

# **FCC RF TEST REPORT**

| APPLICANT    | : | Pycom Ltd                                                                                |
|--------------|---|------------------------------------------------------------------------------------------|
| PRODUCT NAME | : | Triple Network (LoRa, WiFi and Bluetooth) IoT development Module powered by MicroPython. |
| MODEL NAME   | : | L01 1.0                                                                                  |
| TRADE NAME   | : | LoPy OEM                                                                                 |
| BRAND NAME   | : | Pycom                                                                                    |
| FCC ID       | : | 2AJMTLOPY01R                                                                             |
| STANDARD(S)  | : | 47 CFR Part 15 Subpart C                                                                 |
| ISSUE DATE   | : | 2017-09-21                                                                               |

# SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

 MORLAB GROUP
 FL1-3, Building A, Feir rang Science F and Nos Long Trans Control F and Nos Lon



# DIRECTORY

| TEST               | REPORT DECLARATION ····································              |
|--------------------|----------------------------------------------------------------------|
|                    |                                                                      |
| <u>1.</u> <u>T</u> | ECHNICAL INFORMATION ····································            |
|                    |                                                                      |
| 1.1                | APPLICANT INFORMATION                                                |
| 1.2                | EQUIPMENT UNDER TEST (EUT) DESCRIPTION                               |
| 1.2.1              | IDENTIFICATION OF ALL USED EUTS ···································· |
| 1.3                | Test Standards and Results ······6                                   |
| 1.3.1              | Test Environment Conditions6                                         |
|                    |                                                                      |
| <u>2.</u> <u>4</u> | 7 CFR PART 15C REQUIREMENTS·······7                                  |
|                    |                                                                      |
| 2.1                | ANTENNA REQUIREMENT ······7                                          |
| 2.1.1              | Applicable Standard ······7                                          |
| 2.1.2              | Result: Compliant                                                    |
| 2.2                | PEAK OUTPUT POWER······7                                             |
| 2.2.1              | REQUIREMENT7                                                         |
| 2.2.2              | TEST DESCRIPTION ······7                                             |
| 2.2.3              | Test Result8                                                         |
| 2.3                | BANDWIDTH ······10                                                   |
| 2.3.1              | Requirement10                                                        |
| 2.3.2              | Test Description ······ 10                                           |
| 2.3.3              | Test Result 10                                                       |
| 2.4                | CONDUCTED SPURIOUS EMISSIONS AND BAND EDGE                           |
| 2.4.1              | Requirement19                                                        |
| 2.4.2              | Test Description ······ 19                                           |
| 2.4.3              | TEST RESULT······ 19                                                 |
| 2.5                | POWER SPECTRAL DENSITY (PSD)                                         |
| 2.5.1              | REQUIREMENT                                                          |
| 2.5.2              | TEST DESCRIPTION ····································                |
| 2.5.3              | TEST RESULT                                                          |
| 2.6                | RESTRICTED FREQUENCY BANDS41                                         |
| 2.6.1              | Requirement 41                                                       |
| 2.6.2              | Test Description ······ 41                                           |
| 2.6.3              | Test Result 42                                                       |

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com



| 63                                      |
|-----------------------------------------|
| 63                                      |
| 63                                      |
| 64                                      |
| 66                                      |
| 66                                      |
| 67                                      |
| 0,                                      |
| ••••••••••••••••••••••••••••••••••••••• |

| Change History               |            |               |  |
|------------------------------|------------|---------------|--|
| Issue Date Reason for change |            |               |  |
| 1.0                          | 2017-09-21 | First edition |  |
|                              |            |               |  |

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com



# **TEST REPORT DECLARATION**

| Applicant            | Pycom Ltd                                                                                |
|----------------------|------------------------------------------------------------------------------------------|
| Applicant Address    | Highpoint, 9 Sydenham Road, GU1 3RX Guildford, Surrey UK                                 |
| Manufacturer Address | In-Tech Electronics Ltd                                                                  |
| Manufacturer         | 2/F Rhythm Home,119 ShazuiRoad, Futian, Shenzhen,<br>Guangdong, P.R.China                |
| Product Name         | Triple Network (LoRa, WiFi and Bluetooth) IoT development Module powered by MicroPython. |
| Model Name           | L01 1.0                                                                                  |
| Brand Name           | Pycom                                                                                    |
| HW Version           | 1.0r                                                                                     |
| SW Version           | 1.0                                                                                      |
| Test Standards       | 47 CFR Part 15 Subpart C                                                                 |
| Test Date            | 2017-07-08 to 2017-09-19                                                                 |
| Test Result          | PASS                                                                                     |

Tu Ya'nan Tested by : Tu Ya'nan (Test Engineer) JU A Approved by

Andy Yeh (Supervisor)

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com



# **1. TECHNICAL INFORMATION**

Note: Provide by applicant.

#### **Applicant Information** 1.1

| Company: | Pycom Ltd                                                |
|----------|----------------------------------------------------------|
| Address  | Highpoint, 9 Sydenham Road, GU1 3RX Guildford, Surrey UK |

#### 1.2 Equipment under Test (EUT) Description

| Brand Name:      | Pycom                                  |
|------------------|----------------------------------------|
| Trade Name:      | LoPy OEM                               |
| Model Name:      | L01 1.0                                |
| Frequency Range: | 802.11b/g/n-20MHz: 2.412GHz - 2.462GHz |
|                  | 802.11n-40MHz: 2.422GHz - 2.452GHz     |
| Channel Number:  | 802.11b/g/n-20MHz: 11                  |
|                  | 802.11n-40MHz: 7                       |
| Modulation Type: | DSSS, OFDM                             |
| Antenna 1 Type:  | Ceramic Antenna                        |
| Antenna 1Gain:   | -0.5dBi                                |
| Antenna 2 Type:  | External Antenna                       |
| Antenna 2Gain:   | 2.0dBi                                 |

#### NOTE:

1. The EUT is a Triple Network (LoRa, WiFi and Bluetooth) IoT development Module powered by MicroPython. It's operating at 2.4GHz ISM; it supports 802.11b, 802.11g, 802.11n and they are all tested in this report.

For 802.11b/g/n-20MHz (2.4GHz band), the frequencies allocated is F (MHz) =2412+5\*(n-1) (1<=n<=11). The lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 1 (2412MHz), 6 (2437MHz) and 11 (2462MHz).

For 802.11n-40MHz, the frequencies allocated is F (MHz) =2412+5\*(n-1) (3<=n<=9). The lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 3 (2422MHz), 6 (2437MHz) and 9 (2452MHz).

- 2. The EUT connected to the serial port of the computer with a serial communication cable, we use the dedicated software to control the EUT continuous transmission. And the duty cycle is 100%.
- 3. For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.



## 1.2.1 Identification of all used EUTs

The EUT identity consists of numerical and letter characters, the letter character indicates the test sample, and the following two numerical characters indicate the software version of the test sample.

| EUT Identity | T Identity Hardware Version Software Version |     |
|--------------|----------------------------------------------|-----|
| A01          | 1.0r                                         | 1.0 |

#### 1.3 **Test Standards and Results**

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C (Bluetooth, 2.4GHz ISM band radiators) for the EUT FCC ID Certification:

| No. | Identity          | Document Title          |
|-----|-------------------|-------------------------|
| 1   | 47 CFR Part 15    | Radio Frequency Devices |
|     | (10-1-15 Edition) |                         |

Test detailed items/section required by FCC rules and results are as below:

| No. | Section           | Description                               | Test Date                     | Result |
|-----|-------------------|-------------------------------------------|-------------------------------|--------|
| 1   | 15.203            | Antenna Requirement                       | N/A                           | PASS   |
| 2   | 15.247(b)         | Peak Output Power                         | Jul 08, 2017                  | PASS   |
| 3   | 15.247(a)         | Bandwidth                                 | Jul 08, 2017                  | PASS   |
| 4   | 15.247(d)         | Conducted Spurious Emission and Band Edge | Jul 08, 2017                  | PASS   |
| 5   | 15.247(d)         | Restricted Frequency Bands                | Aug 10, 2017&<br>Sep 19, 2017 | PASS   |
| 6   | 15.207            | Conducted Emission                        | Aug 15, 2017                  | PASS   |
| 7   | 15.209 ,15.247(d) | Radiated Emission                         | Aug 02, 2017&<br>Sep 19, 2017 | PASS   |
| 8   | 15.247(e)         | Power spectral density (PSD)              | Jul 08, 2017                  | PASS   |

The tests of Conducted Emission and Radiated Emission were performed according to the method of measurements prescribed in ANSI C63.10 2013 and KDB558074 D01 v04 (04/05/2017).

# **1.3.1 Test Environment Conditions**

During the measurement, the environmental conditions were within the listed ranges:

| Temperature (°C):           | 15 - 35 |
|-----------------------------|---------|
| Relative Humidity (%):      | 30 -60  |
| Atmospheric Pressure (kPa): | 86-106  |

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com



# 2. 47 CFR PART 15C REQUIREMENTS

#### 2.1 Antenna requirement

#### **Applicable Standard** 2.1.1

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

### 2.1.2 Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

#### 2.2 **Peak Output Power**

### 2.2.1 Requirement

According to FCC section 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: The maximum peak conducted output power of the intentional radiator shall not exceed1 Watt.

### 2.2.2 Test Description

The measured output power was calculated by the reading of the USB Wideband Power Sensor and calibration.

### A. Test Setup:



The EUT (Equipment under the test) which is coupled to the USB Wideband Power Sensor; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in power meter.

### **B.** Equipments List:

Please reference ANNEX A(1.5).

MORLAB GROUP Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

Tel: 86-755-36698555 Http://www.morlab.com





#### 2.2.3 Test Result

The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the Module.

#### 2.2.3.1 802.11b Test Mode

| Channel | Frequency (MHz) | Measured Output Peak Power |         | Limit |   | Vardiat |
|---------|-----------------|----------------------------|---------|-------|---|---------|
| Channel |                 | dBm                        | W       | dBm   | W | verdict |
| 1       | 2412            | 15.43                      | 0.03491 |       |   | PASS    |
| 6       | 2437            | 15.11                      | 0.03243 | 30    | 1 | PASS    |
| 11      | 2462            | 14.52                      | 0.02831 |       |   | PASS    |

| Channel Frequency (MHz) |      | Measured | Output Average<br>Power | Limit |   | Verdict |
|-------------------------|------|----------|-------------------------|-------|---|---------|
|                         |      | dBm      | W                       | dBm   | W |         |
| 1                       | 2412 | 12.68    | 0.01854                 |       |   | PASS    |
| 6                       | 2437 | 11.82    | 0.01521                 | 30    | 1 | PASS    |
| 11                      | 2462 | 10.93    | 0.01239                 |       |   | PASS    |

#### 2.2.3.2 802.11g Test mode

| Channel Frequency (MHz) |      | Measured C | utput Peak Power | Limit |   | Vardiat |
|-------------------------|------|------------|------------------|-------|---|---------|
| Channel                 |      | dBm        | W                | dBm   | W | verdict |
| 1                       | 2412 | 17.68      | 0.05861          |       |   | PASS    |
| 6                       | 2437 | 17.04      | 0.05058          | 30    | 1 | PASS    |
| 11                      | 2462 | 16.24      | 0.04207          |       |   | PASS    |

| Channel Frequency (MHz) |      | Measured | Measured Output Average<br>Power |     | Limit |      |
|-------------------------|------|----------|----------------------------------|-----|-------|------|
|                         |      | dBm      | W                                | dBm | W     |      |
| 1                       | 2412 | 8.88     | 0.00773                          |     |       | PASS |
| 6                       | 2437 | 8.51     | 0.00710                          | 30  | 1     | PASS |
| 11                      | 2462 | 7.93     | 0.00621                          |     |       | PASS |

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com



#### 2.2.3.3 802.11n-20MHz Test mode

| Channel |      | Measured Output Peak Power Limit |         | t   | Vardiat |         |
|---------|------|----------------------------------|---------|-----|---------|---------|
| Channel |      | dBm                              | W       | dBm | W       | verdict |
| 1       | 2412 | 17.85                            | 0.06095 |     |         | PASS    |
| 6       | 2437 | 17.16                            | 0.05200 | 30  | 1       | PASS    |
| 11      | 2462 | 16.34                            | 0.04305 |     |         | PASS    |

| Channel | Channel Frequency (MHz) |      | Measured Output Average<br>Power |     | Limit |      |
|---------|-------------------------|------|----------------------------------|-----|-------|------|
|         |                         | dBm  | W                                | dBm | W     |      |
| 1       | 2412                    | 8.98 | 0.00791                          |     |       | PASS |
| 6       | 2437                    | 8.62 | 0.00728                          | 30  | 1     | PASS |
| 11      | 2462                    | 8.01 | 0.00632                          |     |       | PASS |

#### 2.2.3.4 802.11n-40MHz Test mode

| Channel |                  | Measured C | output Peak Power | Limi | t | Vordict |
|---------|------------------|------------|-------------------|------|---|---------|
| Channel | Frequency (MIRZ) | dBm        | W                 | dBm  | W | verdict |
| 3       | 2422             | 17.12      | 0.05152           |      |   | PASS    |
| 6       | 2437             | 16.78      | 0.04764           | 30   | 1 | PASS    |
| 9       | 2452             | 16.36      | 0.04325           |      |   | PASS    |

| Channel Frequency (MHz) |      | Measured Output Average<br>Power |         | Limit |   | Verdict |
|-------------------------|------|----------------------------------|---------|-------|---|---------|
|                         |      | dBm                              | W       | dBm   | W |         |
| 3                       | 2422 | 8.93                             | 0.00782 |       |   | PASS    |
| 6                       | 2437 | 8.41                             | 0.00693 | 30    | 1 | PASS    |
| 9                       | 2452 | 7.91                             | 0.00618 |       |   | PASS    |

 MORLAB GROUP
 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com
 E-mail: service@morlab.cn

Page 9 0f 96



#### 2.3 **Bandwidth**

#### 2.3.1 Requirement

According to FCC section 15.247(a) (2), Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

### 2.3.2 Test Description

#### A. Test Set:



The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

KDB 558074 Section 8.1 Option 1 was used in order to prove compliance.

#### **B.** Equipments List:

Please reference ANNEX A(1.5).

#### 2.3.3 Test Result

The lowest, middle and highest channels are selected to perform testing to record the 6 dB bandwidth of the Module.

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com



#### 2.3.3.1 802.11b Test mode

#### A. Test Verdict:

| Channel | Frequency<br>(MHz) | 6 dB Bandwidth<br>(MHz) | Limits(kHz) | Result |
|---------|--------------------|-------------------------|-------------|--------|
| 1       | 2412               | 7.586                   | ≥500        | PASS   |
| 6       | 2437               | 7.584                   | ≥500        | PASS   |
| 11      | 2462               | 8.263                   | ≥500        | PASS   |

#### **B.** Test Plots



(Channel 1: 2412MHz @ 802.11b)

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

Fax: 86-755-36698525 E-mail: service@morlab.cn

Page 11 Of 96









**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



#### 2.3.3.2 802.11g Test mode

#### A. Test Verdict:

| Channel | Frequency | 6 dB Bandwidth | Limits | Pocult |
|---------|-----------|----------------|--------|--------|
| Channel | (MHz)     | (MHz)          | (kHz)  | Result |
| 1       | 2412      | 16.331         | ≥500   | PASS   |
| 6       | 2437      | 16.343         | ≥500   | PASS   |
| 11      | 2462      | 16.353         | ≥500   | PASS   |

#### B. Test Plots:



(Channel 1: 2412MHz @ 802.11g)

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com









**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



#### 2.3.3.3 802.11n-20 Test mode

#### A. Test Verdict:

| Channel | Frequency | 6 dB Bandwidth | Limits | Popult |
|---------|-----------|----------------|--------|--------|
|         | (MHz)     | (MHz)          | (kHz)  | Result |
| 1       | 2412      | 17.103         | ≥500   | PASS   |
| 6       | 2437      | 17.093         | ≥500   | PASS   |
| 11      | 2462      | 17.067         | ≥500   | PASS   |

#### B. Test Plots:



(Channel 1: 2412MHz @ 802.11n-20)

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com









**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



#### 2.3.3.4 802.11n-40 Test mode

#### A. Test Verdict:

| Channel | Frequency | 6 dB Bandwidth | Limits | Popult |
|---------|-----------|----------------|--------|--------|
|         | (MHz)     | (MHz)          | (kHz)  | Result |
| 3       | 2422      | 35.735         | ≥500   | PASS   |
| 6       | 2437      | 35.853         | ≥500   | PASS   |
| 9       | 2452      | 35.559         | ≥500   | PASS   |

#### B. Test Plots:



(Channel 3: 2422Mz @ 802.11n-40)

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

Fax: 86-755-36698525 E-mail: service@morlab.cn

Page 17 Of 96





(Channel 6: 2437MHz @ 802.11n-40)



**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com





# 2.4 Conducted Spurious Emissions and Band Edge

### 2.4.1 Requirement

According to FCC section 15.247(c), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

### 2.4.2 Test Description

### A. Test Set:



The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

KDB 558074 Section 11.0 was used in order to prove compliance.

### B. Equipments List:

Please reference ANNEX A(1.5).

### 2.4.3 Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions.

# MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



#### 2.4.3.1 802.11b Test mode

#### A. Test Verdict:

|         | Fraguanay | Measured Max.  | Limit   | t (dBm)      |         |
|---------|-----------|----------------|---------|--------------|---------|
| Channel |           | Out of Band    | Carrier | Calculated   | Verdict |
|         | (IVITZ)   | Emission (dBm) | Level   | -20dBc Limit |         |
| 1       | 2412      | -49.40         | 0.72    | -19.28       | PASS    |
| 6       | 2437      | -47.86         | 0.21    | -19.79       | PASS    |
| 11      | 2462      | -49.75         | 0.19    | -19.81       | PASS    |

#### B. Test Plots:

**Note:** the power of the Module transmitting frequency should be ignored.



(Channel = 1, 30MHz to 25GHz)

# MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com









**MORLAB GROUP** 

MORLA

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com









#### (Band Edge @ Channel = 11)

# **MORLAB GROUP**

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com



#### 2.4.3.2 802.11g Test mode

#### A. Test Verdict:

| Channel | Frequency<br>(MHz) | Measured Max.  | Limit (dBm) |              |         |
|---------|--------------------|----------------|-------------|--------------|---------|
|         |                    | Out of Band    | Carrier     | Calculated   | Verdict |
|         |                    | Emission (dBm) | Level       | -20dBc Limit |         |
| 1       | 2412               | -48.82         | -3.66       | -23.66       | PASS    |
| 6       | 2437               | -48.86         | -2.33       | -22.33       | PASS    |
| 11      | 2462               | -51.26         | -1.78       | -21.78       | PASS    |

#### B. Test Plots:

**Note:** the power of the Module transmitting frequency should be ignored.



(Channel = 1, 30MHz to 25GHz)

# MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com











**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com









#### (Band Edge @ Channel = 11)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com



#### 2.4.3.3 802.11n -20MHz Test mode

#### A. Test Verdict:

| Channel | Frequency<br>(MHz) | Measured Max.  | Limit (dBm) |              |         |
|---------|--------------------|----------------|-------------|--------------|---------|
|         |                    | Out of Band    | Carrier     | Calculated   | Verdict |
|         |                    | Emission (dBm) | Level       | -20dBc Limit |         |
| 1       | 2412               | -49.68         | -1.20       | -21.20       | PASS    |
| 6       | 2437               | -50.49         | -1.37       | -21.37       | PASS    |
| 11      | 2462               | -50.48         | -2.93       | -22.93       | PASS    |

#### B. Test Plots:

**Note:** the power of the Module transmitting frequency should be ignored.



(Channel = 1, 30MHz to 25GHz)

# MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com





#### (Band Edge @ Channel = 1)



#### (Channel = 6, 30MHz to 25GHz)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com









#### (Band Edge @ Channel = 11)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com



#### 2.4.3.4 802.11n -40MHz Test mode

#### A. Test Verdict:

| Channel | Frequency<br>(MHz) | Measured Max.  | Limit (dBm) |              |         |
|---------|--------------------|----------------|-------------|--------------|---------|
|         |                    | Out of Band    | Carrier     | Calculated   | Verdict |
|         |                    | Emission (dBm) | Level       | -20dBc Limit |         |
| 3       | 2422               | -50.40         | -3.40       | -23.4        | PASS    |
| 6       | 2437               | -52.42         | -4.46       | -24.46       | PASS    |
| 9       | 2452               | -50.69         | -4.78       | -24.78       | PASS    |

#### B. Test Plots:

**Note:** the power of the Module transmitting frequency should be ignored.



(Channel = 3, 30MHz to 25GHz)

# MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com











**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com

# MORLAB

REPORT No.: SZ17050133W15A







#### (Band Edge @ Channel = 9)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com



# 2.5 Power spectral density (PSD)

#### 2.5.1 Requirement

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

#### 2.5.2 Test Description

#### A. Test procedure

The measured power spectral density was calculated by the reading of the spectrum analyzer and calibration. Following is the test procedure for PSD test:

- a) Set analyzer center frequency to channel center frequency.
- b) Set the span to 30MHz
- c) Set the RBW to 3 kHz
- d) Set the VBW to 10KHz
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

#### B. Test Set:



The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

KDB 558074 Section 10.2 was used in order to prove compliance.

#### C. Equipments List:

Please reference ANNEX A(1.5).

# MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



#### 2.5.3 Test Result

#### 2.5.3.1 802.11b Test mode

#### A. Test Verdict:

| Spectral power density (dBm/3kHz) |           |              |            |         |  |
|-----------------------------------|-----------|--------------|------------|---------|--|
| Channel                           | Frequency | Measured PSD | Limit      | Vardiat |  |
|                                   | (MHz)     | (dBm/3kHz)   | (dBm/3kHz) | verdict |  |
| 1                                 | 2412      | -12.13       | 8          | PASS    |  |
| 6                                 | 2437      | -12.64       | 8          | PASS    |  |
| 11                                | 2462      | -13.34       | 8          | PASS    |  |
| Measurement uncertainty: ±1.3dB   |           |              |            |         |  |

#### B. Test Plots:



(Channel = 1 @ 802.11b)

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com





#### (Channel = 6 @ 802.11b)



(Channel = 11 @ 802.11b)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Http://www.morlab.com

Tel: 86-755-36698555



#### 2.5.3.2 802.11g Test mode

#### A. Test Verdict:

| Spectral power density (dBm/3kHz) |           |              |            |         |  |  |
|-----------------------------------|-----------|--------------|------------|---------|--|--|
| Channel                           | Frequency | Measured PSD | Limit      | Verdict |  |  |
|                                   | (MHz)     | (dBm/3kHz)   | (dBm/3kHz) |         |  |  |
| 1                                 | 2412      | -15.16       | 8          | PASS    |  |  |
| 6                                 | 2437      | -15.49       | 8          | PASS    |  |  |
| 11                                | 2462      | -15.45       | 8          | PASS    |  |  |
| Measurement uncertainty: ±1.3dB   |           |              |            |         |  |  |

#### B. Test Plots:



(Channel = 1 @ 802.11g)

 FL1-3, Building A, FeiYang Science Park, No.8 Longtonaring Roau,
 Http://www.morlab.com

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com





#### (Channel = 6 @ 802.11g)



(Channel = 11 @ 802.11g)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Http://www.morlab.com

Tel: 86-755-36698555


#### 2.5.3.3 802.11n-20MHz Test mode

#### A. Test Verdict:

|                                 | Spectral power density (dBm/3kHz) |              |            |         |  |  |  |  |  |  |  |  |
|---------------------------------|-----------------------------------|--------------|------------|---------|--|--|--|--|--|--|--|--|
| Channel                         | Frequency                         | Measured PSD | Limit      | Vardiat |  |  |  |  |  |  |  |  |
| Channel                         | (MHz)                             | (dBm/3kHz)   | (dBm/3kHz) | verdict |  |  |  |  |  |  |  |  |
| 1                               | 2412                              | -15.06       | 8          | PASS    |  |  |  |  |  |  |  |  |
| 6                               | 2437                              | -16.29       | 8          | PASS    |  |  |  |  |  |  |  |  |
| 11                              | 2462                              | -16.18       | 8          | PASS    |  |  |  |  |  |  |  |  |
| Measurement uncertainty: ±1.3dB |                                   |              |            |         |  |  |  |  |  |  |  |  |

#### B. Test Plots:



(Channel = 1 @ 802.11n-20MHz)

# MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Http://www.morlab.com

Tel: 86-755-36698555





(Channel = 6 @ 802.11n-20MHz)



(Channel = 11 @ 802.11n-20MHz)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com



#### 2.5.3.4 802.11n-40MHz Test mode

#### A. Test Verdict:

|                                 | Spectral power density (dBm/3kHz) |              |            |         |  |  |  |  |  |  |  |  |
|---------------------------------|-----------------------------------|--------------|------------|---------|--|--|--|--|--|--|--|--|
| Channel                         | Frequency                         | Measured PSD | Limit      | Vordiat |  |  |  |  |  |  |  |  |
| Channel                         | (MHz)                             | (dBm/3kHz)   | (dBm/3kHz) | verdici |  |  |  |  |  |  |  |  |
| 3                               | 2422                              | -19.60       | 8          | PASS    |  |  |  |  |  |  |  |  |
| 6                               | 2437                              | -19.44       | 8          | PASS    |  |  |  |  |  |  |  |  |
| 9 2452 -19.28 8 PA              |                                   |              |            |         |  |  |  |  |  |  |  |  |
| Measurement uncertainty: ±1.3dB |                                   |              |            |         |  |  |  |  |  |  |  |  |

#### B. Test Plots:



(Channel = 3 @ 802.11n-40MHz)

 MORLAB GROUP
 FL1-3, Building A, FeiYang Science Park, No.8 LongCharly Road,
 Interference of the second sec





(Channel = 6 @ 802.11n-40MHz)



### (Channel = 9 @ 802.11n-40MHz)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com



# 2.6 Restricted Frequency Bands

## 2.6.1 Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

## 2.6.2 Test Description

### A. Test Setup



The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

KDB 558074 Section 12.1 was used in order to prove compliance.

### **B.** Equipments List:

Please reference ANNEX A(1.5).

# MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



## 2.6.3 Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands.

The measurement results are obtained as below: E [dBµV/m] =U<sub>R</sub> + A<sub>T</sub> + A<sub>Factor</sub> [dB]; A<sub>T</sub> =L<sub>Cable loss</sub> [dB]-G<sub>preamp</sub> [dB] A<sub>T</sub>: Total correction Factor except Antenna U<sub>R</sub>: Receiver Reading Gpreamp: Preamplifier Gain A<sub>Factor</sub>: Antenna Factor at 3m

Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

#### 2.6.3.1 802.11b Test mode (Antenna 1)

The lowest and highest channels are tested to verify the band edge emissions.

#### A. Test Verdict:

| Channel | Frequency | Detector | Receiver<br>Reading      | A <sub>T</sub> | A <sub>Factor</sub> | Max.<br>Emission | Limit    | Verdict |
|---------|-----------|----------|--------------------------|----------------|---------------------|------------------|----------|---------|
|         | (MHz)     | PK/ AV   | U <sub>R</sub><br>(dBuV) | (dB)           | (dB@3m)             | E<br>(dBµV/m)    | (dBµV/m) |         |
| 1       | 2347.04   | PK       | 50.57                    | -33.63         | 32.56               | 49.50            | 74       | Pass    |
| 1       | 2357.01   | AV       | 37.24                    | -33.63         | 32.56               | 36.17            | 54       | Pass    |
| 11      | 2484.04   | PK       | 46.89                    | -33.18         | 32.5                | 46.21            | 74       | Pass    |
| 11      | 2483.70   | AV       | 38.47                    | -33.18         | 32.5                | 37.79            | 54       | Pass    |

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com



#### B. Test Plots:

Keysight Spectrum Analyzer - Swept SA 02:04:10 PM Aug 10, 2017 TRACE 12345 ALIGN OFF Avg Type: Voltage Avg|Hold:>100/100 Marker 1 2.347040000000 GHz PNO: Fast Marker Trig: Free Run Atten: 24 dB Select Marker Mkr1 2.347 04 GHz 50.571 dBµV Ref 120.00 dBµV 0 dB/div Normal Delta 1 12 **Fixed** Start 2.30000 GHz Res BW (CISPR) 1 MHz Stop 2.41200 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz Off 50.571 dBµV 48.943 dBµV 2.347 04 GHz 2.390 00 GHz <u>N 1 f</u> N 1 f Properties ► More 1 of 2

(Plot A1: Channel = 1 PEAK @ 802.11b)



(Plot A2: Channel = 1 AVG @ 802.11b)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com





(Plot B1: Channel = 11 PEAK @ 802.11b)



(Plot B2: Channel = 11 AVG @ 802.11b)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



#### 2.6.3.2 802.11g Test mode (Antenna 1)

The lowest and highest channels are tested to verify the band edge emissions.

#### C. Test Verdict:

| Channal | Frequency | Detector | Receiver<br>Reading      | A <sub>T</sub> | A <sub>Factor</sub> | Max.<br>Emission | Limit    | Vordiot |
|---------|-----------|----------|--------------------------|----------------|---------------------|------------------|----------|---------|
| Channel | (MHz)     | PK/ AV   | U <sub>R</sub><br>(dBuV) | (dB)           | (dB@3m)             | E<br>(dBµV/m)    | (dBµV/m) | verdict |
| 1       | 2388.48   | PK       | 56.87                    | -33.63         | 32.56               | 55.80            | 74       | Pass    |
| 1       | 2386.13   | AV       | 39.30                    | -33.63         | 32.56               | 38.23            | 54       | Pass    |
| 11      | 2483.81   | PK       | 63.79                    | -33.18         | 32.5                | 63.11            | 74       | Pass    |
| 11      | 2484.15   | AV       | 41.07                    | -33.18         | 32.5                | 40.39            | 54       | Pass    |

#### D. Test Plots:



(Plot C1: Channel = 1 PEAK @ 802.11g)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com



| E Keysight S<br>RL<br>Iarker ' | pectrum Analyzer - Sw<br>RF PRESEL 50 G<br>1 2.3861280 | P DC OC | Hz<br>NO:Fast G | SEN<br>Trig: Free<br>Atten: 24 | SE:INT<br>Run<br>dB | Avg<br>Avg I | ALIGN OFF<br>Type: Voltage<br>Iold:>100/100 | 02:52:45 PI<br>TRAC<br>TYF<br>DE | MAug 10, 2017<br>DE 1 2 3 4 5 6<br>DE MWWWWW<br>ET P NNNNN | Marker            |
|--------------------------------|--------------------------------------------------------|---------------------------------------------|-----------------|--------------------------------|---------------------|--------------|---------------------------------------------|----------------------------------|------------------------------------------------------------|-------------------|
| 0 dB/div                       | Ref 120.00                                             | ) dBµV                                      | Gameen          |                                |                     |              | Mkr                                         | 1 2.386<br>39.30                 | 13 GHz<br>2 dBµV                                           | Select Marke      |
| 110                            |                                                        |                                             |                 |                                |                     |              |                                             |                                  |                                                            | Norm              |
| 30.0<br>30.0                   |                                                        |                                             |                 |                                |                     |              |                                             |                                  |                                                            | Del               |
| 50.0<br>50.0                   |                                                        |                                             |                 |                                |                     |              | 1                                           | <u>2</u>                         |                                                            |                   |
| 40.0<br>30.0                   |                                                        |                                             |                 |                                |                     | -            |                                             | 2                                |                                                            | Fixed             |
| tart 2.3<br>tes BW             | 00000 GHz<br>(CISPR) 1 MI                              | Hz                                          | #VB\            | N 10 Hz                        | ^                   |              | Sweep                                       | Stop 2.41<br>12.84 s (           | 1200 GHz<br>1001 pts)                                      | c                 |
| IKR MODE 1                     | TRC SCL<br>1 f<br>1 f                                  | ×<br>2.386 1<br>2.390 0                     | 3 GHz<br>0 GHz  | ץ<br>39.302 dBj<br>41.854 dBj  | FUN<br>JV           | CTION        | FUNCTION WIDTH                              | FUNCTIO                          | DN VALUE                                                   |                   |
| 4<br>5<br>6                    |                                                        |                                             |                 |                                |                     |              |                                             |                                  | =                                                          | Properties        |
| 7<br>8<br>9                    |                                                        |                                             |                 |                                |                     |              |                                             |                                  |                                                            | <b>M</b> o<br>1 o |
| 11                             |                                                        |                                             |                 |                                |                     |              |                                             |                                  |                                                            |                   |

(Plot C2: Channel = 1 AVG @ 802.11g)



(Plot D1: Channel = 11 PEAK @ 802.11g)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



|              | 10.0017                  | 04-02-16 0                 | ALICN OFF    | 1           | T.TNT   | 0.511                    |                    | Swept SA | ectrum Analyzer | Keysight Sp        |
|--------------|--------------------------|----------------------------|--------------|-------------|---------|--------------------------|--------------------|----------|-----------------|--------------------|
| Marker       | E 1 2 3 4 5 6<br>E MWWWW | 04:22:16 PI<br>TRAC<br>TYP | e: Voltage   | Avg<br>Avgl | Run     | Trig: Free               | GHz                | 000000   | 2.48415         | arker 2            |
| Select Marke |                          | DE                         |              |             | В       | #Atten: 6 d              | IFGain:Low         |          |                 |                    |
|              | 54 GHz<br>8 dBµV         | 2.484 1<br>41.06           | Mkr2         |             |         |                          |                    | 00 dBµV  | Ref 100         | dB/div             |
|              |                          |                            |              |             |         |                          |                    |          |                 | a 🗌                |
| Norm         |                          |                            |              |             |         |                          |                    |          |                 | 10                 |
|              |                          |                            |              |             |         |                          |                    |          |                 |                    |
|              |                          |                            |              |             |         |                          |                    |          |                 | ).0                |
| De           |                          |                            |              | 2<br>       | <u></u> |                          |                    |          |                 | ).0                |
|              |                          |                            |              |             |         |                          |                    |          |                 |                    |
|              |                          |                            |              |             |         |                          |                    |          |                 |                    |
| Fixe         |                          |                            |              |             |         |                          |                    |          |                 | ).0                |
|              |                          |                            |              |             |         |                          |                    |          |                 |                    |
|              |                          | <b>O</b> tom 0.5/          |              |             |         |                          |                    |          |                 |                    |
| c            | 1000 GHZ<br>1001 pts)    | 4.357 s (                  | Sweep        |             |         | 10 Hz                    | #VBV               | MHz      | CISPR) 1        | art 2.4<br>es BW ( |
|              | N VALUE                  | FUNCTION                   | NCTION WIDTH | TION        | FUNC    | Y                        |                    | х        | RC SCL          | R MODE T           |
|              |                          |                            |              |             | V<br>V  | 42.127 dBi<br>41.068 dBi | 500 GHz<br>154 GHz | 2.483    | f<br>f          | N 1                |
| Propertie    |                          |                            |              |             |         |                          |                    |          |                 |                    |
|              | =                        |                            |              |             |         |                          |                    |          |                 |                    |
|              |                          |                            |              |             |         |                          |                    |          |                 |                    |
| Mo           |                          |                            |              |             |         |                          |                    |          |                 |                    |
| 1 0          | -                        |                            |              |             |         |                          |                    |          |                 |                    |
|              | E F                      |                            |              |             |         | m                        |                    |          |                 |                    |

(Plot D2: Channel = 11 AVG @ 802.11g)

#### 802.11n-20MHz Test mode (Antenna 1) 2.6.3.3

The lowest and highest channels are tested to verify the band edge emissions.

### E. Test Verdict:

| Channel | Frequency<br>(MHz) | Detector | Receiver<br>Reading<br>U <sub>R</sub> | A <sub>T</sub><br>(dB) | A <sub>Factor</sub><br>(dB@3m) | Max.<br>Emission<br>E | Limit<br>(dBuV/m) | Verdict |
|---------|--------------------|----------|---------------------------------------|------------------------|--------------------------------|-----------------------|-------------------|---------|
|         | ~ /                | PK/ AV   | (dBuV)                                | (- )                   | (* * * * *                     | (dBµV/m)              | (* F * 7          |         |
| 1       | 2388.59            | PK       | 60.06                                 | -33.63                 | 32.56                          | 58.99                 | 74                | Pass    |
| 1       | 2387.70            | AV       | 41.71                                 | -33.63                 | 32.56                          | 40.64                 | 54                | Pass    |
| 11      | 2484.57            | PK       | 61.35                                 | -33.18                 | 32.5                           | 60.67                 | 74                | Pass    |
| 11      | 2484.31            | AV       | 42.68                                 | -33.18                 | 32.5                           | 42.00                 | 54                | Pass    |

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com



### F. Test Plots:

Keysight Spectrum Analyzer - Swept SA 
 RL
 RF PRESEL
 50 Ω
 DC

 RL
 RF PRESEL
 50 Ω
 DC

 Iarker 1 2.388592000000 GHz
 PNO: Fast
 PNO: Fast
 PNO: Fast
 02:55:27 PM Aug 10, 201 TRACE **1 2 3 4 5** ALIGN OFF Avg Type: Voltage Avg|Hold:>100/100 Marker 2345 Trig: Free Run Atten: 24 dB Select Marker Mkr1 2.388 59 GHz 60.059 dBµV Ref 120.00 dBµV 0 dB Normal 12 Delta Fixed Start 2.30000 GHz Res BW (CISPR) 1 MHz Stop 2.41200 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz Off 2.388 59 GHz 2.390 00 GHz 60.059 dBuV <u>N 1 f</u> N 1 f Properties More 1 of 2

#### (Plot E1: Channel = 1 PEAK @ 802.11n-20)



(Plot E2: Channel = 1 AVG @ 802.11n-20)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com



|               | :24:49 PM Aug 10, 2017           | ALIGN OFF                      | NT      | SENSE:                     |                                        | wept SA<br>Ω DC | trum Analyzer -       | Keysight Spect       |
|---------------|----------------------------------|--------------------------------|---------|----------------------------|----------------------------------------|-----------------|-----------------------|----------------------|
| Marker        | TRACE 1 2 3 4 5 6<br>TYPE M      | Type: Voltage<br>Hold:>100/100 | n       | Trig: Free Ru              | GHZ                                    | 000000          | 2.484572              | rker 22              |
| Select Marker | DET PNNNNN                       |                                |         | #Atten: 6 dB               | IFGain:Low                             |                 |                       |                      |
| 2             | l84 572 GHz<br>31.351 dBμV       | Mkr2                           |         |                            |                                        | 0 dBµV          | Ref 100.              | dB/div               |
|               |                                  |                                |         |                            |                                        |                 |                       |                      |
| Norma         |                                  |                                |         |                            |                                        |                 |                       |                      |
|               |                                  |                                | 2       |                            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                 |                       | 0                    |
|               |                                  |                                | ~~~     |                            |                                        |                 |                       |                      |
| Delta         | and the second and the second    |                                |         |                            |                                        |                 |                       | .0                   |
|               |                                  |                                |         |                            |                                        |                 |                       | 0                    |
|               |                                  |                                |         |                            |                                        |                 |                       |                      |
| Fixed         |                                  |                                |         |                            |                                        |                 |                       |                      |
|               |                                  |                                |         |                            |                                        |                 |                       |                      |
| Of            | p 2.50000 GHz<br>) ms (1001 pts) | Sweep 1.                       |         | 3.0 MHz                    | #VB\                                   | IHz             | 200 GHz<br>(ISPR) 1 I | art 2.462<br>s BW (C |
|               | FUNCTION VALUE                   | FUNCTION WIDTH                 | FUNCTIO | Y                          |                                        | x               | SCL                   |                      |
|               |                                  |                                |         | 63.101 dBµV<br>61.351 dBuV | 500 GHz                                | 2.483 5         | f                     | N 1                  |
| Properties    |                                  |                                |         |                            |                                        |                 |                       |                      |
|               | E                                |                                |         |                            |                                        |                 |                       |                      |
|               |                                  |                                |         |                            |                                        |                 |                       |                      |
| More          |                                  |                                |         |                            |                                        |                 |                       |                      |
| 1012          |                                  |                                |         |                            |                                        |                 |                       |                      |
|               | •                                |                                |         | III                        |                                        |                 |                       |                      |

(Plot F1: Channel = 11 PEAK @ 802.11n-20)



(Plot F2: Channel = 11 AVG @ 802.11n-20)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com



#### 2.6.3.4 802.11n-40MHz Test mode (Antenna 1)

The lowest and highest channels are tested to verify the band edge emissions.

#### G. Test Verdict:

| Channel | Frequency | Detector | Receiver<br>Reading      | A <sub>T</sub> | A <sub>Factor</sub> | Max.<br>Emission | Limit    | Verdict |
|---------|-----------|----------|--------------------------|----------------|---------------------|------------------|----------|---------|
|         | (IVIH2)   | PK/ AV   | O <sub>R</sub><br>(dBuV) | (UB)           | (ub@sill)           | ⊏<br>(dBµV/m)    | (ασμν/m) |         |
| 3       | 2386.94   | PK       | 51.11                    | -33.63         | 32.56               | 50.04            | 74       | Pass    |
| 3       | 2386.94   | AV       | 38.13                    | -33.63         | 32.56               | 37.06            | 54       | Pass    |
| 9       | 2484.76   | PK       | 50.58                    | -33.18         | 32.5                | 49.90            | 74       | Pass    |
| 9       | 2484.76   | AV       | 34.86                    | -33.18         | 32.5                | 34.18            | 54       | Pass    |

### H. Test Plots:



(Plot E1: Channel = 3 PEAK @ 802.11n-40)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com



| <sub>RL</sub><br>deo BV | RF PRESEL 50 Ω<br>V 10 Hz | DC    | RNO: Fast  | S<br>Trig: Fr | ENSE:INT   | Avg     | ALIGN OFF<br>Type: Voltage<br>Iold:>100/100 | 03:02:10 PM<br>TRACE<br>TYP | Aug 10, 2017<br><b>1 2 3 4 5</b> 6<br>M |      | BW                 |
|-------------------------|---------------------------|-------|------------|---------------|------------|---------|---------------------------------------------|-----------------------------|-----------------------------------------|------|--------------------|
|                         |                           |       | IFGain:Low | Atten: 2      | 24 dB      |         | Mkr                                         | DET                         | 94 GHz                                  | Auto | Res BI             |
| dB/div                  | Ref 120.00                | dBµV  |            |               |            |         |                                             | 38.127                      | ∕dBµV                                   | Marc |                    |
| 10                      |                           |       |            |               |            |         |                                             |                             |                                         |      | Video B            |
| 00                      |                           |       |            |               |            |         |                                             |                             |                                         | Auto | 10 i<br><u>M</u> i |
| 0.0                     |                           |       |            |               |            |         |                                             |                             |                                         |      |                    |
| 0.0                     |                           |       |            |               |            |         |                                             |                             |                                         | VBW  | 1:3dB RB           |
| 3.0                     |                           |       |            |               |            |         |                                             |                             |                                         | Auto | M                  |
|                         |                           |       |            |               |            |         |                                             |                             |                                         |      |                    |
|                         |                           |       |            |               |            |         | $\langle 1 \rangle^2$                       |                             |                                         | Spar |                    |
|                         |                           |       |            |               | کا         |         | كمتناك                                      |                             |                                         | Auto |                    |
|                         |                           |       |            |               |            |         |                                             |                             | 200 OU                                  |      |                    |
| iart 2.50<br>es BW (    | 000 GHZ<br>CISPR) 1 MH    | Iz    | #VB        | W 10 Hz       |            |         | Sweep                                       | Stop 2.42<br>13.76 s (1     | 000 GHZ<br>001 pts)                     | RB   |                    |
| KR MODE TH              | RC  SCL                   | ×     |            | Y             | F          | UNCTION | FUNCTION WIDTH                              | FUNCTIO                     | N VALUE                                 |      |                    |
| 1 N 1<br>2 N 1          |                           | 2.386 | 94 GHz     | 38.127 d      | BµV<br>BuV |         |                                             |                             |                                         |      |                    |
| 3                       | ستقل                      |       |            |               |            |         |                                             |                             |                                         |      |                    |
| 5                       | ككت                       |       |            |               |            |         |                                             |                             | =                                       |      |                    |
| 7                       | ككك                       |       |            |               |            |         |                                             |                             |                                         |      |                    |
| 9                       | والتات                    |       |            |               |            |         |                                             |                             |                                         |      |                    |
|                         |                           |       |            |               |            |         |                                             |                             |                                         |      |                    |

(Plot E2: Channel = 3 AVG @ 802.11n-40)



(Plot F1: Channel = 9 PEAK @ 802.11n-40)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



| eysight Spectrum Ar          | alyzer - Swept SA |                     | CENCE                      | TNT      |                    | ALICN OFF    | 04-20-15 0             | Aug 10, 2017          | _           |           |
|------------------------------|-------------------|---------------------|----------------------------|----------|--------------------|--------------|------------------------|-----------------------|-------------|-----------|
| eo BW 10 I                   |                   | DNO: Feet           | Trig: Free R               | Aun Av   | vg Type<br>/alHold | :>100/100    | TRAC                   | E 1 2 3 4 5 6<br>E M  |             | BW        |
|                              |                   | IFGain:Low          | #Atten: 6 dB               |          |                    |              | DE                     |                       |             | Res E     |
| dB/div <b>Ref</b>            | 100.00 dBµV       |                     |                            |          |                    | Mkr          | 2 2.484<br>34.85       | 76 GHz<br>9 dBµV      | <u>Auto</u> | 1 IV<br>N |
| .0                           |                   |                     |                            |          |                    |              |                        |                       |             | Video E   |
| .0                           |                   |                     |                            |          |                    |              |                        |                       | Auto        | 10        |
| o <b></b>                    |                   |                     |                            |          |                    |              |                        |                       | Auto        | <u>I</u>  |
| o                            | -+                |                     |                            |          |                    |              |                        |                       | VBV         | :3dB R    |
| o                            |                   |                     |                            |          |                    |              |                        |                       | Auto        | 1         |
| .0                           |                   |                     |                            |          |                    | 2            |                        |                       | Auto        | n         |
| .0                           |                   |                     |                            |          |                    |              |                        |                       | Spar        |           |
| 0                            |                   |                     |                            |          |                    |              |                        |                       | Auto        |           |
| .0                           |                   |                     |                            |          |                    |              |                        |                       | Multo       |           |
| art 2.45000 G<br>s BW (CISPR | GHz<br>R) 1 MHz   | #VB                 | W 10 Hz                    |          | ^                  | Sweep        | Stop 2.50<br>5.733 s ( | 0000 GHz<br>1001 pts) | RBI         |           |
| R MODE TRC SCL               | Х                 |                     | Y                          | FUNCTION | FUN                | ICTION WIDTH | FUNCTIO                | DN VALUE              |             |           |
| N 1 f<br>N 1 f               | 2.483             | 500 GHz<br>4 76 GHz | 35.131 dBµV<br>34.859 dBµV |          |                    |              |                        |                       |             |           |
|                              |                   |                     |                            |          |                    |              |                        |                       |             |           |
|                              |                   |                     |                            |          |                    |              |                        | =                     |             |           |
|                              |                   |                     |                            |          |                    |              |                        |                       |             |           |
|                              |                   |                     |                            |          |                    |              |                        |                       |             |           |
|                              |                   |                     |                            |          |                    |              |                        | -                     |             |           |
|                              |                   |                     | III                        |          | _                  |              |                        | +                     |             |           |

(Plot F2: Channel = 9 AVG @ 802.11n-40)

#### 802.11b Test mode (Antenna 2) 2.6.3.5

The lowest and highest channels are tested to verify the band edge emissions.

### A. Test Verdict:

| Channel | Frequency | Detector | Receiver<br>Reading      | A <sub>T</sub> | A <sub>Factor</sub> | Max.<br>Emission | Limit    | Verdict |
|---------|-----------|----------|--------------------------|----------------|---------------------|------------------|----------|---------|
| Chainio | (MHz)     | PK/ AV   | U <sub>R</sub><br>(dBuV) | (dB)           | (dB@3m)             | E<br>(dBµV/m)    | (dBµV/m) | Verdiet |
| 1       | 2383.78   | PK       | 43.94                    | -33.63         | 32.56               | 42.87            | 74       | Pass    |
| 1       | 2383.78   | AV       | 33.40                    | -33.63         | 32.56               | 32.33            | 54       | Pass    |
| 11      | 2484.32   | PK       | 45.02                    | -33.18         | 32.5                | 44.34            | 74       | Pass    |
| 11      | 2485.35   | AV       | 33.71                    | -33.18         | 32.5                | 33.03            | 54       | Pass    |

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com



#### B. Test Plots:

Keysight Spectrum Analyzer - Swept SA Marker 1 2.383776000000 GHz PNO: Fast ↓ IFGain:Low 11:27:38 AM Sep 19, 2017 TRACE 1 2 3 4 5 6 TYPE M MWWWW DET P P N N N N Avg Type: Voltage Avg|Hold:>100/100 Trace/Detector Trig: Free Run Atten: 6 dB Select Trace Mkr1 2.383 78 GHz 43.940 dBµV Ref 100.00 dBµV 0 dB/div **Clear Write** <mark>≜</mark>1-Trace Average Max Hold Start 2.30000 GHz Res BW (CISPR) 1 MHz Stop 2.41200 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz **Min Hold** 2.383 78 GHz 2.390 00 GHz 43.940 dBµV 44.711 dBµV <u>N 1 f</u> N 1 f View Blank Trace On More 1 of 3

(Plot A1: Channel = 1 PEAK @ 802.11b)



(Plot A2: Channel = 1 AVG @ 802.11b)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



| ☐ <b>₽</b> ■<br>Marker | 4 Sep 19, 2017<br>E 1 2 3 4 5 6<br>E MM | 11:50:31 A            | ALIGN AUTO<br>be: Voltage<br>d:>100/100 | Avg Typ<br>Avg Hold | INT<br>IN | SENSE                    | GHz<br>PNO: Fast   | llyzer - Swept SA<br>L 50 Ω DC<br><b>322000000</b> | RF PRESE            | RL<br>RL<br>arker                       |
|------------------------|-----------------------------------------|-----------------------|-----------------------------------------|---------------------|-----------|--------------------------|--------------------|----------------------------------------------------|---------------------|-----------------------------------------|
| Select Marker          | 22 GHz<br>2 dBµV                        | 2.484 3<br>45.02      | Mkr2                                    |                     |           | Atten: 6 dB              | IFGain:Low         | 100.00 dBµV                                        | v Ref               | ) dB/div                                |
| Norma                  |                                         |                       |                                         |                     |           |                          |                    |                                                    |                     |                                         |
| Delta                  | ran yun dağılarda ya                    | to Alas March and al  | ab Jetround Plonage                     | Allanda-basaraya    |           | and have                 |                    |                                                    |                     | 6.0<br>60.0<br>60.0                     |
| Fixed                  |                                         |                       |                                         |                     |           |                          |                    |                                                    |                     | 10.0<br>20.0<br>10.0                    |
| Of                     | 1000 GHz<br>1001 pts)                   | Stop 2.50<br>000 ms ( | Sweep 1.                                | ION EL              | EUNC      | .0 MHz                   | #VBW               | Hz<br>) 1 MHz                                      | 46200 G<br>V (CISPR | tart 2.4<br>es BW                       |
| Properties)            |                                         | PONCTIN               |                                         |                     |           | 4.939 dBµV<br>5.022 dBµV | 500 GHz<br>322 GHz | 2.483<br>2.484                                     |                     | 1 N<br>2 N<br>3 4<br>5 6                |
| Mor<br>1 of:           |                                         |                       |                                         |                     |           |                          |                    |                                                    |                     | 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 |

(Plot B1: Channel = 11 PEAK @ 802.11b)



(Plot B2: Channel = 11 AVG @ 802.11b)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



#### 2.6.3.6 802.11g Test mode (Antenna 2)

The lowest and highest channels are tested to verify the band edge emissions.

#### I. Test Verdict:

| Channal | Frequency | Detector | Receiver<br>Reading      | A <sub>T</sub> | A <sub>Factor</sub> | Max.<br>Emission | Limit    | Vordiot |
|---------|-----------|----------|--------------------------|----------------|---------------------|------------------|----------|---------|
| Channel | (MHz)     | PK/ AV   | U <sub>R</sub><br>(dBuV) | (dB)           | (dB@3m)             | E<br>(dBµV/m)    | (dBµV/m) | verdict |
| 1       | 2388.93   | PK       | 54.15                    | -33.63         | 32.56               | 53.08            | 74       | Pass    |
| 1       | 2387.36   | AV       | 38.43                    | -33.63         | 32.56               | 37.36            | 54       | Pass    |
| 11      | 2484.09   | PK       | 54.42                    | -33.18         | 32.5                | 53.74            | 74       | Pass    |
| 11      | 2484.21   | AV       | 38.39                    | -33.18         | 32.5                | 37.71            | 54       | Pass    |

#### J. Test Plots:



(Plot C1: Channel = 1 PEAK @ 802.11g)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com



| Keysight !                            | Spectrum Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | halyzer - Swe | pt SA |                           | 9                      | NSEINT     |          |                | 11:37:40 / | M Sen 19, 2017 |               |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|---------------------------|------------------------|------------|----------|----------------|------------|----------------|---------------|
| arker                                 | 1 2.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 736000        | 00000 | GHz                       |                        | - Scaler   | Avg      | Type: Voltage  | TRA        | CE 1 2 3 4 5 6 | Marker        |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       | PNO: Fast (<br>IFGain:Low | Atten: 6               | dB         | Avg      | Hola:>100/100  | D          | ET P P N N N N | Select Mark   |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |                           |                        |            |          | Mk             | 1 2 387    | 36 GHZ         | Selectiviarie |
| LdB/div                               | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.00        | dBuV  |                           |                        |            |          |                | 38.43      | 3 dBµV         |               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100.00        | цвро  |                           |                        |            |          |                |            |                |               |
| 0.0                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |                           |                        |            |          |                |            |                | Norr          |
| 0.0                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |                           |                        |            |          |                |            |                |               |
| 0.0                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |                           |                        |            |          |                |            |                |               |
| 0.0                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |                           |                        |            |          |                |            |                |               |
| 0.0                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |                           |                        |            |          |                | 1.2        |                | De            |
| 0.0                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |                           |                        |            |          |                | 2          |                |               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |                           |                        |            |          |                |            |                |               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |                           |                        |            |          |                |            |                | Fixe          |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       | A Des                     | A Const                |            |          |                | í Car      |                |               |
| 0.0                                   | روع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |       | کی ک                      |                        |            |          |                |            |                |               |
| tart 2.3                              | 30000 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SHz           |       |                           |                        |            |          |                | Stop 2.4   | 1200 GHz       |               |
| es BW                                 | (CISPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R) 1 MH       | z     | #VB                       | W 10 Hz                |            |          | Sweep          | 12.84 s (  | (1001 pts)     |               |
| KR MODE                               | TRC SCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | Х     |                           | Y                      |            | FUNCTION | FUNCTION WIDTH | FUNCT      | ON VALUE       |               |
| 1 N<br>2 N                            | 1 f<br>1 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | 2.387 | 36 GHz                    | 38.433 dl<br>40.018 dl | 3µV<br>3uV |          |                |            |                |               |
| 3                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       | <u> </u>                  |                        |            |          |                |            |                | Propertie     |
| 5                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |                           |                        |            |          |                |            | =              |               |
| 6                                     | کک                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |       | <b></b> ;                 |                        |            |          |                |            |                |               |
| 8                                     | کک!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |       |                           |                        |            |          |                |            |                | M             |
| 9                                     | که:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |       |                           |                        | 27         |          |                |            |                | 1 (           |
| · · · · · · · · · · · · · · · · · · · | And the second s |               |       |                           |                        |            |          |                |            |                |               |

(Plot C2: Channel = 1 AVG @ 802.11g)



(Plot D1: Channel = 11 PEAK @ 802.11g)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



| er - Swept SA                       |                                            |                                                      |                                                             |                   |
|-------------------------------------|--------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|-------------------|
| 50 Ω DC<br>08000000 GHz<br>PNO: Fas | ast Trig: Free Run                         | ALIGN AUTO<br>Avg Type: Voltage<br>Avg Hold:>100/100 | 11:54:45 AM Sep 19, 2017<br>TRACE 1 2 3 4 5 6<br>TYPE MWWWW | Marker            |
| IFGain:Lo<br>0.00 dBµV              | Low Atten: 6 dB                            | Mkr2                                                 | 2.484 208 GHz<br>38.390 dBµV                                | Select Marke      |
| ~                                   |                                            |                                                      |                                                             | Norm              |
|                                     |                                            |                                                      |                                                             | De                |
|                                     |                                            |                                                      |                                                             | Fixe              |
| :<br>I MHz #\                       | #VBW 10 Hz                                 | Sweep                                                | Stop 2.50000 GHz<br>4.357 s (1001 pts)                      | c                 |
| ×<br>2.483 500 GHz<br>2.484 208 GHz | Y FUNC<br>Iz 38.731 dBµV<br>Iz 38.390 dBµV | FION FUNCTION WIDTH                                  | FUNCTION VALUE                                              | Propertie         |
|                                     |                                            |                                                      |                                                             | <b>M</b> c<br>1 o |
|                                     | m                                          |                                                      | •                                                           |                   |

(Plot D2: Channel = 11 AVG @ 802.11g)

#### 802.11n-20MHz Test mode (Antenna 2) 2.6.3.7

The lowest and highest channels are tested to verify the band edge emissions.

#### K. Test Verdict:

| Channel | Frequency<br>(MHz) | Detector | Receiver<br>Reading<br>U <sub>R</sub> | A <sub>T</sub><br>(dB) | A <sub>Factor</sub><br>(dB@3m) | Max.<br>Emission<br>E | Limit<br>(dBuV/m) | Verdict |
|---------|--------------------|----------|---------------------------------------|------------------------|--------------------------------|-----------------------|-------------------|---------|
|         |                    | PK/ AV   | (dBuV)                                |                        | (* * * * *                     | (dBµV/m)              | (* F * 7          |         |
| 1       | 2386.91            | PK       | 53.69                                 | -33.63                 | 32.56                          | 52.62                 | 74                | Pass    |
| 1       | 2387.58            | AV       | 36.67                                 | -33.63                 | 32.56                          | 35.60                 | 54                | Pass    |
| 11      | 2484.21            | PK       | 51.97                                 | -33.18                 | 32.5                           | 51.29                 | 74                | Pass    |
| 11      | 2484.21            | AV       | 37.92                                 | -33.18                 | 32.5                           | 37.24                 | 54                | Pass    |

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com



### L. Test Plots:

Keysight Spectrum Analyzer - Swept SA Marker 1 2.386912000000 GHz PNO: Fast IFGain:Low 11:40:54 AM Sep 19, 2017 TRACE 1 2 3 4 5 ( TYPE M MWWWW DET P P N N N Avg Type: Voltage Avg|Hold:>100/100 Marker Trig: Free Run Atten: 6 dB Select Marker Mkr1 2.386 91 GHz 53.685 dBµV Ref 100.00 dBµV 0 dB/div Normal Delta **Fixed** Start 2.30000 GHz Res BW (CISPR) 1 MHz Stop 2.41200 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz Off 2.386 91 GHz 2.390 00 GHz 53.685 dBµV 59.861 dBµV <u>N 1 f</u> N 1 f **Properties** More 1 of 2

#### (Plot E1: Channel = 1 PEAK @ 802.11n-20)



(Plot E2: Channel = 1 AVG @ 802.11n-20)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com



| Keysight S   | pectrum Ana       | ilyzer - Swept  | SA          |                         |       |                         |          |          |          |               |                 |                             |            |                |
|--------------|-------------------|-----------------|-------------|-------------------------|-------|-------------------------|----------|----------|----------|---------------|-----------------|-----------------------------|------------|----------------|
| RL<br>Ideo B | RE PRESE          | L   50 Ω<br>MHZ | DC          |                         |       | SENS                    | E:INT    | Avg      | ј Туре   | ALIGN AUTO    | 11:57:37<br>TR  | AM Sep 19, 2<br>ACE 1 2 3 4 | 017<br>5 6 | Trace/Detector |
|              |                   |                 |             | PNO: Fast<br>IFGain:Low | φ,    | rig: Free<br>Atten: 6 d | Run<br>B | Avg      | Hold     | :>100/100     | 1               |                             | NN<br>NN   | Select Trace   |
| 0 dB/div     | Ref 1             | 100.00 d        | IBµV        |                         |       |                         |          |          |          | Mkr2          | 2.484<br>51.9   | 208 GI<br>69 dBj            | iz<br>IV   | 1              |
| og<br>m      |                   |                 | -           |                         |       |                         |          |          |          |               |                 |                             |            |                |
| 30.0         |                   | ~~~~~           | ~           |                         |       |                         |          |          |          |               |                 |                             |            | Clear Wri      |
| ~            |                   |                 | N N         |                         |       |                         |          |          |          |               |                 |                             |            |                |
| ນ            |                   |                 | <b>N</b> ., |                         |       |                         | A_       | 2        |          |               |                 |                             |            |                |
| 50.0<br>50.0 |                   |                 |             |                         |       | Alter and aller         |          | Anna and |          |               |                 |                             |            | Trace Avera    |
| ۰.۰<br>۱۰۰۰  |                   |                 |             |                         |       |                         |          |          | the star | handhelmanour | and an an an an | البدور وطوقوه والمراجع      | <b>.</b>   |                |
| nn           |                   |                 |             |                         |       |                         |          |          |          |               |                 |                             |            |                |
| 20.0         |                   |                 |             |                         |       |                         |          |          |          |               |                 |                             |            | MaxHo          |
| 10.0         |                   |                 |             |                         |       |                         |          |          |          |               |                 |                             |            | maxino         |
|              |                   |                 |             |                         |       |                         |          |          |          |               |                 |                             |            |                |
| tart 2.4     | 6200 G<br>(CISPR) | HZ<br>) 1 MHz   |             | #VF                     | NAC 3 | 0 MH7                   |          |          | 9        | Sween 1       | Stop 2.:        | 50000 G<br>(1001 n          | HZ<br>ts)  | Min Ho         |
| KR MODE      | TRCI SCLI         | 7 1 1411 12     | X           |                         |       | Y                       | FU       | NCTION   | FUN      | ICTION WIDTH  | FUNC            | TION VALUE                  |            | Militito       |
| 1 N          | 1 f               |                 | 2.483 5     | 500 GHz                 | 53    | .495 dBp                | V        |          |          |               |                 |                             |            |                |
| 3            |                   |                 | 2.484 2     | 208 GHZ                 | 51    | .969 dBL                | V        |          |          |               |                 |                             |            | View Blank     |
| 4 5          |                   |                 |             |                         |       |                         |          |          |          |               |                 |                             |            | Trace Or       |
| 6            |                   |                 |             |                         |       |                         |          |          |          |               |                 |                             |            |                |
| 8            |                   |                 |             |                         |       |                         |          |          |          |               |                 |                             |            | Мо             |
| 0            |                   |                 |             |                         |       |                         |          |          |          |               |                 |                             |            | 1 0            |
|              |                   |                 |             |                         |       |                         |          |          |          |               |                 |                             |            |                |

(Plot F1: Channel = 11 PEAK @ 802.11n-20)



(Plot F2: Channel = 11 AVG @ 802.11n-20)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com



#### 2.6.3.8 802.11n-40MHz Test mode (Antenna 2)

The lowest and highest channels are tested to verify the band edge emissions.

#### M. Test Verdict:

| Channel | Frequency | Detector | Receiver<br>Reading      | A <sub>T</sub> | A <sub>Factor</sub> | Max.<br>Emission | Limit    | Verdict |
|---------|-----------|----------|--------------------------|----------------|---------------------|------------------|----------|---------|
|         | (IVIHZ)   | PK/ AV   | O <sub>R</sub><br>(dBuV) | (UB)           | (ub@sm)             | ⊏<br>(dBµV/m)    | (ασμν/m) |         |
| 3       | 2387.70   | PK       | 63.21                    | -33.63         | 32.56               | 62.14            | 74       | Pass    |
| 3       | 2387.70   | AV       | 51.74                    | -33.63         | 32.56               | 50.67            | 54       | Pass    |
| 9       | 2485.75   | PK       | 61.79                    | -33.18         | 32.5                | 61.11            | 74       | Pass    |
| 9       | 2484.46   | AV       | 49.70                    | -33.18         | 32.5                | 49.02            | 54       | Pass    |

### N. Test Plots:



(Plot E1: Channel = 3 PEAK @ 802.11n-40)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com





| Keysight Spe | ctrum Analyzer | Swept SA |                           |           |     |          |               |                    |                                                        |             |                    |
|--------------|----------------|----------|---------------------------|-----------|-----|----------|---------------|--------------------|--------------------------------------------------------|-------------|--------------------|
| ideo BV      | RF PRESEL 5    | 0Ω DC    |                           | SEN       |     | Avg      | ALIGN AUTO    | 11:45:27 A<br>TRAC | M Sep 19, 2017<br>CE 1 2 3 4 5 6<br>PE M M M A A A A A |             | BW                 |
|              |                |          | PNO: Fast C<br>IFGain:Low | Atten: 6  | dB  | Avgi     | 1010.2100/100 | D                  | P P N N N N                                            |             | Res B              |
| 0 dB/div     | Ref 100.       | .00 dBµV |                           |           |     |          | Mkr           | 1 2.387<br>51.73   | 70 GHz<br>6 dBµV                                       | <u>Auto</u> | 1 MF<br>Ma         |
| og<br>90.0   |                |          |                           |           |     |          |               |                    |                                                        |             | Video B            |
| 30.0         |                |          |                           |           |     |          |               |                    |                                                        | Auto        | 10 I<br><u>M</u> i |
| 0.0          |                |          |                           |           |     |          |               |                    | $\int$                                                 |             |                    |
| 50.0         |                |          |                           |           |     |          | <u> </u>      | 1,2<br>X           |                                                        | VBV         | 10 10 V:3dB        |
| 10.0         |                |          |                           |           |     |          |               |                    |                                                        | <u>Auto</u> | М                  |
| 0.0          |                | _        |                           |           |     |          |               |                    |                                                        | Sna         | 1:3dB RB           |
| 20.0         |                |          |                           |           |     |          |               |                    |                                                        | opu.        |                    |
| 0.0          |                |          |                           |           |     |          |               |                    |                                                        | Auto        | 141                |
| tart 2.30    | 000 GHz        | n al 1-  |                           | W 40 U-   |     |          | 0             | Stop 2.4           | 1200 GHz                                               |             |                    |
|              |                |          | #VB                       | W 10 HZ   | EII | NCTION   | Sweep         | 12.84 S            |                                                        | RBI         |                    |
|              | f              | 2.38     | 7 70 GHz                  | 51.736 dB | μV  | ACTION . | TONCHON WIDTH | TONCH              |                                                        |             |                    |
| 3            |                | 2.390    | J UU GHZ                  | 52.547 dB | μv  |          |               |                    |                                                        |             |                    |
| 5            |                |          |                           |           |     |          |               |                    | =                                                      |             |                    |
| 7            |                |          |                           |           |     |          |               |                    |                                                        |             |                    |
| 9            |                |          |                           |           |     |          |               |                    |                                                        |             |                    |
| 0            |                |          |                           |           |     |          |               |                    |                                                        |             |                    |

(Plot E2: Channel = 3 AVG @ 802.11n-40)



(Plot F1: Channel = 9 PEAK @ 802.11n-40)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



| RL<br>arker 2             | RF PRES<br>2 2.48 | EL 50 Ω<br>44580 | DC  <br>00000  | GHz<br>PNO: Fast   | Ģ   | Trig: Free<br>Atten: 6 | Run        | Avg<br>Avg | ALIGN AUTO<br>Type: Voltage<br>Hold:>100/100 | 07:45:12<br>TR<br>T | PM Sep 19, 2017<br>ACE <b>1 2 3 4 5 6</b><br>YPE <b>M</b> WWWW<br>DET <b>P P N N N N</b> | Marker            |
|---------------------------|-------------------|------------------|----------------|--------------------|-----|------------------------|------------|------------|----------------------------------------------|---------------------|------------------------------------------------------------------------------------------|-------------------|
| 0 dB/div                  | Ref               | 100.00           | dBµV           | in Gamileon        |     |                        |            |            | Mkr2                                         | 2.484<br>49.6       | 458 GHz<br>98 dBµV                                                                       |                   |
| 90.0<br>80.0<br>80.0      |                   |                  |                |                    |     |                        |            |            |                                              |                     |                                                                                          | Norm              |
| 70.0<br>50.0<br>50.0      |                   |                  |                |                    |     |                        | $\diamond$ | 2          |                                              |                     |                                                                                          | Del               |
| 40.0<br>30.0<br>20.0      |                   |                  |                |                    |     |                        |            |            |                                              |                     |                                                                                          | Fixed             |
| 10.0                      | 6200 (            | GHz              |                |                    |     |                        |            |            |                                              | Stop 2.             | 50000 GHz                                                                                |                   |
| es BW                     |                   | R) 1 MI          | lz<br>v        | #\                 | /BW | 10 Hz                  | EII        | VCTION     | Sweep                                        | 4.357 s             | (1001 pts)                                                                               | C                 |
| 1 N<br>2 N<br>3<br>4<br>5 | 1 f               |                  | 2.483<br>2.484 | 500 GHz<br>458 GHz |     | 49.919 dB<br>49.698 dB | μV<br>μV   | NC HON     | FORCTION WIDTH                               | FUNC                |                                                                                          | Properties        |
| 6<br>7<br>8<br>9          |                   |                  |                |                    |     |                        |            |            |                                              |                     |                                                                                          | <b>M</b> a<br>1 o |
| 1                         |                   |                  |                |                    |     |                        |            |            |                                              |                     | -                                                                                        |                   |

(Plot F2: Channel = 9 AVG @ 802.11n-40)

# MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Http://www.morlab.com

Tel: 86-755-36698555





#### 2.7 **Conducted Emission**

## 2.7.1 Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a  $50\mu$ H/50 $\Omega$  line impedance stabilization network (LISN).

| Frequency range | Conducted Limit (dBµV) |          |  |  |  |  |  |
|-----------------|------------------------|----------|--|--|--|--|--|
| (MHz)           | Quai-peak              | Average  |  |  |  |  |  |
| 0.15 - 0.50     | 66 to 56               | 56 to 46 |  |  |  |  |  |
| 0.50 - 5        | 56                     | 46       |  |  |  |  |  |
| 5 - 30          | 60                     | 50       |  |  |  |  |  |

NOTE:

- (a) The lower limit shall apply at the band edges.
- (b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.

### 2.7.2 Test Description

#### A. Test Setup:



The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10 2013.

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, MORLAB GROUP Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com



## B. Equipments List:

Please reference ANNEX A(1.5).

## 2.1.1 Test Result

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

### A. Test setup:

The EUT configuration of the emission tests is EUT + Link.

**Note:** The test voltage is AC 120V/60Hz.



## (Plot A: L Phase)

| NO. | Fre.    | Emission L | .evel (dBµV) | Limit (   | dBµV)   | Power-line | Verdict |
|-----|---------|------------|--------------|-----------|---------|------------|---------|
|     | (MHz)   | Quai-peak  | Average      | Quai-peak | Average |            |         |
| 1   | 0.15    | 31.03      | 25.30        | 66.00     | 56.00   |            | PASS    |
| 2   | 0.5726  | 31.29      | 24.06        | 56        | 46      |            | PASS    |
| 3   | 1.1908  | 23.11      | 17.07        | 56        | 46      | Lino       | PASS    |
| 4   | 3.1396  | 27.90      | 22.04        | 56        | 46      | Line       | PASS    |
| 5   | 7.8422  | 16.51      | 10.48        | 60        | 50      |            | PASS    |
| 6   | 19.4186 | 16.40      | 10.19        | 60        | 50      |            | PASS    |

# MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com





# (Plot B: N Phase)

| NO. | Fre.    | Emission L | evel (dBµV) | Limit (   | dBµV)   | Power-line | Verdict |
|-----|---------|------------|-------------|-----------|---------|------------|---------|
|     | (MHz)   | Quai-peak  | Average     | Quai-peak | Average |            |         |
| 1   | 0.15    | 31.23      | 25.38       | 66.00     | 56.00   |            | PASS    |
| 2   | 0.5708  | 31.45      | 24.19       | 56        | 46      |            | PASS    |
| 3   | 1.5844  | 40.92      | 35.01       | 56        | 46      | Lino       | PASS    |
| 4   | 3.6884  | 25.60      | 19.61       | 56        | 46      | Line       | PASS    |
| 5   | 9.223   | 16.44      | 10.37       | 60        | 50      |            | PASS    |
| 6   | 22.5706 | 16.74      | 10.59       | 60        | 50      |            | PASS    |

# MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com



#### 2.8 **Radiated Emission**

### 2.8.1 Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency (MHz) | Field Strength (µV/m) | Measurement Distance (m) |
|-----------------|-----------------------|--------------------------|
| 0.009 - 0.490   | 2400/F(kHz)           | 300                      |
| 0.490 - 1.705   | 24000/F(kHz)          | 30                       |
| 1.705 - 30.0    | 30                    | 30                       |
| 30 - 88         | 100                   | 3                        |
| 88 - 216        | 150                   | 3                        |
| 216 - 960       | 200                   | 3                        |
| Above 960       | 500                   | 3                        |

Note:

- For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

 FL1-3, Building A, FerYang Science Park, INO.0 Longonang Notes,

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com



# 2.8.2 Test Description

### A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz



2) For radiated emissions from 30MHz to1GHz





#### 3) For radiated emissions above 1GHz



The RF absorbing material used on the reference ground plane and on the turntable have a maximum height (thickness) of 30 cm (12 in) and have a minimum-rated attenuation of 20 dB at all frequencies from 1 GHz to 18 GHz. Test site have a minimum area of the ground plane covered with RF absorbing material as specified in Figure 6 of ANSI C63.4: 2014.

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10 (2013). For radiated emissions below or equal to 1GHz, The EUT was set-up on insulator 80cm above the Ground Plane, For radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of

MORLAB GROUP Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

Tel: 86-755-36698555 Http://www.morlab.com





the site as factors are calculated to correct the reading

For the Test Antenna:

(a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.

(b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Place the test antenna at 3m away from area of the EUT, while keeping the test antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The test antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final test antenna elevation shall be that which maximizes the emissions. The test antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The emission levels at both horizontal and vertical polarizations should be tested.

### **B.** Equipments List:

Please reference ANNEX A(1.5).

### 2.8.3 Test Result

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$ 

A<sub>T</sub>: Total correction Factor except Antenna

U<sub>R</sub>: Receiver Reading

Gpreamp: Preamplifier Gain

A<sub>Factor</sub>: Antenna Factor at 3m

During the test, the total correction Factor  $A_T$  and  $A_{Factor}$  were built in test software.

The low frequency, which started from 9KHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



## 2.8.3.1 802.11b Test mode (Antenna 1)

#### A. Test Plots for the Whole Measurement Frequency Range:

### Plots for Channel = 1



(Antenna Horizontal, 30MHz to 25GHz)



#### (Antenna Vertical, 30MHz to 25GHz)

# **MORLAB GROUP**

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



Plot for Channel = 6



(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)

# **MORLAB GROUP**

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



Plot for Channel = 11



(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)

# **MORLAB GROUP**

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com




### 2.8.3.2 802.11g Test mode (Antenna 1)

#### **B.** Test Plots for the Whole Measurement Frequency Range:

## Plots for Channel = 1



(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



#### Plot for Channel = 6



(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)

## **MORLAB GROUP**

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



Plot for Channel = 11



(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



#### 2.8.3.3 802.11n-20MHz Test mode (Antenna 1)

#### C. Test Plots for the Whole Measurement Frequency Range:

#### Plots for Channel = 1



(Antenna Horizontal, 30MHz to 25GHz)



#### (Antenna Vertical, 30MHz to 25GHz)

# **MORLAB GROUP**

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



Plot for Channel = 6



(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



Plot for Channel = 11



(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



#### 2.8.3.4 802.11n-40MHz Test mode (Antenna 1)

#### D. Test Plots for the Whole Measurement Frequency Range:

#### Plots for Channel = 3



(Plot A.2: Antenna Horizontal, 30MHz to 25GHz)



(Plot A.3: Antenna Vertical, 30MHz to 25GHz)

## **MORLAB GROUP**

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



Plots for Channel = 6



(Plot B.2: Antenna Horizontal, 30MHz to 25GHz)



(Plot B.3: Antenna Vertical, 30MHz to 25GHz)

## **MORLAB GROUP**

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



Plots for Channel = 9



(Plot C.2: Antenna Horizontal, 30MHz to 25GHz)



(Plot C.3: Antenna Vertical, 30MHz to 25GHz)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



### 2.8.3.5 802.11b Test mode (Antenna 2)

#### A. Test Plots for the Whole Measurement Frequency Range:

#### Plots for Channel = 1



(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



Plot for Channel = 6



(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)

# **MORLAB GROUP**

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



Plot for Channel = 11



(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)

## **MORLAB GROUP**

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



### 2.8.3.6 802.11g Test mode (Antenna 2)

#### B. Test Plots for the Whole Measurement Frequency Range:

#### Plots for Channel = 1



(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



Plot for Channel = 6



(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



Plot for Channel = 11



(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



### 2.8.3.7 802.11n-20MHz Test mode (Antenna 2)

#### C. Test Plots for the Whole Measurement Frequency Range:

Plots for Channel = 1



(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



Plot for Channel = 6



(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



Plot for Channel = 11



(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



#### 2.8.3.8 802.11n-40MHz Test mode (Antenna 2)

#### D. Test Plots for the Whole Measurement Frequency Range:

#### Plots for Channel = 3



(Plot A.2: Antenna Horizontal, 30MHz to 25GHz)



(Plot A.3: Antenna Vertical, 30MHz to 25GHz)

## **MORLAB GROUP**

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



Plots for Channel = 6



(Plot B.2: Antenna Horizontal, 30MHz to 25GHz)



(Plot B.3: Antenna Vertical, 30MHz to 25GHz)

## **MORLAB GROUP**

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



Plots for Channel = 9



(Plot C.2: Antenna Horizontal, 30MHz to 25GHz)



(Plot C.3: Antenna Vertical, 30MHz to 25GHz)

**MORLAB GROUP** 

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com



# ANNEX A GENERAL INFORMATION

#### 1.1 Identification of the Responsible Testing Laboratory

| Company Name:                 | Shenzhen Morlab Communications Technology Co., Ltd.    |
|-------------------------------|--------------------------------------------------------|
| Department:                   | Morlab Laboratory                                      |
| Address:                      | FL.3, Building A, FeiYang Science Park, No.8 LongChang |
|                               | Road, Block 67, BaoAn District, ShenZhen, GuangDong    |
|                               | Province, P. R. China                                  |
| Responsible Test Lab Manager: | Mr. Su Feng                                            |
| Telephone:                    | +86 755 36698555                                       |
| Facsimile:                    | +86 755 36698525                                       |

#### **1.2 Identification of the Responsible Testing Location**

| Name:    | Shenzhen Morlab Communications Technology Co., Ltd.    |
|----------|--------------------------------------------------------|
|          | Morlab Laboratory                                      |
| Address: | FL.3, Building A, FeiYang Science Park, No.8 LongChang |
|          | Road, Block 67, BaoAn District, ShenZhen, GuangDong    |
|          | Province, P. R. China                                  |

#### **1.3 Facilities and Accreditations**

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192.

#### **1.4 Maximum measurement uncertainty**

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

| Test items                   | Uncertainty |  |  |  |  |
|------------------------------|-------------|--|--|--|--|
| Peak Output Power            | ±2.22dB     |  |  |  |  |
| Power spectral density (PSD) | ±2.22dB     |  |  |  |  |
| Bandwidth                    | ±5%         |  |  |  |  |
| Conducted Spurious Emission  | ±2.77 dB    |  |  |  |  |
| Restricted Frequency Bands   | ±5%         |  |  |  |  |
| Radiated Emission            | ±2.95dB     |  |  |  |  |
| Conducted Emission           | ±2.44dB     |  |  |  |  |

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com



This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

#### **1.5 Test Equipments Utilized** 1.5.1 **Conducted Test Equipments**

| Conducted Test Equipment |                         |             |        |              |            |            |  |  |
|--------------------------|-------------------------|-------------|--------|--------------|------------|------------|--|--|
| No.                      | b. Equipment Name Seria |             | Туре   | Manufacturer | Cal. Date  | Cal. Due   |  |  |
| 1                        | Spectrum Analyzer       | MY45101810  | E4407B | Agilent      | 2017.05.24 | 2018.05.23 |  |  |
| 2                        | Power Splitter          | NW521       | 1506A  | Weinschel    | 2017.05.24 | 2018.05.23 |  |  |
| 3                        | Attenuator 1            | (N/A.)      | 10dB   | Resnet       | 2017.05.24 | 2018.05.23 |  |  |
| 4                        | Attenuator 2            | (N/A.)      | 3dB    | Resnet       | 2017.05.24 | 2018.05.23 |  |  |
| 5                        | EXA Signal              | MV52470926  |        | Agilopt      | 2016 12 07 | 2017.12.06 |  |  |
|                          | Analzyer                | WIT55470650 | NUUNA  | Aglient      | 2010.12.07 |            |  |  |
| 6                        | RF cable                |             |        | Marlah       | NI/A       | NI/A       |  |  |
|                          | (30MHz-26GHz)           | CBUT        | REUI   | WONAD        | IN/A       | IN/A       |  |  |
| 7                        | Coaxial cable           | CB02        | RF02   | Morlab       | N/A        | N/A        |  |  |
| 8                        | SMA connector           | CN01        | RF03   | HUBER-SUHNER | N/A        | N/A        |  |  |

### 1.5.2 Conducted Emission Test Equipments

| Conducted Emission Test Equipments |                    |            |           |              |            |            |  |  |
|------------------------------------|--------------------|------------|-----------|--------------|------------|------------|--|--|
| No.                                | Equipment Name     | Serial No. | Туре      | Manufacturer | Cal. Date  | Cal. Due   |  |  |
| 1                                  | Receiver           | US44210471 | E7405A    | Agilent      | 2017.05.24 | 2018.05.23 |  |  |
| 2                                  | LISN               | 812744     | NSLK 8127 | Schwarzbeck  | 2017.05.24 | 2018.05.23 |  |  |
| 3                                  | Service Supplier   | 100448     | CMU200    | R&S          | 2017.05.24 | 2018.05.23 |  |  |
| 4                                  | Pulse Limiter      | 9391       | VTSD      | Schwarzbeck  | 2017 05 24 | 2019 05 22 |  |  |
|                                    | (20dB)             |            | 9561-D    |              | 2017.05.24 | 2010.03.23 |  |  |
| 5                                  | Coaxial cable(BNC) | CB01       | EMC01     | Morlab       | N/A        | N/A        |  |  |
|                                    | (30MHz-26GHz)      |            |           |              |            |            |  |  |

#### 1.5.3 **Auxiliary Test Equipment**

| Auxiliary Test Equipment |                |           |            |              |          |              |  |
|--------------------------|----------------|-----------|------------|--------------|----------|--------------|--|
| No.                      | Equipment Name | Model No. | Brand Name | Manufacturer | Cal.Date | Cal.Due Date |  |
| 1                        | Computer       | T430i     | Think Pad  | Lenovo       | N/A      | N/A          |  |

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

Fax: 86-755-36698525 E-mail: service@morlab.cn

Page 95 0f 96



## 1.5.4 Radiated Test Equipments

| Radiated Test Equipments |                                            |            |      |             |            |                |                   |             |    |                 |  |
|--------------------------|--------------------------------------------|------------|------|-------------|------------|----------------|-------------------|-------------|----|-----------------|--|
| No.                      | Equipment Name                             | Serial N   | lo.  | Туре        | •          | Manufac        | Manufacturer      |             | e  | Cal.Due<br>Date |  |
| 1                        | System Simulator                           | GB45360846 |      | 8960-E5515C |            | Agiler         | nt                | 2017.05.17  |    | 2018.05.16      |  |
| 2                        | Receiver                                   | MY54130    | 016  | N9038       | 3A         | Agiler         | nt                | 2017.05.17  |    | 2018.05.16      |  |
| 3                        | Test Antenna -<br>Bi-Log                   | N/A        |      | VULB9       | 163        | Schwarz        | Schwarzbeck       |             | 09 | 2017.12.08      |  |
| 4                        | Test Antenna - Horn                        | 9170C-5    | 531  | BBHA9       | 170        | Schwarz        | beck              | 2017.03.3   | 30 | 2018.03.29      |  |
| 5                        | Test Antenna - Loop                        | 1519-02    | 22   | FMZB1       | 519        | Schwarz        | beck              | 2017.03.3   | 30 | 2018.03.29      |  |
| 6                        | Test Antenna - Horn                        | 71688      | 3    | BBHA 9'     | 120D       | Schwarz        | beck              | 2017.03.3   | 30 | 2018.03.29      |  |
| 7                        | Coaxial cable<br>(N male)<br>(9KHz-30MHz)  | CB04       | Ļ    | EMC         | EMC04      |                | Morlab            |             |    | N/A             |  |
| 8                        | Coaxial cable<br>(N male)<br>(30MHz-26GHz) | CB02       | CB02 |             | EMC02      |                | Morlab            |             |    | N/A             |  |
| 9                        | Coaxial cable(N<br>male)<br>(30MHz-26GHz)  | CB03       | CB03 |             | EMC03      |                | Morlab            |             |    | N/A             |  |
| 10                       | 1-18GHz<br>pre-Amplifier                   | MA02       | MA02 |             | TS-PR18    |                | Rohde&<br>Schwarz |             | 17 | 2018.05.16      |  |
| 11                       | 18-26.5GHz<br>pre-Amplifier                | MA03       | 3    | TS-PR18     |            | Rohde<br>Schwa | Rohde&<br>Schwarz |             | 17 | 2018.05.16      |  |
| 1                        | .5.5 Climate Cham                          | ber        |      | 1           |            |                |                   | L           |    |                 |  |
| Clima                    | ate Chamber                                |            |      |             |            |                |                   |             |    |                 |  |
| No.                      | Equipment Name                             | Serial I   | No.  | Туре        | Ма         | nufacturer     | Cal.Date (        |             | С  | Cal.Due Date    |  |
| 1                        | Climate Chamber                            | 20040      | 12   | HL4003T     |            | Yinhe          |                   | 2017.01.11  |    | 2018.01.10      |  |
| 1.5.6 Vibration Table    |                                            |            |      |             |            |                |                   |             |    |                 |  |
| Vibration Table          |                                            |            |      |             |            |                |                   |             |    |                 |  |
| No.                      | Equipment Name                             | Serial No. |      | Туре        | Manufactur |                | er                | Cal.Date    |    | Cal.Due Date    |  |
| 1                        | Vibration Table                            | N/A        | AC   | T2000-S01   | 5L CMI-COM |                | 2                 | 2017.01.11  |    | 2018.01.10      |  |
| 1.5.7 Anechoic Chamber   |                                            |            |      |             |            |                |                   |             |    |                 |  |
| Anechoic Chamber         |                                            |            |      |             |            |                |                   |             |    |                 |  |
| No.                      | Equipment Name                             | e Serial N | NO.  | Туре        | Ν          | Manufacture    | r (               | Cal.Date Ca |    | Cal.Due Date    |  |
| 1                        | Anechoic Chambe                            | r N/A      |      | 9m*6m*6n    | n          | Changning      | 20                | )17.01.11   | 2  | 018.01.10       |  |
|                          |                                            |            |      |             |            |                |                   |             |    |                 |  |

#### \*\*\*\*\* END OF REPORT \*\*\*\*\*

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

Fax: 86-755-36698525 E-mail: service@morlab.cn

Page 96 Of 96