Receiving Pattern (Φ), θ=0° # f=600 MHz, TEM # f=1800 MHz, R22 Certificate No: Z15-97193 Page 8 of 11 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No: Z15-97193 Page 9 of 11 ## **Conversion Factor Assessment** ## f=850 MHz, WGLS R9(H_convF) ## f=1750 MHz, WGLS R22(H_convF) # **Deviation from Isotropy in Liquid** Certificate No: Z15-97193 Page 10 of 11 # DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677 # Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 118.5 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No: Z15-97193 Page 11 of 11 CC SAR Test Report No: RXA1606-0101SAR01R2 # **ANNEX E: D835V2 Dipole Calibration Certificate** Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tcl: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn Client TA(Shanghai) Certificate No: Z14-97073 # **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d020 Calibration Procedure(s) TMC-OS-E-02-194 Calibration procedure for dipole validation kits Calibration date: August 28, 2014 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration 102083 11-Sep-13 (TMC, No.JZ13-443) Sep-14 Power Meter NRVD Power sensor NRV-Z5 100595 11-Sep-13 (TMC, No. JZ13-443) Sep -14 5- Sep-13 (SPEAG, No.ES3-3149 Sep13) Reference Probe ES3DV3 SN 3149 Sep-14 23-Jan-14 (SPEAG, DAE3-536_Jan14) Jan -15 DAE3 SN 536 Signal Generator E4438C MY49070393 13-Nov-13 (TMC, No.JZ13-394) Nov-14 Network Analyzer E8362B MY43021135 19-Oct-13 (TMC, No.JZ13-278) Oct-14 Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Lu Bingsong Deputy Director of the laboratory Issued: September 4, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z14-97073 Page 1 of 8 C SAR Test Report No: RXA1606-0101SAR01R2 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z14-97073 Page 2 of 8 E-mail; cttl@chinattl.com #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.8.8.1222 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | ** | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|------------------------|----------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.5 ±6 % | 0.91 mho/m±6 % | | Head TSL temperature change during test | <1.0 °C | 1.67 <u>21.55.2</u> 8; | 1202 | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.39 mW/g | | SAR for nominal Head TSL parameters | normalized to 1VV | 9.54 mW/g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.57 mW/g | | SAR for nominal Head TSL parameters | normalized to 1VV | 6.26 mW/g ± 20.4 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | 0.000.00 | Temperature | Permittivity | Conductivity | |---|---------------|--------------|-----------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0±0.2) °C | 56.7 ±6 % | 0.97 mho/m ±6 % | | Body TSL temperature change during test | <1.0 °C | 3 | 3-000 | ### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.37 mW/g | | SAR for nominal Body TSL parameters | normalized to 1VV | 9.54 mW/g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.57 mVV / g | | SAR for nominal Body TSL parameters | normalized to 1VV | 6.31 mW/g ± 20.4 % (k=2) | Certificate No: Z14-97073 Page 3 of 8 C SAR Test Report No: RXA1606-0101SAR01R2 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.6Ω +2.75jΩ | |--------------------------------------|---------------| | Return Loss | - 30.1dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 54.0Ω +5.88jΩ | |--------------------------------------|---------------| | Return Loss | - 23.3dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.242 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z14-97073 Page 4 of 8 Date: 28.08.2014 #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China ### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020 Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.909$ S/m; $\epsilon_r = 42.49$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: ES3DV3 SN3149; ConvF(6.21, 6.21, 6.21); Calibrated: 2013-09-05; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 2014-01-23 - Phantom: Triple Flat Phantom 5.1C, Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) # System Performance Check at Frequencies below 1 GHz/d=15mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.88 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.54 W/kg #### SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (measured) = 2.79 W/kg 0 dB = 2.79 W/kg = 4.46 dBW/kg Certificate No: Z14-97073 Page 5 of 8 #### Impedance Measurement Plot for Head TSL Date: 28.08.2014 #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China ### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020 Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.97$ S/m; $\epsilon_r = 56.745$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: ES3DV3 SN3149; ConvF(5.98, 5.98, 5.98); Calibrated: 2013-09-05; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 2014-01-23 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/2 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) System Performance Check at Frequencies below 1 GHz/d=15mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.515 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.45 W/kg SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (measured) = 2.74 W/kg 0 dB = 2.74 W/kg = 4.38 dBW/kg Certificate No: Z14-97073 Page 7 of 8 #### Impedance Measurement Plot for Body TSL CC SAR Test Report No: RXA1606-0101SAR01R2 # **ANNEX F: D1900V2 Dipole Calibration Certificate** Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn CNAS CALIBRATION No. L0570 Client TA(Shanghai) Certificate No: Z14-97074 ## CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d060 Calibration Procedure(s) TMC-OS-E-02-194 Calibration procedure for dipole validation kits Calibration date: September 1, 2014 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration | Power Meter NRVD | 102083 | 11-Sep-13 (TMC, No.JZ13-443) | Sep-14 | |-------------------------|------------|--------------------------------------|---------| | Power sensor NRV-Z5 | 100595 | 11-Sep-13 (TMC, No. JZ13-443) | Sep -14 | | Reference Probe ES3DV3 | SN 3149 | 5- Sep-13 (SPEAG, No.ES3-3149_Sep13) | Sep-14 | | DAE3 | SN 536 | 23-Jan-14 (SPEAG, DAE3-536_Jan14) | Jan -15 | | Signal Generator E4438C | MY49070393 | 13-Nov-13 (TMC, No.JZ13-394) | Nov-14 | | Network Analyzer E8362B | MY43021135 | 19-Oct-13 (TMC, No.JZ13-278) | Oct-14 | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Lu Bingsong Deputy Director of the laboratory Fa 2015-73 Issued: September 4, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z14-97074 Page 1 of 8 C SAR Test Report No: RXA1606-0101SAR01R2 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z14-97074 Page 2 of 8 CALIBRATION No. L0570 E-mail; cttl@chinattl.com #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.8.8.1222 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ±1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|---------------------------------|----------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.8 ±6 % | 1.37 mho/m±6 % | | Head TSL temperature change during test | <1.0 °C | 1.00
2.000
2.000
2.000 | 82000 | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.69 mW/g | | SAR for nominal Head TSL parameters | normalized to 1VV | 39.2 mW/g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.14 mW/g | | SAR for nominal Head TSL parameters | normalized to 1VV | 20.7 mW/g ± 20.4 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|---------------|--------------|----------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0±0.2) °C | 51.8 ±6 % | 1.50 mho/m±6 % | | Body TSL temperature change during test | <1.0 °C | COME. | 1222 | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.98 mW/g | | SAR for nominal Body TSL parameters | normalized to 1VV | 40.0 mW/g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.28 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.1 mW/g ± 20.4 % (k=2) | Certificate No: Z14-97074 Page 3 of 8 C SAR Test Report Report No: RXA1606-0101SAR01R2 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.1Ω- 6.34jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 22.8dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 57.6Ω- 4.76jΩ | |--------------------------------------|---------------| | Return Loss | - 21.6dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) 1.248 ns | Electrical Delay (one direction) | |-------------------------------------------|----------------------------------| |-------------------------------------------|----------------------------------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by SPEAG | | |-----------------------|--| |-----------------------|--| Certificate No: Z14-97074 Page 4 of 8 Date: 01.09.2014 #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China ### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.371$ S/m; $s_r = 39.83$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: ES3DV3 SN3149; ConvF(5.06, 5.06, 5.06); Calibrated: 2013-09-05; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 2014-01-23 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.911 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 9.69 W/kg; SAR(10 g) = 5.14 W/kg Maximum value of SAR (measured) = 12.2 W/kg 0 dB = 12.2 W/kg = 10.86 dBW/kg Certificate No: Z14-97074 Page 5 of 8 #### Impedance Measurement Plot for Head TSL Certificate No: Z14-97074 Page 6 of 8 **FCC SAR Test Report** Report No: RXA1606-0101SAR01R2 Date: 01.09.2014 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China ### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.5 \text{ S/m}$; $\epsilon_r = 51.78$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: ES3DV3 SN3149; ConvF(4.72, 4.72, 4.72); Calibrated: 2013-09-03; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 2014-01-23 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/2 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Me asurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.668 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 17.6 W/kg SAR(1 g) = 9.98 W/kg; SAR(10 g) = 5.28 W/kg Maximum value of SAR (measured) = 12.6 W/kg 0 dB = 12.6 W/kg = 11.00 dBW/kg Certificate No: Z14-97074 Page 7 of 8 #### Impedance Measurement Plot for Body TSL Certificate No: Z14-97074 Page 8 of 8 Report No: RXA1606-0101SAR01R2 # **ANNEX G: D2450V2 Dipole Calibration Certificate** Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Client TA(Shanghai) Certificate No: Z14-97075 # CALIBRATION CERTIFICATE Object D2450V2 - SN: 786 Calibration Procedure(s) TMC-OS-E-02-194 Calibration procedure for dipole valication kits Calibration date: September 1, 2014 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration **Primary Standards** | Power Meter NRVD | 102083 | 11-Sep-13 (TMC, No.JZ13-443) | Sep-14 | |-------------------------|------------|--------------------------------------|---------| | Power sensor NRV-Z5 | 100595 | 11-Sep-13 (TMC, No. JZ13-443) | Sep -14 | | Reference Probe ES3DV3 | SN 3149 | 5- Sep-13 (SPEAG, No.ES3-3149_Sep13) | Sep-14 | | DAE3 | SN 536 | 23-Jan-14 (SPEAG, DAE3-536_Jan14) | Jan -15 | | Signal Generator E4438C | MY49070393 | 13-Nov-13 (TMC, No.JZ13-394) | Nov-14 | | Network Analyzer E8362B | MY43021135 | 19-Oct-13 (TMC, No.JZ13-278) | Oct-14 | **Function** Name Signature Calibrated by: Zhao Jing **SAR Test Engineer** Reviewed by: **Ci Dianyuan** SAR Project Leader Approved by: Lu Bingsong Deputy Director of the laboratory Issued: September 4, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z14-97075 Page 1 of 8 SAR Test Report No: RXA1606-0101SAR01R2 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z14-97075 Page 2 of 8 E-mail; cttl@chinattl.com Report No: RXA1606-0101SAR01R2 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.8.8.1222 | |------------------------------|--------------------------|---------------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | , , , , , , , , , , , , , , , , , , , | | Frequency | 2450 MHz ±1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|-----------------|-----------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.2 ±6 % | 1.84 mho/m ±6 % | | Head TSL temperature change during test | <1.0 °C | 2 <u>1000</u> 0 | 1000 | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.2 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 52.5 mW/g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.20 mW / g | | SAR for nominal Head TSL parameters | normalized to 1VV | 24.8 mW/g ± 20.4 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|---------------|--------------|-----------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0±0.2) °C | 51.3±6% | 2.00 mho/m ±6 % | | Body TSL temperature change during test | <1.0 °C | CANAG | 12220 | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.3 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 52.4 mW/g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 6.20 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 24.6 mW/g ± 20.4 % (k=2) | Certificate No: Z14-97075 Page 3 of 8 Report No: RXA1606-0101SAR01R2 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 CALIBRATION No. L0570 Http://www.chinattl.cn ### Appendix #### Antenna Parameters with Head TSL E-mail: cttl@chinattl.com | Impedance, transformed to feed point | 57.1Ω- 0.57jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 23.6dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 56.0Ω+3.31jΩ | | |--------------------------------------|--------------|--| | Return Loss | - 23.7dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.192 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by SPEAG | | |-----------------------|--| |-----------------------|--| Certificate No: Z14-97075 Page 4 of 8 Date: 01.09.2014 #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.84$ S/m; $\epsilon_r = 40.2$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: ES3DV3 SN3149; ConvF(4.48, 4.48, 4.48); Calibrated: 2013-09-05; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 2014-01-23 - Phantom: Triple Flat Phantom 5.1C, Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.583 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 26.6 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 17.3 W/kg 0 dB = 17.3 W/kg = 12.38 dBW/kg Certificate No: Z14-97075 Page 5 of 8 #### Impedance Measurement Plot for Head TSL Certificate No: Z14-97075 Page 6 of 8 CALIBRATION No. L0570 Date: 01.09.2014 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China ### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.988$ S/m; $\epsilon_r = 51.25$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: ES3DV3 SN3149; ConvF(4.21, 4.21, 4.21); Calibrated: 2013-09-03; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 2014-01-23 - Phantom: Triple Flat Phantom 5.1C, Type: QD 000 P51 CA; Serial: 1161/2 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.120 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 17.7 W/kg 0 dB = 17.7 W/kg = 12.48 dBW/kg Certificate No: Z14-97075 Page 7 of 8 #### Impedance Measurement Plot for Body TSL Certificate No: Z14-97075 Page 8 of 8 Report No: RXA1606-0101SAR01R2 ## ANNEX H: DAE4 Calibration Certificate Add: No.51 Xueyuan Rozd, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn Client : TA(Shanghai) Certificate No: Z15-97194 # CALIBRATION CERTIFICATE Object DAE4 - SN: 871 Calibration Procedure(s) FD-Z11-2-002-01 Calibration Procedure for the Data Acquisition Electronics Calibration date: November 17, 2015 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------------------|---------|------------------------------------------|-----------------------| | Process Calibrator 753 | 1971018 | 06-July-15 (CTTL, No:J15X04257) | July-16 | | | | S. A. Janes | | Calibrated by: Name **Function** Signature Yu Zongying SAR Test Engineer Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Lu Bingsong Deputy Director of the laboratory Issued: November 18, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z15-97194 Page 1 of 3 Report No: RXA1606-0101SAR01R2 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191. China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ### Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn # DC Voltage Measurement A/D - Converter Resolution nominal High Range: $1LSB = 6.1 \mu V$, full range = $-100...+300 \ mV$ Low Range: 1LSB = 61 nV, full range = -1.....+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | х | Υ | z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.728 ± 0.15% (k=2) | 404.712 ± 0.15% (k=2) | 405.156 ± 0.15% (k=2) | | Low Range | 3.98308 ± 0.7% (k=2) | 3.93782 ± 0.7% (k=2) | 3.97048 ± 0.7% (k=2) | ### **Connector Angle** | Connector Angle to be used in DASY system | 90.5° ± 1 ° | |-------------------------------------------|-------------| | | 00.0 1 | Certificate No: Z15-97194