equipment complies with ISED radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator& your body. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter. Le rayonnement de la classe b repecte ISED fixaient un environnement non

contrôlés.Installation et mise en

œuvre de ce matériel devrait avec échangeur distance minimale entre 20 cm ton corps.Lanceurs ou ne peuvent pas coexister cette antenne ou capteurs avec d'autres.

25.0 Revision History

Table 24 - Document revision history

Version 1.0

Initial Release