

FCC RF TEST REPORT

APPLICANT	:	Pycom Ltd
PRODUCT NAME	:	LoPy
MODEL NAME	:	LoPy1.0r
TRADE NAME	:	LoPy
BRAND NAME	:	Pycom
FCC ID	:	2AJMTLOPY1R
STANDARD(S)	•	47 CFR Part 15 Subpart C
ISSUE DATE		2016-10-09
SHENZHEN MORLAB	Ponds Quality By	Certification MUNICATIONS TECHNOLOGY Co., 4, System Certification

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Http://www.morlab.com E-mail: service@morlab.cn

Tel: 86-755-36698555

Fax: 86-755-36698525

Ltd.

TEST REPORT DECI

ARATION

REPORT No.: SZ16080189W08A

DIRECTORY

TECHNICAL INFORMATION 1. 1.1 APPLICANT INFORMATION ······5 1.2 EQUIPMENT UNDER TEST (EUT) DESCRIPTION ······ 1.2.1 IDENTIFICATION OF ALL USED EUTS ····· ...6 1.3 TEST STANDARDS AND RESULTS6 1.3.1 **TEST ENVIRONMENT CONDITIONS**.....

2.1	ANTENNA REQUIREMENT······7	
2.1.1	ANTENNA REQUIREMENT···································	
2.1.2	RESULT: COMPLIANT	
2.2	PEAK OUTPUT POWER ····································	
2.2.1	REQUIREMENT	
2.2.2	TEST DESCRIPTION ······7	
2.2.3	TEST RESULT ·······	
2.3	TEST RESULT	
2.3.1	REQUIREMENT	
2.3.2	TEST DESCRIPTION ····································	
2.3.3	Test Result	
2.4	CONDUCTED SPURIOUS EMISSIONS AND BAND EDGE	
2.4.1		
2.4.2	Test Description ·······	
2.4.3	TEST RESULT	
2.5	POWER SPECTRAL DENSITY (PSD)····································	
2.5.1	REQUIREMENT······32	
2.5.2	TEST DESCRIPTION ····································	
2.5.3	TEST RESULT ····································	
2.6	RESTRICTED FREQUENCY BANDS	
2.6.1	RECHUREMENT	
2.6.2	TEST DESCRIPTION ····································	
2.6.3	TEST RESULT ····································	
2.6.3	I EST RESULT ······42	

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

MORLAB REPORT No.: SZ16080189W08A 2.7 CONDUCTED EMISSION ······ REQUIREMENT 2.7.153 2.7.2 2.1.1 TEST RESULT ······ ..54 2.8 RADIATED EMISSION ·······56 REQUIREMENT-------56 2.8.1 TEST DESCRIPTION ····· 2.8.2 ..57 2.8.3 TEST RESULT ······

		Change History			
Issue Date Reason for change					
1.0	2016-10-09	First edition			
1.0	2016-10-09	First edition			

 MORLAB GROUP
 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com

TEST REPORT DECLARATION

Applicant	Pycom Ltd				
Applicant Address	Registered Office 57 Avenue Road Cranleigh, Surrey GU6 7LJ UK				
Manufacturer Address	In-Tech Electronics Ltd				
Manufacturer	2/F Rhythm Home,119 Shazui Road, Futian, Shenzhen, Guangdong, P.R.China				
Product Name	LoPy				
Model Name	LoPy1.0r				
Brand Name	Pycom				
HW Version	1.0r				
SW Version	1.0				
Test Standards	47 CFR Part 15 Subpart C				
Test Date	2016-09-19 to 2016-09-30				
Test Result	PASS				

Zou Jian Zou Jian Tested by Qiu Xiaojun Reviewed by Qiu Xiaojun

Approved by

Peng Huarui

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Http://www.morlab.com

Tel: 86-755-36698555

Page 4 Of 74

1. TECHNICAL INFORMATION

Note: Provide by applicant.

1.1 Applicant Information

Company:	Pycom Ltd	
Address	Registered Office 57 Avenue Road Cranleigh, Surrey GU6 7LJ UK	LAB

1.2 Equipment under Test (EUT) Description

Brand Name:	Pycom
Trade Name:	LoPy
Model Name:	LoPy1.0r
Frequency Range:	802.11b/g/n-20MHz: 2.412GHz - 2.462GHz
	802.11n-40MHz: 2.422GHz - 2.452GHz
Channel Number:	802.11b/g/n-20MHz: 11
	802.11n-40MHz: 7
Modulation Type:	DSSS, OFDM
Antenna Type:	Ceramic Antenna
Antenna Gain:	-0.5 dBi

NOTE:

1. The EUT is a LoPy, it contains WIFI Module operating at 2.4GHz ISM; it supports 802.11b, 802.11g, 802.11n and they are all tested in this report.

For 802.11b/g/n-20MHz (2.4GHz band), the frequencies allocated is F (MHz) =2412+5*(n-1) (1<=n<=11). The lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 1 (2412MHz), 6 (2437MHz) and 11 (2462MHz).

For 802.11n-40MHz, the frequencies allocated is F (MHz) = $2412+5^{*}(n-1)$ (3<=n<=9). The lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 3 (2422MHz), 6 (2437MHz) and 9 (2452MHz).

- 2. The EUT connected to the serial port of the computer with a serial communication cable, and then use the dedicated software to control the EUT into the test mode.
- 3. For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.
- The antenna connector of EUT is designed with permanent attachment and no consideration of replacement.

MORLAB GROUP FL1-3, Building A, Fei Yan Block67, BaoAn District,

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

1.2.1 Identification of all used EUTs

The EUT identity consists of numerical and letter characters, the letter character indicates the test sample, and the following two numerical characters indicate the software version of the test sample.

EUT Identity	Hardware Version	Software Version		
A01	1.0r	1.0		

1.3 Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C (Bluetooth, 2.4GHz ISM band radiators) for the EUT FCC ID Certification:

No. Identity		Identity	Document Title	
è	1	47 CFR Part 15	Radio Frequency Devices	
		(10-1-15 Edition)	LAB JORLE MON AB M	

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Test Date	Result
1	15.203	Antenna Requirement	N.A	PASS
2	15.247(b)	Peak Output Power	Sep 19, 2016	PASS
3	15.247(a)	Bandwidth	Sep 19, 2016	PASS
4	15.247(d)	Conducted Spurious Emission and Band Edge	Sep 19, 2016	PASS
5	15.247(d)	Restricted Frequency Bands	Sep 28, 2016	PASS
6	15.207	Conducted Emission	Sep 22, 2016	PASS
7	15.209 ,15.247(d)	Radiated Emission	Sep 22, 2016	PASS
8	15.247(e)	Power spectral density (PSD)	Sep 19, 2016	PASS

The tests of Conducted Emission and Radiated Emission were performed according to the method of measurements prescribed in ANSI C63.10 2013.

1.3.1 Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

2. 47 CFR PART 15C REQUIREMENTS

2.1 Antenna requirement

2.1.1 Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2 Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

2.2 Peak Output Power

2.2.1 Requirement

According to FCC section 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: The maximum peak conducted output power of the intentional radiator shall not exceed1 Watt.

2.2.2 Test Description

The measured output power was calculated by the reading of the Power Meter and calibration.

A. Test Setup:

The EUT (Equipment under the test) which is coupled to the Power Meter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in power meter.

B. Equipments List:

MORLAB GROUP

Please reference ANNEX A(1.5).

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

2.2.3 Test Result

MORLAE

The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the Module.

2.2.3.1 802.11b Test Mode

Channel		Measured Output Peak Power		Limit		Vordiat
Channel	Frequency (MHz)	dBm	W	dBm	W	Verdict
1	2412	12.34	0.0171	30	MORLAR	PASS
6	2437	12.26	0.0168			PASS
11	2462	12.14	0.0164		12	PASS

2	Channel Frequency (MHz)		Measured Output Average Power		Limit		Verdict
			dBm	W	dBm	W	
	RLAP1	2412	10.72	0.0118	MO. AB	al a	PASS
6	6 🔬	2437	10.64	0.0116	30	1	PASS
	11	2462	10.45	0.0111	NB 0	LAB	PASS

2.2.3.2 802.11g Test mode

MORL

AB GROUP

5	Channel Frequency (I		Measured Output Peak Power		Limit		Verdict
			dBm	W	dBm	W	Verdict
~	1	2412	19.51	0.0893	RL-1 MOT		PASS
	6	2437	19.18	0.0828	30	A1	PASS
	11	2462	19.20	0.0832	MORIE	MAL	PASS

	Channel	Frequency (MHz)	Measured	Measured Output Average Power		t	Verdict
			dBm	W	dBm	W	
	A ⁶ 1	2412	10.75	0.0119	MOR	M	PASS
5	6	2437	10.37	0.0109	30	1,08	PASS
	11	2462	10.31	0.0107	a MO	AB	PASS

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

2.2.3.3	ouz. I III-zuwinz lest	mode				
Channel		Measured C	Output Peak Power	Limi	t	Vardiat
Channel	Frequency (MHz)	dBm	W	dBm	W	Verdict
_1	2412	18.66	0.0735	ORLA	MOR	PASS
6	2437	18.45	0.0700	30	1	PASS
11	2462	18.48	0.0705	MORI	BMC	PASS
.0	Mr. B		Ok. M	. 6	LA.	OF

2.2.3.3	802.11n-20MHz Test mode
2.2.3.3	

4	Channel	Frequency (MHz)		Output Average Power	Limi	t	Verdict
			dBm	W	dBm	W	
	1,50	2412	10.60	0.0115	MORE	a me	PASS
	6	2437	10.49	0.0112	30	1	PASS
2	11 💉	2462	10.20	0.0105	Rt MO.	AB	PASS

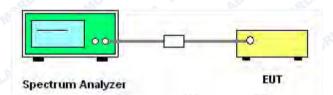
2.2.3.4 802.11n-40MHz Test mode

MORL

2	Channel		Measured C	utput Peak Power	Limi	t	Vardiat
	Channel	Frequency (MHz)	dBm	W	dBm	W	Verdict
	3	2422	18.18	0.0658	MO. NB	al al	PASS
n.	6	2437	17.97	0.0627	30	1	PASS
	9	2452	17.76	0.0597	AB M	LAB	PASS

	Channel	Frequency (MHz)	Measured	d Output Average Power	Limi	t	Verdict
arc.			dBm	W	dBm	W	
	3	2422	10.58	0.0114	3	LAB	PASS
2	6	2437	10.39	0.0109	30 🔊	1	PASS
1	9	2452	10.25	0.0106	AB	ORLA	PASS

AB GROUP FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com


2.3 Bandwidth

2.3.1 Requirement

According to FCC section 15.247(a) (2), Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

2.3.2 Test Description

A. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

KDB 558074 Section 8.1 Option 1 was used in order to prove compliance.

B. Equipments List:

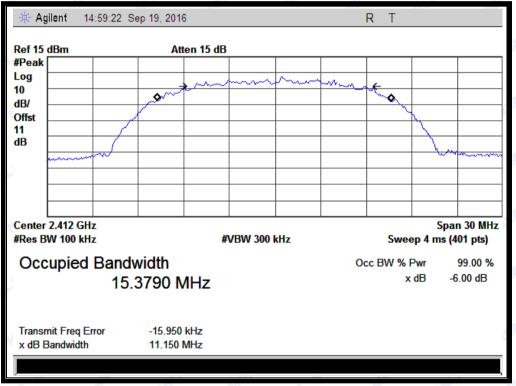
Please reference ANNEX A(1.5).

2.3.3 Test Result

The lowest, middle and highest channels are selected to perform testing to record the 6 dB bandwidth of the Module.

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



2.3.3.1 802.11b Test mode

A. Test Verdict:

Channel	Frequency	6 dB Bandwidth	Limits(kHz)	Result	
1	(MHz) (MHz) 2412 11.150		≥500	PASS	
6	2437	10.203	≥500	PASS	
11 📣	2462	10.217	≥500	PASS	


B. Test Plots

(Channel 1: 2412MHz @ 802.11b)

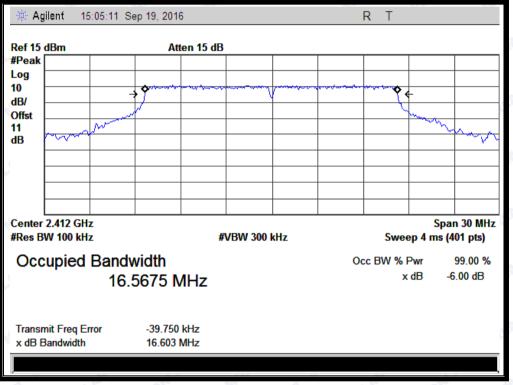
MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

MORLAB GROUP

MORLAE

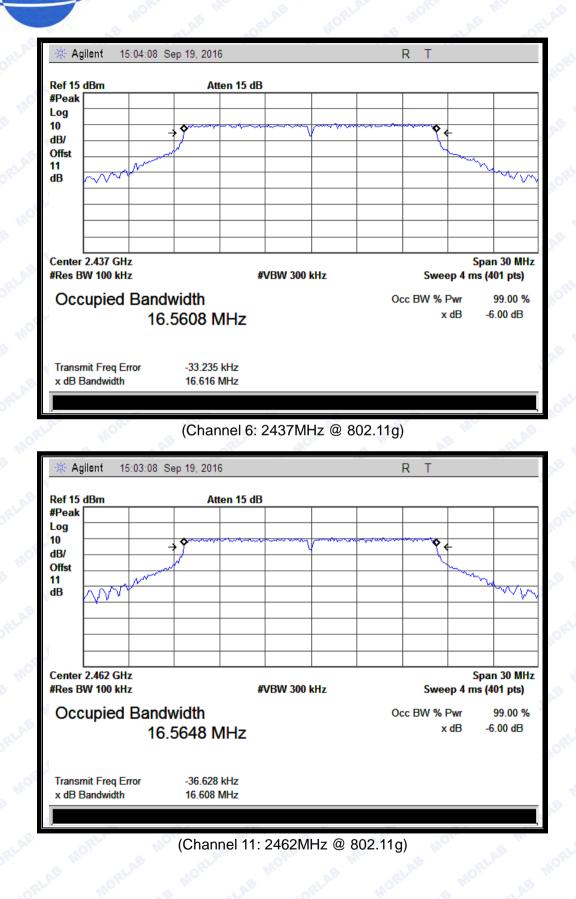
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



2.3.3.2 802.11g Test mode

A. Test Verdict:

	Frequency	6 dB Bandwidth	Limits	
Channel	(MHz)	(MHz)	(kHz)	Result
11.0	2412	16.603	≥500	PASS
6	2437	16.616	≥500	PASS
11	2462	16.608	≥500	PASS


B. Test Plots:

(Channel 1: 2412MHz @ 802.11g)

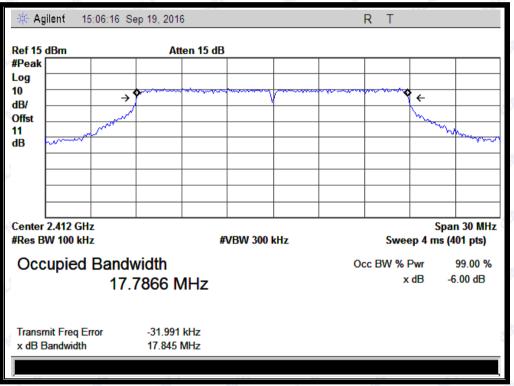
MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

MORLAB GROUP

MORLAE

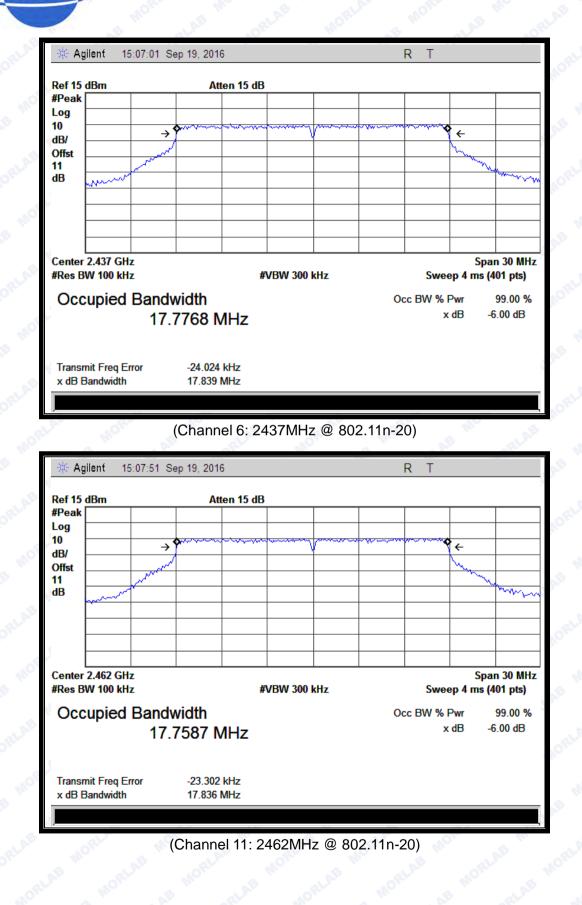
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



2.3.3.3 802.11n-20 Test mode

A. Test Verdict:

Channel	Frequency	6 dB Bandwidth	Limits	Result
Channel	(MHz)	(MHz)	(kHz)	Result
1 alas	2412	17.845	≥500	PASS
6	2437	17.839	≥500	PASS
11	2462	17.836	≥500	PASS


B. Test Plots:

(Channel 1: 2412MHz @ 802.11n-20)

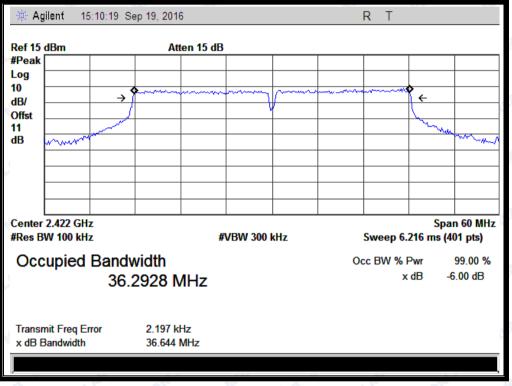
MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

MORLAB GROUP

MORLAE

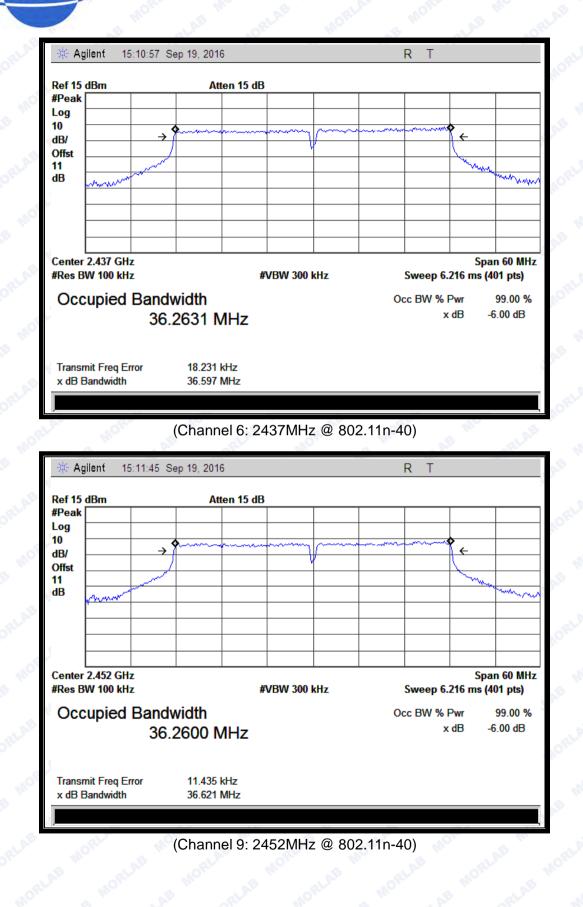
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



2.3.3.4 802.11n-40 Test mode

A. Test Verdict:

Channel	Frequency	6 dB Bandwidth	Limits	Result
Charmer	(MHz)	(MHz)	(kHz)	Result
3	2422	36.644	≥500	PASS
6	2437	36.597	≥500	PASS
9	2452	36.621	≥500	PASS


B. Test Plots:

(Channel 3: 2422Mz @ 802.11n-40)

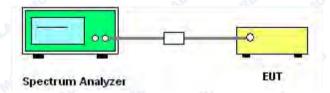
MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

MORLAB GROUP

MORLAE

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com


2.4 Conducted Spurious Emissions and Band Edge

2.4.1 Requirement

According to FCC section 15.247(c), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.4.2 Test Description

A. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

KDB 558074 Section 11.0 was used in order to prove compliance.

B. Equipments List:

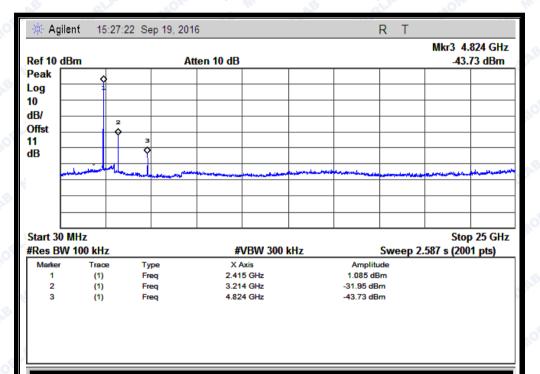
Please reference ANNEX A(1.5).

2.4.3 Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions.

MORLAB GROUP

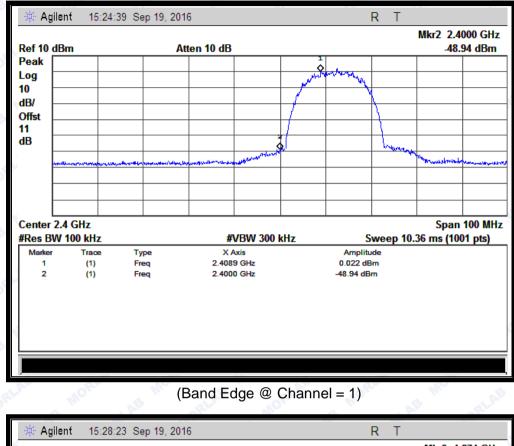
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

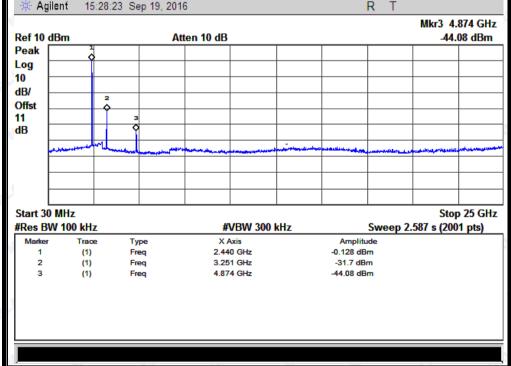

2.4.3.1 802.11b Test mode

A. Test Verdict:

	Fraguanay		Measured Max.	Limit		
	Channel	Frequency (MHz)	Out of Band	Carrier	Calculated	Verdict
3		(IVITZ)	Emission (dBm)	Level	-20dBc Limit	
	1	2412	-31.95	1.09	-18.91	PASS
	6	2437	-31.70	-0.13	-20.13	PASS
<	11 🔊	2462	-33.44	0.72	-19.28	PASS

B. Test Plots:

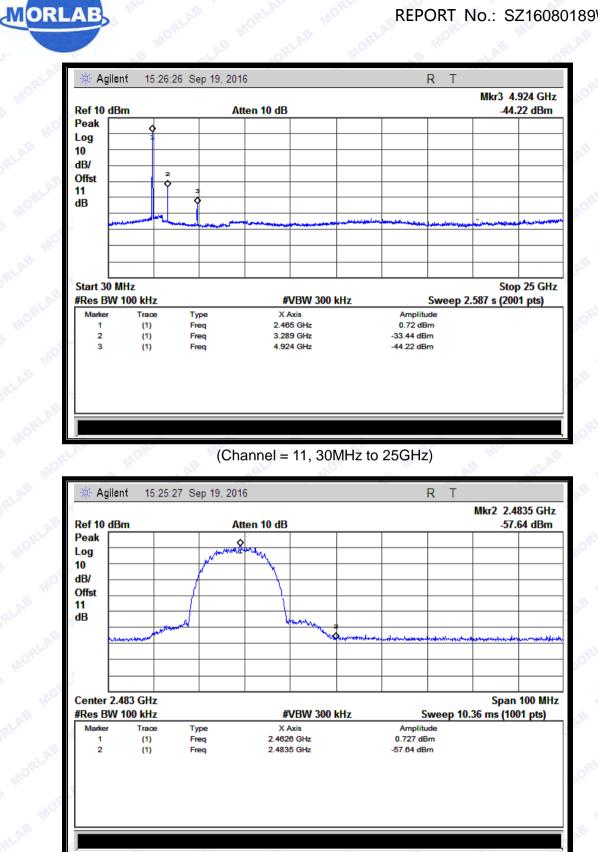

Note: the power of the Module transmitting frequency should be ignored.



(Channel = 1, 30MHz to 25GHz)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



(Channel = 6, 30MHz to 25GHz)

MORLAB GROUP

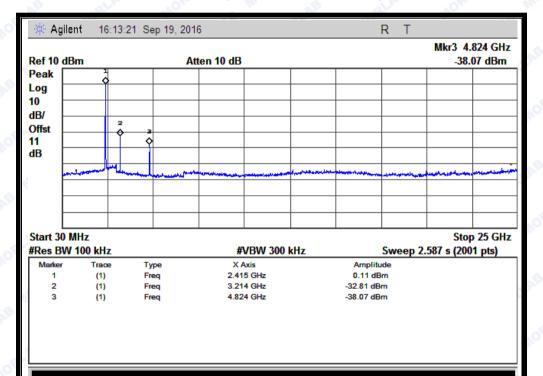
MORLAE

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

(Band Edge @ Channel = 11)

MORLAB GROUP

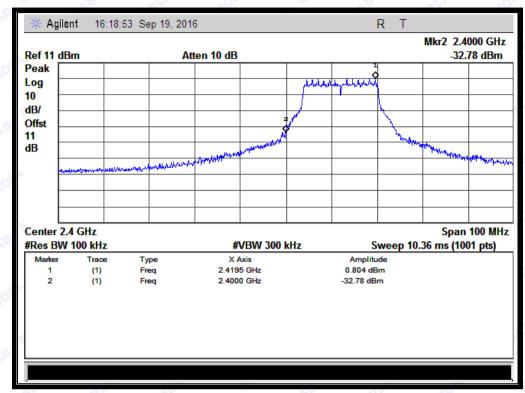
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

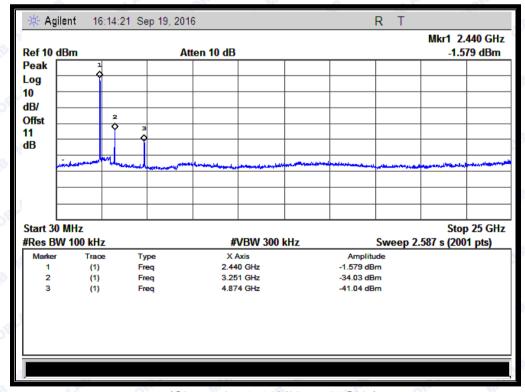

2.4.3.2 802.11g Test mode

A. Test Verdict:

3	Channel	Frequency	Measured Max.	Limit (dBm)		
			Out of Band	Carrier	Calculated	Verdict
		(MHz)	Emission (dBm)	Level	-20dBc Limit	
8	1	2412	-32.81	0.11	-19.89	PASS
	6	2437	-34.03	-1.58	-21.58	PASS
Ľ	11	2462	-35.24	-0.68	-20.68	PASS

B. Test Plots:

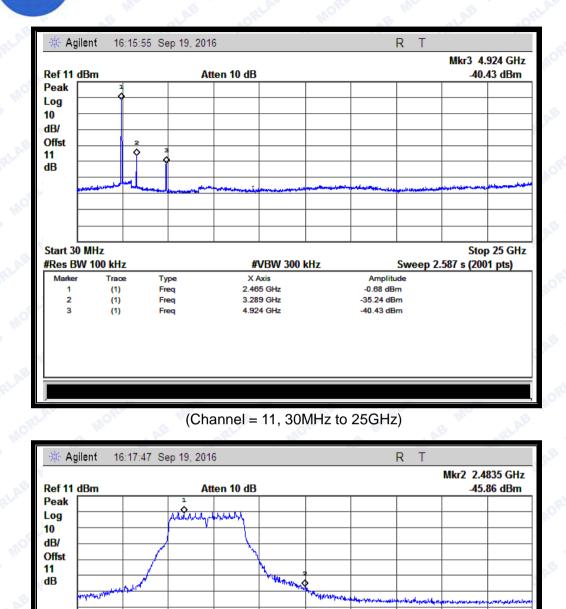

Note: the power of the Module transmitting frequency should be ignored.


(Channel = 1, 30MHz to 25GHz)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

(Band Edge @ Channel = 1)



(Channel = 6, 30MHz to 25GHz)

MORLAB GROUP

MORLAE

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

(Band Edge @ Channel = 11)

#VBW 300 kHz

X Axis

2.4570 GHz

2.4835 GHz

MORLAB GROUP

Center 2.483 GHz

#Res BW 100 kHz

Trace

(1)

(1)

Туре

Freq

Freq

Marker

1

2

MORLAE

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

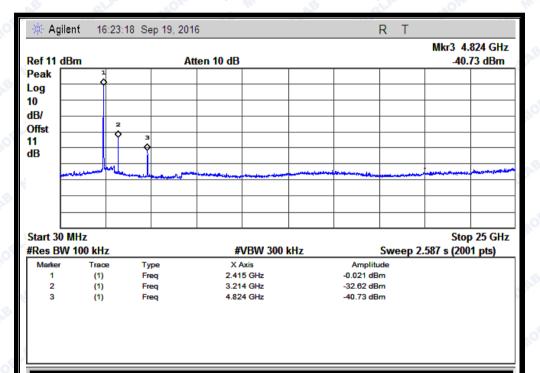
Span 100 MHz

Sweep 10.36 ms (1001 pts)

Amplitude

0.18 dBm

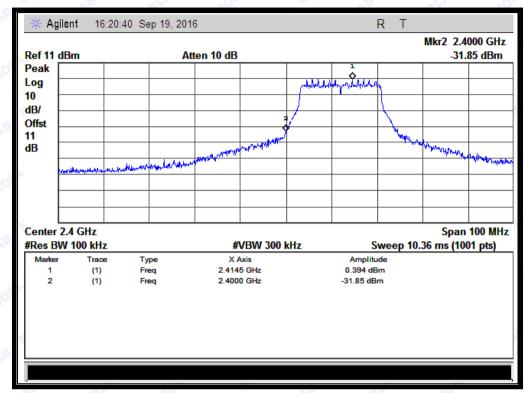
-45.86 dBm

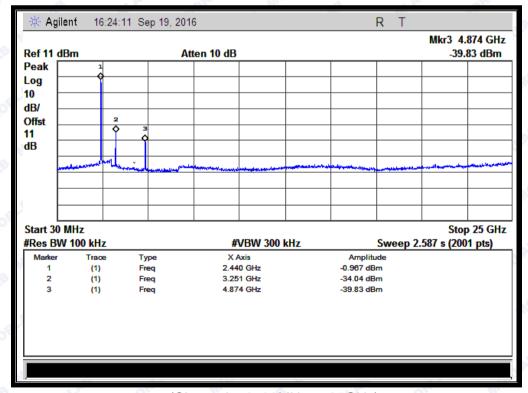

2.4.3.3 802.11n -20MHz Test mode

A. Test Verdict:

2	Channel	Frequency	Measured Max.	Limit (dBm)		
			Out of Band	Carrier	Calculated	Verdict
		(MHz)	Emission (dBm)	Level	-20dBc Limit	
8	1	2412	-32.62	-0.02	-20.02	PASS
	6	2437	-39.83	-0.97	-20.97	PASS
	11	2462	-38.62	-1.45	-21.45	PASS

B. Test Plots:

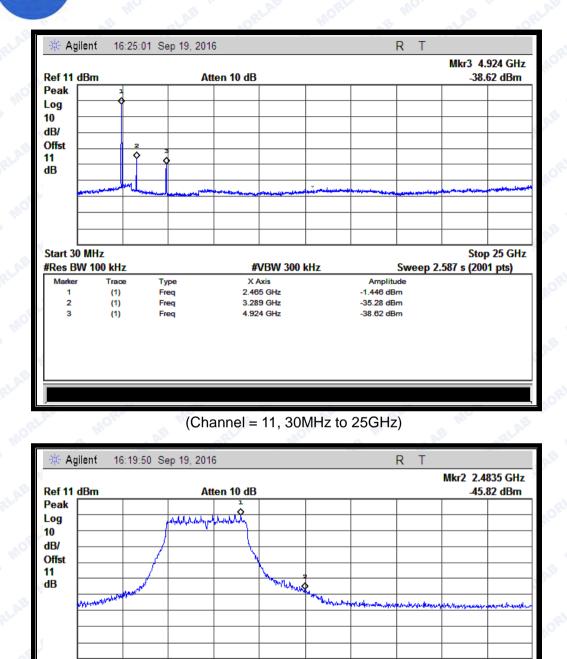

Note: the power of the Module transmitting frequency should be ignored.


(Channel = 1, 30MHz to 25GHz)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

(Band Edge @ Channel = 1)



(Channel = 6, 30MHz to 25GHz)

MORLAB GROUP

MORLAE

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

(Band Edge @ Channel = 11)

#VBW 300 kHz

X Axis

2.4695 GHz

2.4835 GHz

MORLAB GROUP

Center 2.483 GHz

#Res BW 100 kHz

Trace

(1)

(1)

Туре

Freq

Freq

Marker

1

2

MORLAE

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

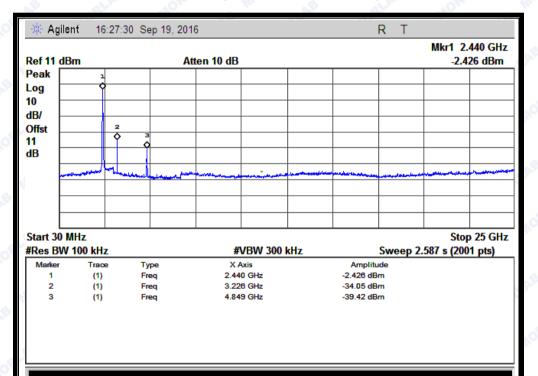
Span 100 MHz

Sweep 10.36 ms (1001 pts)

Amplitude

0.45 dBm

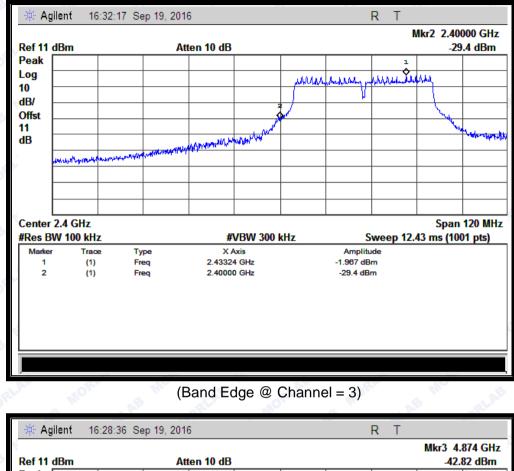
-45.82 dBm

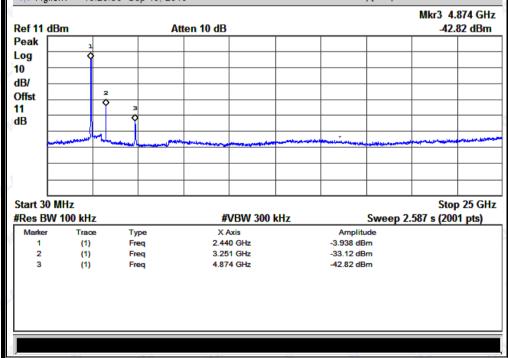

2.4.3.4 802.11n -40MHz Test mode

A. Test Verdict:

			Measured Max.	Limit	t (dBm)	Verdict
	Channel	Frequency	Out of Band	Carrier	Calculated	Verdict
		(MHz)	Emission (dBm)	Level	-20dBc Limit	Verdict PASS PASS
	3	2422	-34.05	-2.43	-22.43	PASS
	6	2437	-33.12	-3.94	-23.94	PASS
	9	2452	-34.32	-4.07	-24.07	PASS

B. Test Plots:

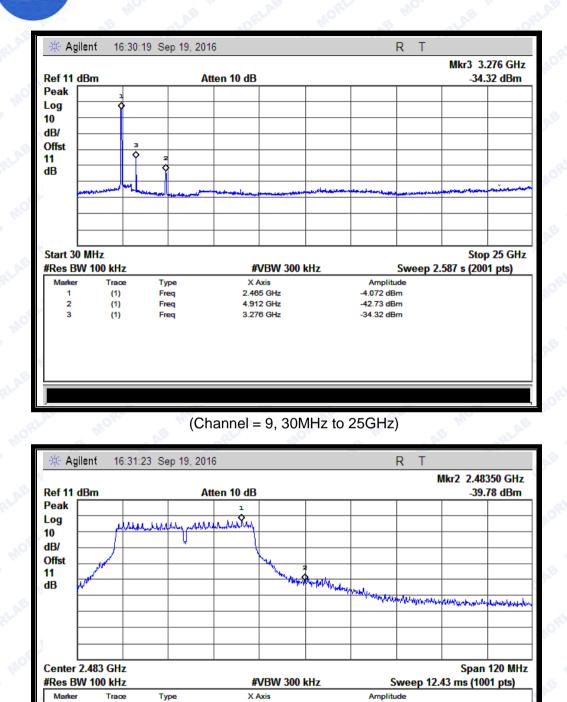

Note: the power of the Module transmitting frequency should be ignored.



(Channel = 3, 30MHz to 25GHz)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



(Channel = 6, 30MHz to 25GHz)

MORLAB GROUP

MORLAE

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

MORLAE

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Band Edge @ Channel = 9)

2.46694 GHz

2.48350 GHz

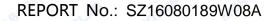
(1)

(1)

1

2

MORLAB GROUP


Freq

Freq

-2.525 dBm

-39.78 dBm

Tel: 86-755-36698555 Http://www.morlab.com

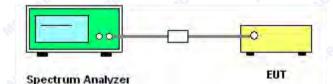
2.5 Power spectral density (PSD)

2.5.1 Requirement

MORLAB

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

2.5.2 Test Description


A. Test procedure

The measured power spectral density was calculated by the reading of the spectrum analyzer and calibration. Following is the test procedure for PSD test:

- a) Set analyzer center frequency to channel center frequency.
- b) Set the span to 30MHz
- c) Set the RBW to 3 kHz
- d) Set the VBW to 10KHz
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

B. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

KDB 558074 Section 10.2 was used in order to prove compliance.

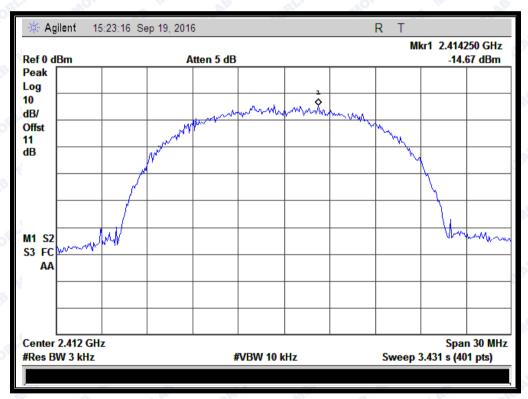
C. Equipments List:

MORLAB GROUP

Please reference ANNEX A(1.5).

FL1-3, Building A, Fei Yang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com


2.5.3 Test Result

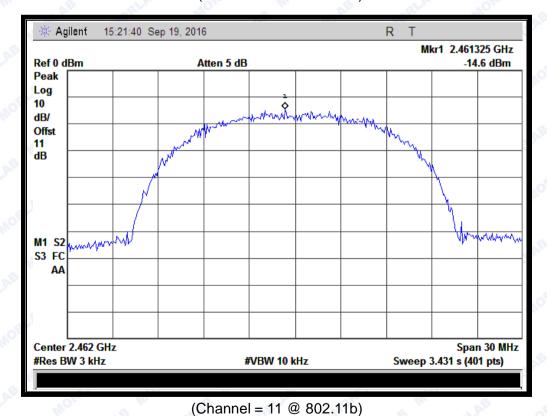
2.5.3.1 802.11b Test mode

A. Test Verdict:

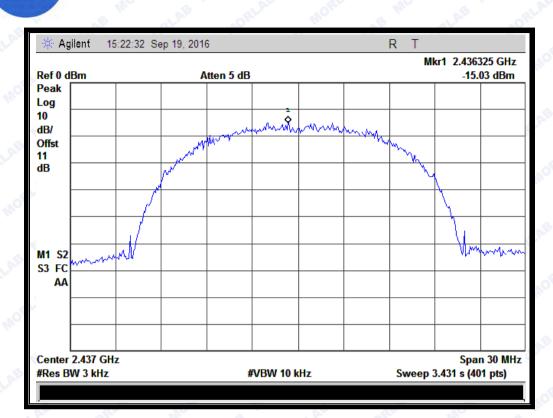
	Spectral power density (dBm/3kHz)						
Channel	Frequency (MHz)	Measured PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict			
1	2412	-14.67	8	PASS			
6	2437	-15.03	8	PASS			
11	2462	-14.60	8	PASS			
Measurem	ent uncertainty:	±1.3dB	RLAIL MORL	MO			

B. Test Plots:

(Channel = 1 @ 802.11b)


MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com


MORLAB GROUP

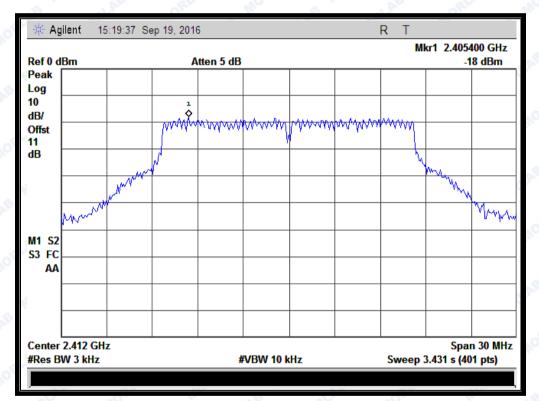
MORLAE

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com Fax: 86-755-36698525 E-mail: service@morlab.cn

(Channel = 6 @ 802.11b)

REPORT No.: SZ16080189W08A

Page 34 Of 74



2.5.3.2 802.11g Test mode

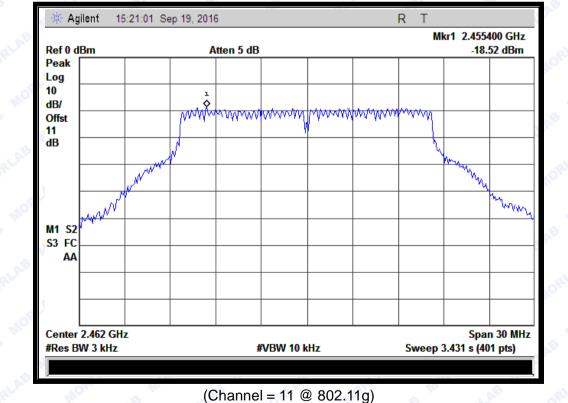
A. Test Verdict:

Spectral power density (dBm/3kHz)					
Channel	Frequency (MHz)	Measured PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict	
1	2412	-18.00	8	PASS	
6	2437	-18.39	8	PASS	
11	2462	-18.52	8	PASS	
Measurement uncertainty: ±1.3dB					

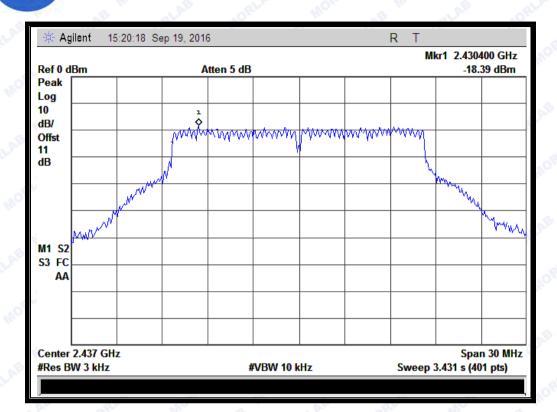
B. Test Plots:

(Channel = 1 @ 802.11g)

MORLAB GROUP


FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

MORLAB GROUP


MORLAE

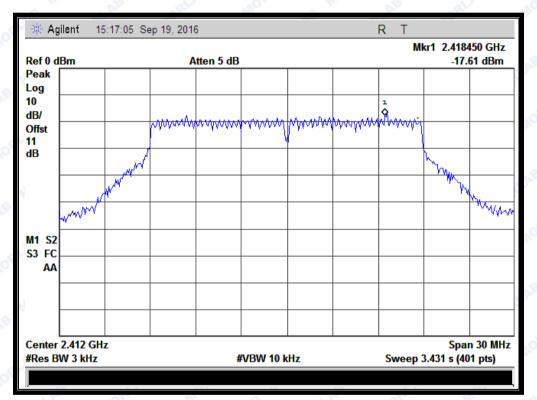
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

Fax: 86-755-36698525 E-mail: service@morlab.cn

(Channel = 6 @ 802.11g)

REPORT No.: SZ16080189W08A

Page 36 Of 74



2.5.3.3 802.11n-20MHz Test mode

A. Test Verdict:

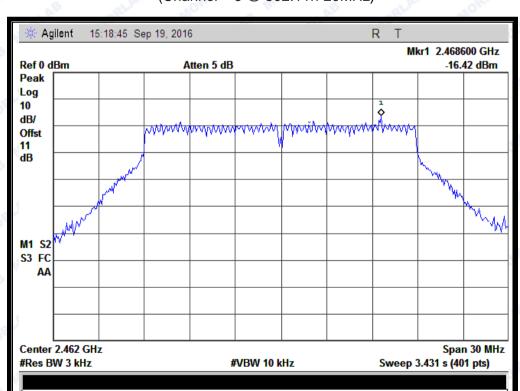
	Spectral power density (dBm/3kHz)											
Channel	Frequency (MHz)	Measured PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict								
1 1	2412	-17.61	8	PASS								
6	2437	-16.60	8	PASS								
11	2462	-16.42	8	PASS								
Measureme	ent uncertainty:	±1.3dB	MC	aLAL								

B. Test Plots:

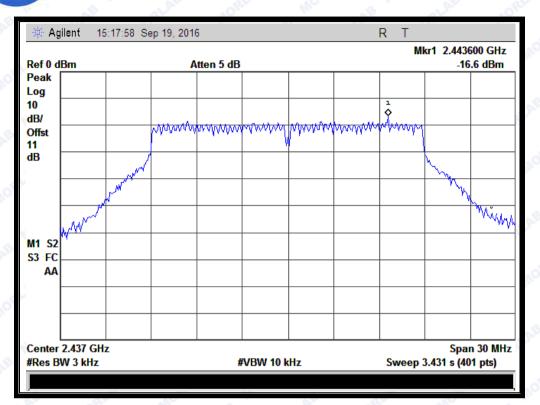
(Channel = 1 @ 802.11n-20MHz)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com


MORLAB GROUP

MORLAE


FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

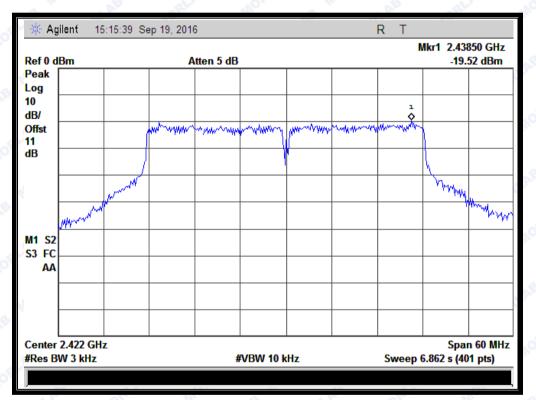
(Channel = 11 @ 802.11n-20MHz)

Tel: 86-755-36698555 Http://www.morlab.com Fax: 86-755-36698525 E-mail: service@morlab.cn

(Channel = 6 @ 802.11n-20MHz)

REPORT No.: SZ16080189W08A

Page 38 Of 74



2.5.3.4 802.11n-40MHz Test mode

A. Test Verdict:

	Spe	ectral power density (dB	Sm/3kHz)	
Channel	Frequency (MHz)	Measured PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
3	2422	-19.52	8	PASS
6	2437	-19.67	8	PASS
9	2452	-20.49	8	PASS
Measureme	ent uncertainty:	±1.3dB	MC	aLAP

B. Test Plots:

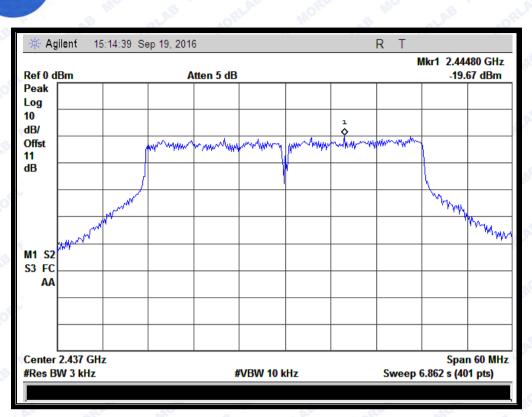
(Channel = 3 @ 802.11n-40MHz)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

MORLAB GROUP

MORLAE

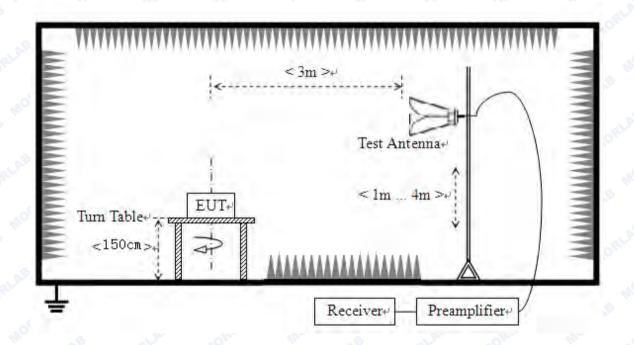

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 9 @ 802.11n-40MHz)

Tel: 86-755-36698555 Http://www.morlab.com Fax: 86-755-36698525 E-mail: service@morlab.cn

(Channel = 6 @ 802.11n-40MHz)

REPORT No.: SZ16080189W08A


2.6 Restricted Frequency Bands

2.6.1 Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

2.6.2 Test Description

A. Test Setup

The Module is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

KDB 558074 Section 12.1 was used in order to prove compliance.

B. Equipments List:

Please reference ANNEX A(1.5).

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

2.6.3 Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands.

The measurement results are obtained as below:

E [dB μ V/m] =U_R + A_T + A_{Factor} [dB]; A_T =L_{Cable loss} [dB]-G_{preamp} [dB]

A_T: Total correction Factor except Antenna

U_R: Receiver Reading

G_{preamp}: Preamplifier Gain

A_{Factor}: Antenna Factor at 3m

Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

2.6.3.1 802.11b Test mode

The lowest and highest channels are tested to verify the band edge emissions.

A. Test Verdict:

_										
	Channel	Frequency	Detector	Receiver Reading	Α _τ	A _{Factor}	Max. Emission	Limit	Verdict	
		(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	veruiet	
	1.AB	2390.00	PK	44.43	-33.63	32.56	43.36	74	Pass	
3	1 MOR	2390.00	AV	33.96	-33.63	32.56	32.89	54	Pass	
0 ^R	11	2484.38	PK	43.90	-33.18	32.5	43.22	74	Pass	
	11	2484.38	AV	33.14	-33.18	32.5	32.46	54	Pass	

B. Test Plots:

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

ight Spectrum Analyzer - Swept SA RF PRESEL 50 Ω DC	SENS	ALIGN AUT	0 06:18:42 AM Sep 28, 2016	
er 2 2.390000000000		Avg Type: Voltage un Avg Hold:>100/100	TRACE 123456	Marker
/div Ref 106.00 dBµV	in our meon		kr2 2.390 00 GHz 44.428 dBµV	Select Marke
			- And a second	Norr
a dat e salke e de sales es		\$ ¹	2	De
				Fixe
2.30000 GHz BW (CISPR) 1 MHz	#VBW 3.0 MHz	Sweep	Stop 2.41200 GHz 1.000 ms (1001 pts)	
	Y 184 45 GHz 46.542 dBu 190 00 GHz 44.428 dBu		TH FUNCTION VALUE	Propertie
				-
				Me 1 c

MORLAE

(Plot A1: Channel = 1 PEAK @ 802.11b)

(Plot A2: Channel = 1 AVG @ 802.11b)

 MORLAB GROUP
 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com

MORLAB

(Plot B1: Channel = 11 PEAK @ 802.11b)

(Plot B2: Channel = 11 AVG @ 802.11b)

MORLAB GROUP HL1-3, Building A, Fei Yang Scier Block67, BaoAn District, Shenz

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

MORLAB

REPORT No.: SZ16080189W08A

2.6.3.2 802.11g Test mode

The lowest and highest channels are tested to verify the band edge emissions.

A. Test Verdict:

			<i>G</i> ,	<u>o.</u>				2		
2	Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Vordict	
P	Channer	nel (MHz)	PK/ AV	U _R (dB) (dBuV)		(dB@3m)	E (dBµV/m)	(dBµV/m)	Verdict	
2	SRLAS	2390.00	PK	44.66	-33.63	32.56	43.59	74	Pass	
2	maline	2390.00	AV	33.64	-33.63	32.56	32.57	54	Pass	
0	11	2484.38	PK	43.84	-33.18	32.5	43.16	74	Pass	
1	11	2484.38	AV	33.16	-33.18	32.5	32.48	54	Pass	

B. Test Plots:

(Plot C1: Channel = 1 PEAK @ 802.11g)

MORLAB GROUP Block67, BaoAn District, She

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

Keysight Spectrum Analyzer		SENSE:INT	ALIGN AUTO	06:21:33 AM Sep 28, 2016	
Video BW 10 Hz	PNO: Fast	Trig: Free Run	Avg Type: Voltage Avg Hold: 1/100	TRACE 123456 TYPE MWWWWW	BW
	IFGain:Low	Atten: 6 dB		DEI	Res E
10 dB/div Ref 100.	00 dBµV		Mkr	2 2.390 00 GHz 33.642 dBµV	Auto N
90.0					Video B
80.0					10
70.0					Auto M
60.0					VBW:3dB R
50.0					VEW.JUBRE
			.1	2	Auto N
40.0					
30.0					Sport Site R
20.0					
10.0					
Start 2.30000 GHz			^	Stop 2.41200 GHz	
Res BW (CISPR) 1	MHz #VE	SW 10 Hz	Sweep	12.84 s (1001 pts)	REV/Comp
MKR MODE TRC SCL	X	Y FI	UNCTION FUNCTION WIDTH	FUNCTION VALUE	
1 N 1 f	2.384 45 GHz	33.663 dBµV 33.642 dBµV			
2 N 1 f	2.390 00 GHz	33.642 dBµV			
4					
5					
5					
6 20 20 20 20 20 20 20 20 20 20 20 20 20					
6 7 8					
6 7 8 9 10		m.		*	

MORLAE

MORLAB GROUP

(Plot C2: Channel = 1 AVG @ 802.11g)

(Plot D1: Channel = 11 PEAK @ 802.11g)

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

RL RF PRESEL 50 Ω DC Video BW 10 Hz	PNO: Fast	SENSE(IN	Avg	ALIGN AUTO Type: Voltage Hold: 2/100	06:36:55 AM Sep 28, 20 TRACE 12 3 4 TYPE M WWW DET P. P. N. N	5 6 WW	BW
0 dB/div Ref 100.00 dBµV	IFGain:Low	Atten: 6 dB		Mkr2	2.484 380 GF 33.164 dBµ	2	Res BV 1 MH Mai
.og 90.0 80.0						Auto	Video BI 10 H
70.0						VBW	3dB RB
40.0		Q ¹	²			Auto	Ma Line Rei
20.0						445	
Start 2.46200 GHz Res BW (CISPR) 1 MHz	#VBV	N 10 Hz		Sweep	Stop 2.50000 GH 4.357 s (1001 pt	iz s) ABI	
	1 684 GHz 4 380 GHz	Y <u>33.657 dBµ</u> V 33.164 dBµV	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Î	
5 6 7 8						E	
9							

(Plot D2: Channel = 11 AVG @ 802.11g)

2.6.3.3 802.11n-20MHz Test mode

The lowest and highest channels are tested to verify the band edge emissions.

A. Test Verdict:

MORLAE

2	Channel	Frequency (MHz)	Detector	Receiver Reading U _R	A _T (dB)	A _{Factor} (dB@3m)	Max. Emission E	Limit (dBµV/m)	Verdict
			PK/ AV	(dBuV)			(dBµV/m)		
	1,108	2390.00	PK	44.41	-33.63	32.56	43.34	74	Pass
ø	RLA 1	2390.00	AV	33.63	-33.63	32.56	32.56	54	Pass
~	11	2484.38	PK 🔬	43.90	-33.18	32.5	43.22	74	Pass
	11	2484.38	AV	33.15	-33.18	32.5	32.47	54	Pass

B. Test Plots:

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

Marker	5:22:29 AM Sep 28, 2016			ENSE:INT	SI		- Swept SA 50 Ω DC	PRESEL	RF	RL
Select Marke	TRACE 123456 TYPE MWWWWW DET PPNNNN	: Voltage >100/100			Trig: Fre	CHZ PNO: Fast IFGain:Low	0000000	.3900	r 2 2	rker
ocicormant	.390 00 GHz I4.406 dBµV	Mkr2					.00 dBµV	Ref 10	iv	dB/di
Norm										
De	- Andrewski	∆ 1 ↓ ²		er Martine	and the second	ารายการการการการการการการการการการการการการก	und April Marked	montphe	monte	
Fixe										
	p 2.41200 GHz 0 ms (1001 pts)	Sweep 1.0		z	W 3.0 MH:	#VB		00 GH: SPR)	V (CI	s BV
	FUNCTION VALUE	ICTION WIDTH	NCTION		Y 44.818 d 44.406 d	80 42 GHz 90 00 GHz		SCL f	E TRC	MODI N N
Propertie	E.									
Mo 1 c										
T C					m					

(Plot E1: Channel = 1 PEAK @ 802.11n-20)

(Plot E2: Channel = 1 AVG @ 802.11n-20)

MORLAB GROUP

MORLAE

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

(Plot F1: Channel = 11 PEAK @ 802.11n-20)

(Plot F2: Channel = 11 AVG @ 802.11n-20)

MORLAB GROUP

MORLAB

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

MORLAB,

REPORT No.: SZ16080189W08A

2.6.3.4 802.11n-40MHz Test mode

The lowest and highest channels are tested to verify the band edge emissions.

A. Test Verdict:

2	Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
P		(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	
~	3	2390.00	PK	43.60	-33.63	32.56	42.53	74	Pass
	3	2390.00	AV	33.63	-33.63	32.56	32.56	54	Pass
0	9	2484.38	РК	42.78	-33.18	32.5	42.1	74	Pass
2	9	2484.38	AV	33.15	-33.18	32.5	32.47	54	Pass
	at Ar	oh	nn-	2		Official	NI C		

B. Test Plots:

MORLAB GROUP

(Plot E1: Channel = 3 PEAK @ 802.11n-40)

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

Video BW 10 Hz PNO: Fast PNO: Fast Free Run Atten: 6 dB 10 dB/div Ref 100.00 dBµV Log	RL		nalyzer - Sv EL 50 S					SENSE:IN	т	A	LIGN AUTO		AM Sep 28, 2			
0 dB/div Ref 100.00 dBµV 33.632 dBµV 0 dB/div Ref 100.00 dBµV 33.632 dBµV 0 dB/div Image: Constraint of the second	ideo BV				PNO: IFGai	:Fast G						TF	TYPE MAAAAA	WWW		BW Res E
900 900 <th>) dB/div</th> <th>Ref</th> <th>100.0</th> <th>0 dBµ\</th> <th>/</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Mkr</th> <th>2 2.39 33.6</th> <th>0 00 GI 32 dBj</th> <th>Hz JV</th> <th>Auto</th> <th>1 M M</th>) dB/div	Ref	100.0	0 dBµ\	/						Mkr	2 2.39 33.6	0 00 GI 32 dBj	Hz JV	Auto	1 M M
700 0	90.0												1		Auto	Video E 10 M
600 1 2 Auto 400 1 2 Auto 300 1 1 2 300 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 3 3 3 3 4 1 1 1 6 1 1 1															-	-
400 300 400 <td>50.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>۸1</td> <td>2</td> <td></td> <td></td> <td></td> <td>1.500 KE 1 N</td>	50.0										۸ 1	2				1.500 KE 1 N
10.0 Stop 2.41200 GHz Res BW (CISPR) 1 MHz #VBW 10 Hz Sweep 12.34 s (1001 pts) MKR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH 1 1 1 2.380.42 GHz 33.255 dBµV 1000 GHz 2 N 1 f 2.390.00 GHz 33.632 dBµV 1000 GHz 3 4 4 4 4 4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 <td>11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>◊</td> <td>-</td> <td></td> <td></td> <td>Epo</td> <td>1 SHE RE</td>	11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1										◊	-			Epo	1 SHE RE
Xes BW (CISPR) 1 MHz #VBW 10 Hz Sweep 12.84 s (1001 pts) MKR MODE TRC SCL X Y FUNCTION FUNCTION VALUE 1 N 1 f 2.380 42 GHz 33.255 dBµV FUNCTION VIDTH FUNCTION VALUE 2 N 1 f 2.390 00 GHz 33.632 dBµV E 3 4 5															aue.	
1 N 1 f 2.380.42 GHz 33.255 dBµV 2 N 1 f 2.390.00 GHz 33.632 dBµV 3				IHz		#VBV	V 10 Hz		<u>`</u>		Sweep	Stop 2. 12.84 s	41200 G (1001 p	Hz ts)		A Come
					80 42 0	GHz		dBµV	FUNCTION	FUNC	CTION WIDTH	FUNC	TION VALUE	ŕ		
	3	1 f														
	6													н		
	8															
	-						III -							-		

(Plot E2: Channel = 3 AVG @ 802.11n-40)

(Plot F1: Channel = 9 PEAK @ 802.11n-40)

MORLAB GROUP

MORLAE

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

Keysight Spectrum Analyzer - Swept SA RL RF PRESEL 50 Ω DC Video BW 10 Hz	PNO: Fast	SENSE:II	Avg	ALIGN AUTO Type: Voltage Hold: 1/100	06:38:31 AM Sep 28, 2 TRACE 1234 TYPE MWWW DET P. P. N.	5.6	BW
10 dB/div Ref 100.00 dBµV	IFGain:Low	Atten: 6 dB		and a set	2.484 380 G 33.147 dB		Res BI 1 M⊢ Ma
900 800						Auto	Video B 10 F Ma
70.0 60.0 50.0						VBV	V:3dB RB 10 Ma
40.0 30.0 20.0			2				n Chie Re Th
10.0 Start 2.46200 GHz Res BW (CISPR) 1 MHz	#//₽	V 10 Hz		Guyaan	Ŝtop 2.50000 G 4.357 s (1001 p	Hz	ni A Contri
	#VDV	Y TU HZ	FUNCTION	FUNCTION WIDTH	4.337 S (1001 p		
2 N 1 f 2.484	216 GHz 380 GHz	33.272 dBµV 33.147 dBµV					
4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7						E	
8 9 9 10						1	
11		m					

(Plot F2: Channel = 9 AVG @ 802.11n-40)

MORLAB GROUP

MORLAE

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

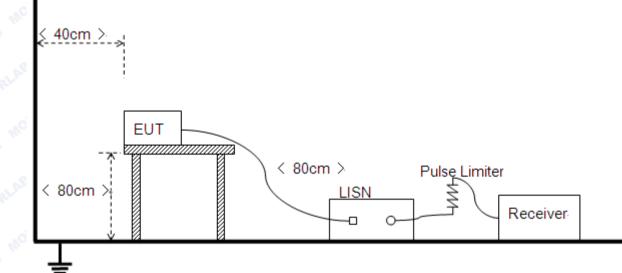
2.7 Conducted Emission

2.7.1 Requirement

MORLAE

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).

Frequency range	Conducted Limit (dBµV)				
(MHz)	Quai-peak	Average			
0.15 - 0.50	66 to 56	56 to 46			
0.50 - 5	56	46			
5 - 30	60	50			


NOTE:

- (a) The lower limit shall apply at the band edges.
- (b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.

2.7.2 Test Description

A. Test Setup:

MORLAB GROUP

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10 2013.

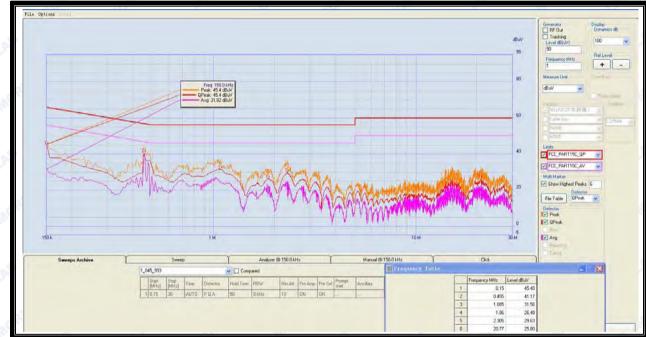
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

MORLAB

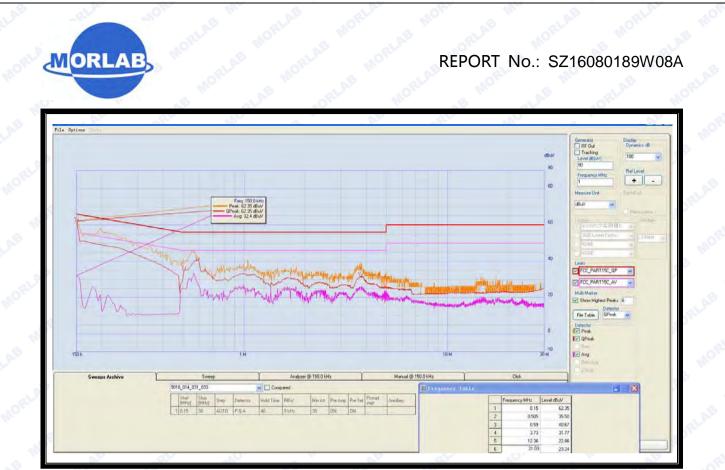
REPORT No.: SZ16080189W08A

B. Equipments List:

Please reference ANNEX A(1.5).


2.1.1 Test Result

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.


A. Test setup:

The EUT configuration of the emission tests is EUT + Link.

B. Test Plots:

(Plot A: L Phase)

(Plot B: N Phase)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

2.8 Radiated Emission 2.8.1 Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

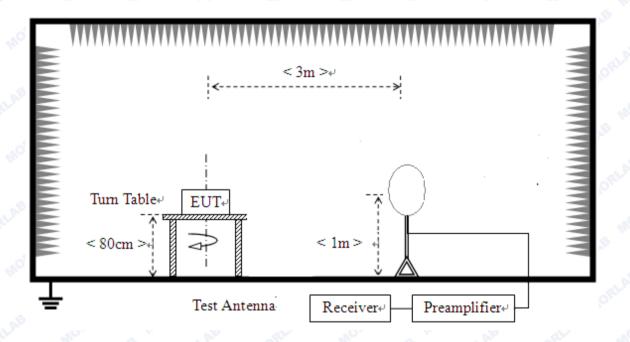
Note:

- For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

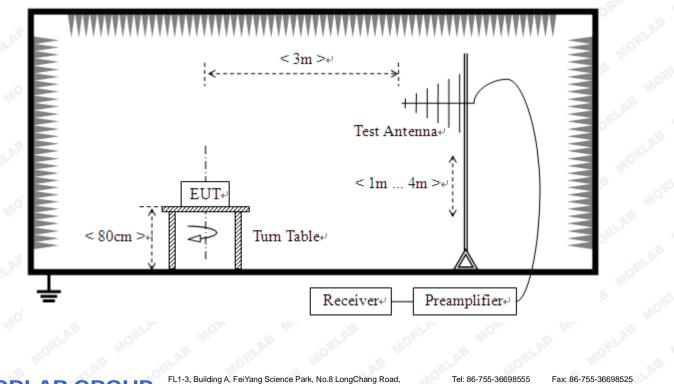
In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

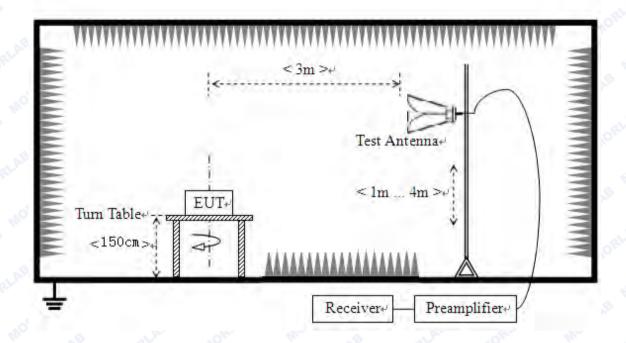


2.8.2 Test Description


A. Test Setup:

MORLAB GROUP

1) For radiated emissions from 9kHz to 30MHz


2) For radiated emissions from 30MHz to1GHz

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

3) For radiated emissions above 1GHz

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10 (2013). For radiated emissions below or equal to 1GHz, The EUT was set-up on insulator 80cm above the Ground Plane, For radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading

For the Test Antenna:

MORLAB GROUP

(a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna.

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.

(b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

B. Equipments List:

ORLAB

Please reference ANNEX A(1.5).

2.8.3 Test Result

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading

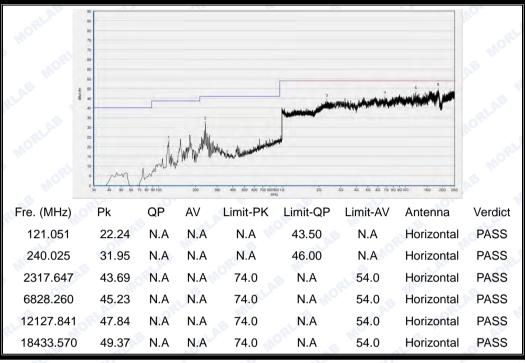
G_{preamp}: Preamplifier Gain

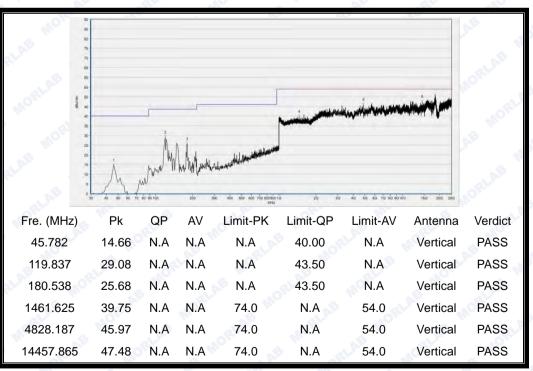
A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor A_T and A_{Factor} were built in test software.

The low frequency, which started from 9KHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

MORLAB GROUP

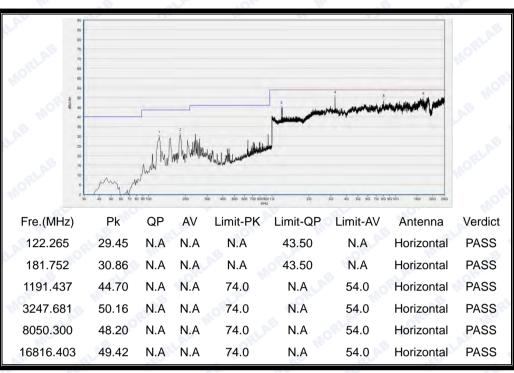

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com


2.8.3.1 802.11b Test mode

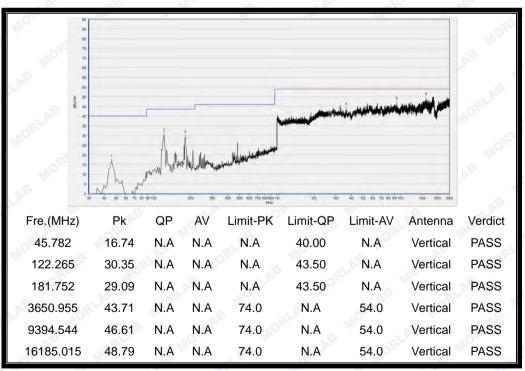
A. Test Plots for the Whole Measurement Frequency Range:

Plots for Channel = 1

(Antenna Horizontal, 30MHz to 25GHz)

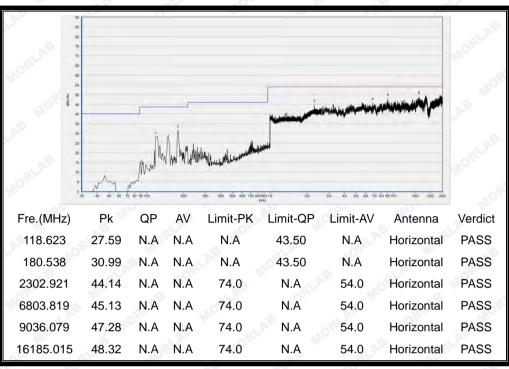

(Antenna Vertical, 30MHz to 25GHz)

MORLAB GROUP

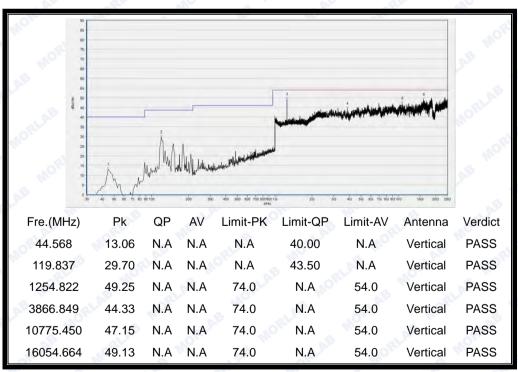

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

Plot for Channel = 6

(Antenna Horizontal, 30MHz to 25GHz)


(Antenna Vertical, 30MHz to 25GHz)

MORLAB GROUP

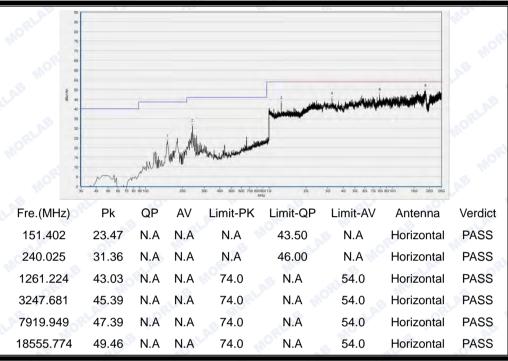

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

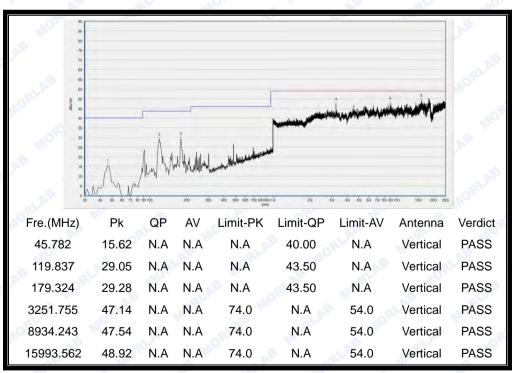
Plot for Channel = 11

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

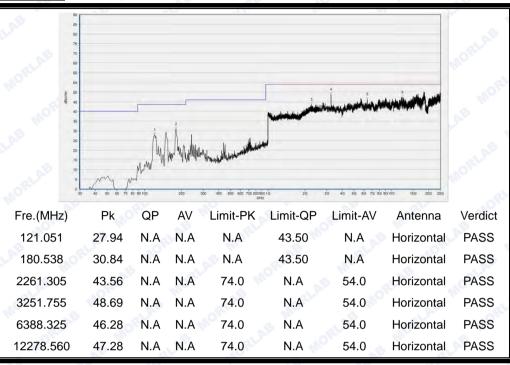
MORLAB GROUP


FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

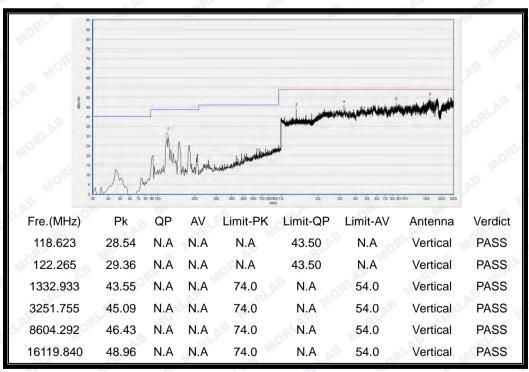

2.8.3.2 802.11g Test mode

A. Test Plots for the Whole Measurement Frequency Range:

(Antenna Horizontal, 30MHz to 25GHz)

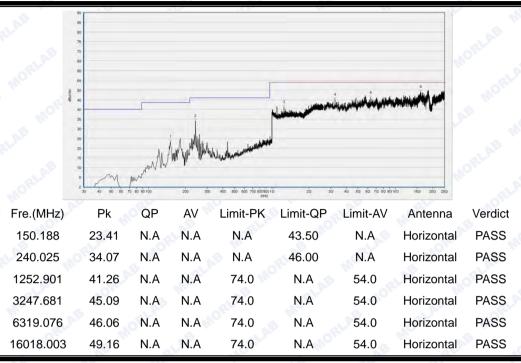

(Antenna Vertical, 30MHz to 25GHz)

MORLAB GROUP

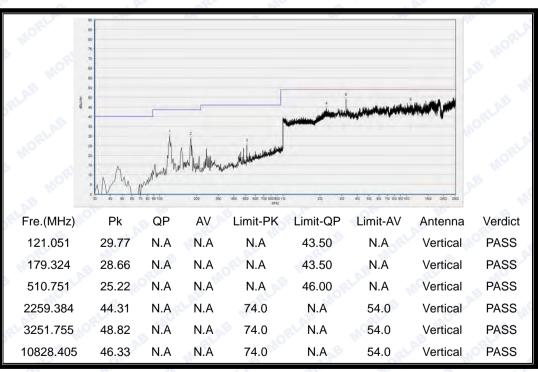

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

Plot for Channel = 6

(Antenna Horizontal, 30MHz to 25GHz)


(Antenna Vertical, 30MHz to 25GHz)

MORLAB GROUP

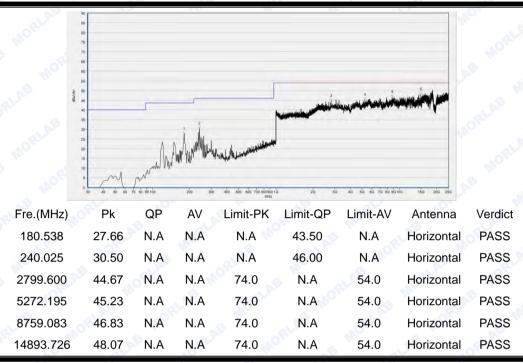

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

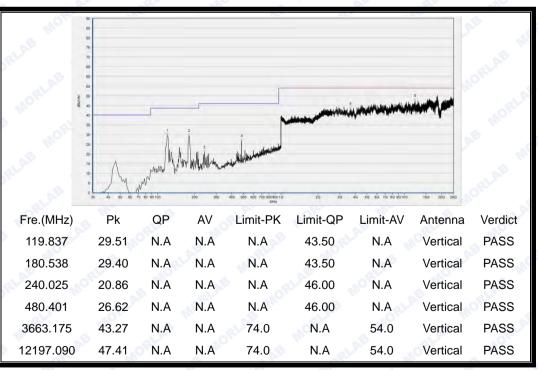
Plot for Channel = 11

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

MORLAB GROUP

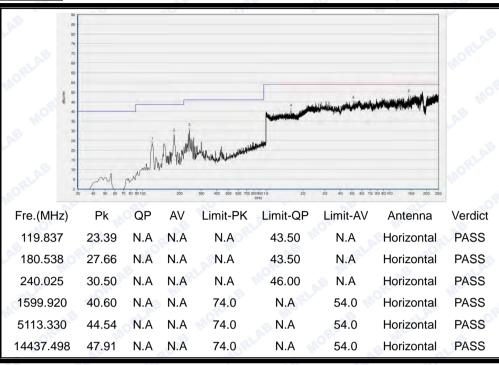

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com


2.8.3.3 802.11n-20MHz Test mode

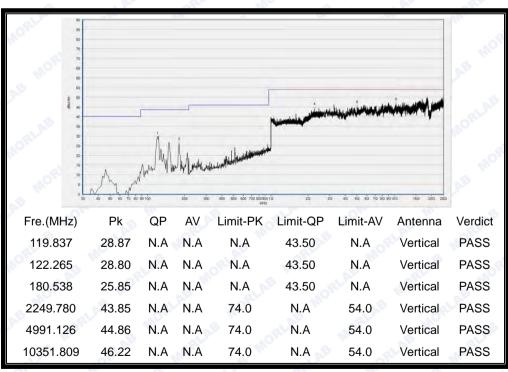
A. Test Plots for the Whole Measurement Frequency Range:

Plots for Channel = 1

(Antenna Horizontal, 30MHz to 25GHz)


(Antenna Vertical, 30MHz to 25GHz)

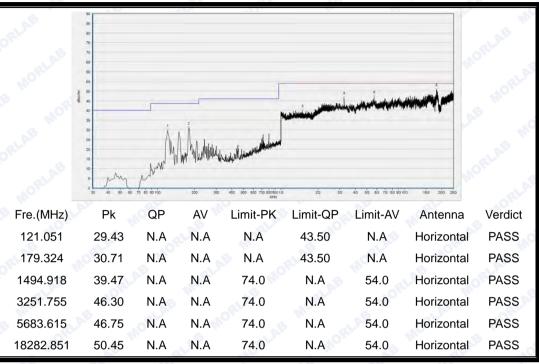
MORLAB GROUP


FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

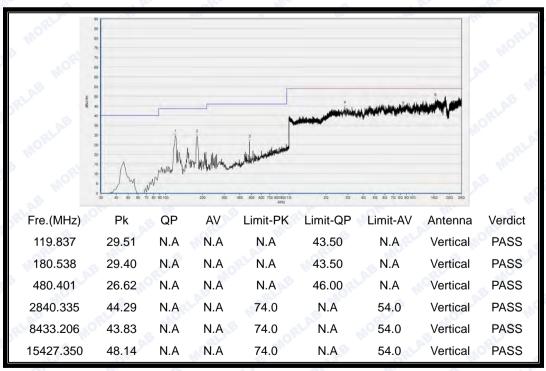
Plot for Channel = 6

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)


MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com


MORLAB

REPORT No.: SZ16080189W08A

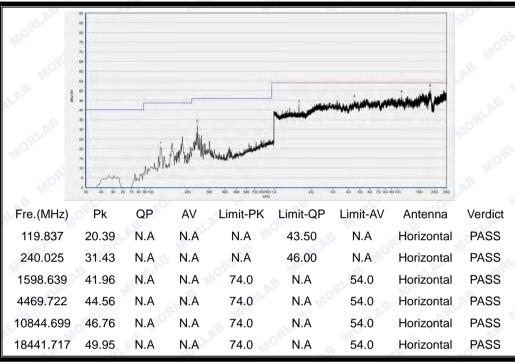
Plot for Channel = 11

(Antenna Horizontal, 30MHz to 25GHz)

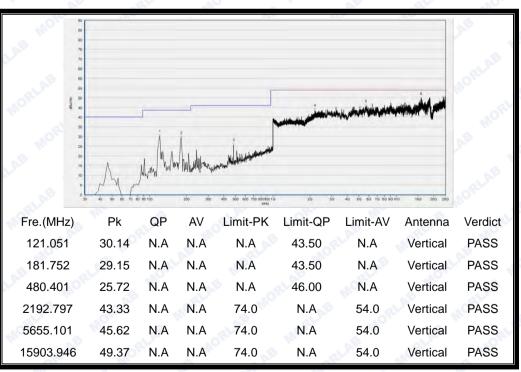
(Antenna Vertical, 30MHz to 25GHz)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com


MORLAB

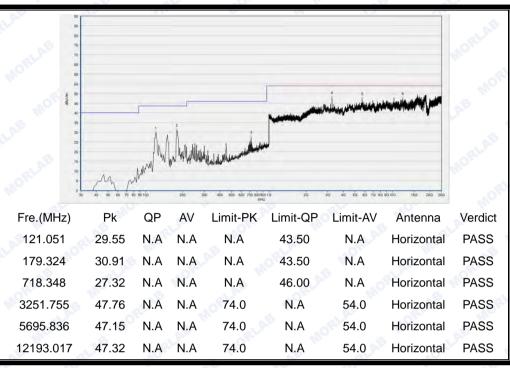
REPORT No.: SZ16080189W08A


2.8.3.4 802.11n-40MHz Test mode

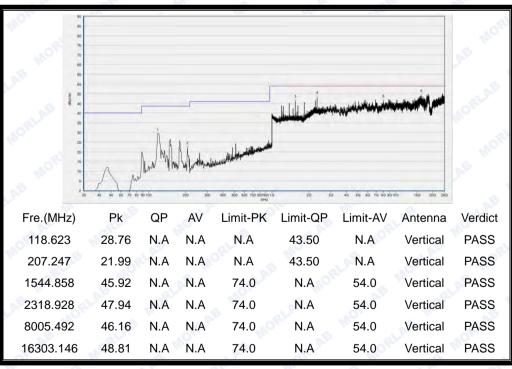
A. Test Plots for the Whole Measurement Frequency Range:

Plots for Channel = 3

(Plot A.2: Antenna Horizontal, 30MHz to 25GHz)

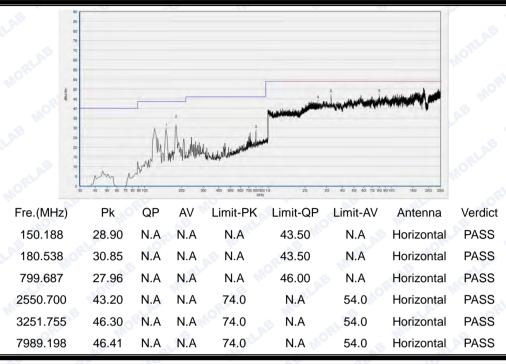

(Plot A.3: Antenna Vertical, 30MHz to 25GHz)

MORLAB GROUP

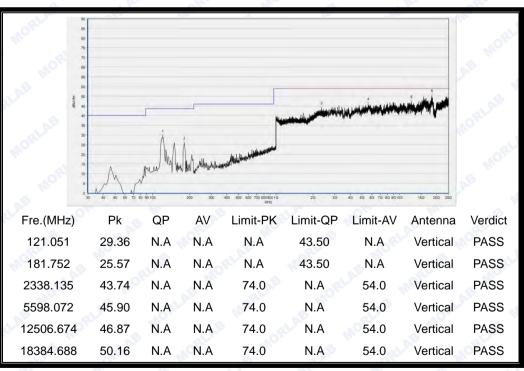

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

Plots for Channel = 6

(Plot B.2: Antenna Horizontal, 30MHz to 25GHz)


(Plot B.3: Antenna Vertical, 30MHz to 25GHz)

MORLAB GROUP


FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

Plots for Channel = 9

(Plot C.2: Antenna Horizontal, 30MHz to 25GHz)

(Plot C.3: Antenna Vertical, 30MHz to 25GHz)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

ANNEX A GENERAL INFORMATION

1.1 Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.Morlab Laboratory				
Department:					
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China				
Responsible Test Lab Manager:	Mr. Su Feng				
Telephone:	+86 755 36698555				
Facsimile:	+86 755 36698525				

1.2 Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
RLAT MORT S M	Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang
MORL MC A	Road, Block 67, BaoAn District, ShenZhen, GuangDong
RLAD MORL	Province, P. R. China

1.3 Facilities and Accreditations

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

All measurement facilities used to collect the measurement data are located at FL.1, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10 2013 and CISPR Publication 22; the FCC registration number is 695796.

1.4 Maximum measurement uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Measurements	Frequency	Uncertainty
Conducted emissions	9KHz~30MHz	2.44dB
AB SLAP AOR	30MHz~200MHz	2.93
Dedicted whom here with	200MHz~1000MHz	2.95
Radiated emissions	1GHz~18GHz	2.26
MOT AB MALAB	18GHz~40GHz	1.94

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com Fax: 86-755-36698525 E-mail: service@morlab.cn

Page 72 Of 74

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

1.5 Test Equipments Utilized

MORLAE

1.5.1 Conducted Test Equipments

Conducted Test Equipment								
No.	Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due		
1	Spectrum Analyzer	MY45101810	E4407B	Agilent	2016.03.02	2017.03.01		
2	USB Wideband Power Sensor	MY54210011	U2021XA	Agilent	2016.03.02	2017.03.01		
3	EXA Signal Analzyer	MY53470838	N9010A	Agilent	2016.03.02	2017.03.01		
4	RF cable	CB01	RF01	Morlab	N/A	N/A		
5	Attenuator	(n.a.)	10dB	Resnet	N/A	N/A		
6	SMA connector Note	CN01	RF03	HUBER-SUHNER	N/A	N/A		

Note: The SMA antenna connector is soldered on the PCB board in order to perform conducted tests and this SMA antenna connector is listed in the equipment list.

1.5.2 Radiated Test Equipments

Radiated Test Equipments								
No	Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal.Due Date		
1 📢	System Simulator	GB45360846	8960-E5515C	Agilent	2016.03.02	2017.03.01		
2	Receiver	MY54130016	N9038A	Agilent	2016.03.02	2017.03.01		
3	Test Antenna - Bi-Log	N/A	VULB9163	Schwarzbeck	2016.03.02	2017.03.01		
4	Test Antenna - Horn	9170C-531	BBHA9170	Schwarzbeck	2016.03.02	2017.03.01		
5	Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2016.03.02	2017.03.01		
6	Test Antenna - Horn	71688	BBHA 9120D	Schwarzbeck	2016.03.02	2017.03.01		
7	Coaxial cable(N male)	CB02	EMC02	Morlab	N/A	N/A		
8	Coaxial cable(N male)	CB03	EMC03	Morlab	N/A	N/A		
9	1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde&Schwarz	2016.03.02	2017.03.01		
10	18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde&Schwarz	2016.03.02	2017.03.01		

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com Fax: 86-755-36698525 E-mail: service@morlab.cn

Page 73 Of 74

1.5.3 Climate Chamber

Clima	te Chamber	.B ORL.	MOL	S M	AB ORLAN	MOL
No.	Equipment Name	Serial No.	Туре	Manufacturer	Cal.Date	Cal.Due Date
1	Climate Chamber	2004012	HL4003T	Yinhe	2016.03.02	2017.03.01

1.5.4 Vibration Table

	Vibra	ation Table	BORLA	MON	B M LAB	ORLAN	MOL & M
	No.	Equipment Name	Serial No.	Туре	Manufacturer	Cal.Date	Cal.Due Date
010	1	Vibration Table	N/A	ACT2000- S015L	CMI-COM	2016.03.02	2017.03.01

1.5.5 Anechoic Chamber

Ane	choic Chamber	A MIL	AB	LAT MORT	A MAC D	BRLAD
No.	Equipment Name	Serial No.	Туре	Manufacturer	Cal.Date	Cal.Due Date
1	Anechoic Chamber	N/A	9m*6m*6m	Changning	2016.03.02	2017.03.01

1.5.6 Auxiliary Test Equipment

Auxil	iary Test Equipment	Nr.	SB.	at a not	Mrs	B at A
No.	Equipment Name	Serial No.	Туре	Manufacturer	Cal.Date	Cal.Due Date
1	Computer	N.A	PU500C	Asus	N.A	N.A

***** END OF REPORT ****

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com