

Report No. : EED32K00059601 Page 1 of 59

TEST REPORT

Product : Trailing Edge Dimmer

Trade mark : N/A

Model/Type reference : TRED-CSB-2A, SRPT-CSB

Serial Number : N/A

Report Number : EED32K00059601

FCC ID : 2AJMLEUTRED

Date of Issue : Nov. 08, 2018

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

EULUM DESIGN, LLC 6131-B Kellers Church Road, Pipersville, PA 18947 USA

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Tom-chen

Tom chen (Test Project)

Reviewed by:

Kevin yang (Reviewer)

Date: Nov. 08, 2018

Compiled by:

Report Seal

Kevin lan (Project Engineer)

-1

Sheek Luo (Lab supervisor)

Check No.: 2448714705

Page 2 of 59

2 Version

Version No.	Date	(6)	Description	9
00	Nov. 08, 2018		Original	
		100	75	/05
((c'2)	(642)	(6,75)

Report No. : EED32K00059601 Page 3 of 59

3 Test Summary

1 oot oanniary		7 23		
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
			_	

Remark: The tested sample(s) and the sample information are provided by the client.

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

Model No.: TRED-CSB-2A, SRPT-CSB

Their electrical circuit design, layout and RF module used are electrically identical, Just have the different in base band, some components are not installed for the SPRT-CSB, but in TRES-CSB-2A. Therefore TRES-CSB-2A were fully tested, SPRT-CSB only tested the AC Power Line Conducted Emission, Conducted Peak Output Power and Radiated Spurious Emissions.

4 Content

· Comone						
1 COVER PAGE				•••••		1
2 VERSION						2
3 TEST SUMMAR	Υ		•••••		•••••	3
4 CONTENT			•••••	/%	•••••	4
TEST REQUIRE	MENT		•••••		•••••	5
5.1.1 For Co 5.1.2 For Ra 5.1.3 For Co 5.2 TEST ENVIRO	nducted test setup diated Emissions te nducted Emissions DNMENT	est setuptest setup				
GENERAL INFO	RMATION	•••••	•••••	•••••	•••••	7
6.2 GENERAL DE 6.3 PRODUCT SI 6.4 DESCRIPTIOI 6.5 TEST LOCAT 6.6 DEVIATION F 6.7 ABNORMALIT 6.8 OTHER INFO	ESCRIPTION OF EUT PECIFICATION SUBJE N OF SUPPORT UNIT ION ROM STANDARDS TIES FROM STANDAR RMATION REQUESTE	CTIVE TO THIS STAND, 'S D CONDITIONS ED BY THE CUSTOMER 95% CONFIDENCE LEV	ARD			
7 EQUIPMENT LI	ST			•••••		9
8 RADIO TECHNI	CAL REQUIREME	NTS SPECIFICATION	ON	•••••	•••••	11
Appendix B): Appendix C): Appendix D): Appendix E): Appendix F): Appendix G) Appendix H):	Conducted Peak of Band-edge for RF RF Conducted Sp Power Spectral Do Antenna Requirent AC Power Line Con Restricted bands	ndwidth Output Power Conducted Emissionurious Emissions ensity nent onducted Emission around fundamental Emissions	nsfrequency (Rad	iated)		14 20 24 26 27
PHOTOGRAPHS	OF TEST SETUP.		••••••	•••••	•••••	43
PHOTOGRAPHS	OF EUT CONSTR	UCTIONAL DETAIL	S		••••••	47

Report No.: EED32K00059601 Page 5 of 59

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

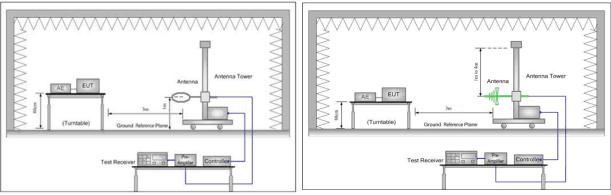


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

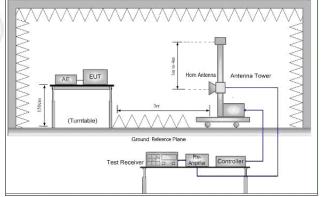



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:			(0)
Temperature:	25.5°C		
Humidity:	59% RH	Tanah Sanah	
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
	1x/Rx	Low(L)	Low(L) Middle(M) High(H		
GFSK	2402MHz ~2480MHz	Channel 1	Channel 20	Channel 40	
Grak	2402IVIH2 ~2460IVIH2	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmitting m data rate.	ode with all kind	of modulation a	and all kind of	

Report No.: EED32K00059601 Page 7 of 59

6 General Information

6.1 Client Information

Applicant:	EULUM DESIGN, LLC
Address of Applicant:	6131-B Kellers Church Road, Pipersville, PA 18947 USA
Manufacturer:	EULUM DESIGN, LLC
Address of Manufacturer:	6131-B Kellers Church Road, Pipersville, PA 18947 USA

6.2 General Description of EUT

•				
Product Name:	Trailing Edge Dimmer			
Model No.(EUT):	TRED-CSB-2A, SRPT-CSB			
Trade mark:	N/A		(20)	
EUT Supports Radios application:	BT4.0 Single mode, 2402-2480MHz		0	
Power Supply:	AC 120V, 60Hz			
Sample Received Date:	Apr. 27, 2018	(3)		130
Sample tested Date:	Apr. 27, 2018 to May 06, 2018	(6,2)		(0)

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	4.00			
Bluetooth Version:	4.0	(41)			
Modulation Technique:	DSSS	(6.)		(0)	
Modulation Type:	GFSK				
Number of Channel:	40				
Test Power Grade:	N/A		(3)		(3)
Test Software of EUT:	N/A		(6)		(0)
Antenna Type:	Chip Antenna				
Antenna Gain:	1.3dBi				
Test Voltage:	AC 120V, 60Hz	7.5		130	
. (2011	(200)			(200	

Operation Frequency each of channel

Operation reducticy each of charmer							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Report No.: EED32K00059601 Page 8 of 59

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE novem conducted	0.46dB (30MHz-1GHz)
	RF power, conducted	0.55dB (1GHz-18GHz)
2	Dedicted Sourious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction amission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

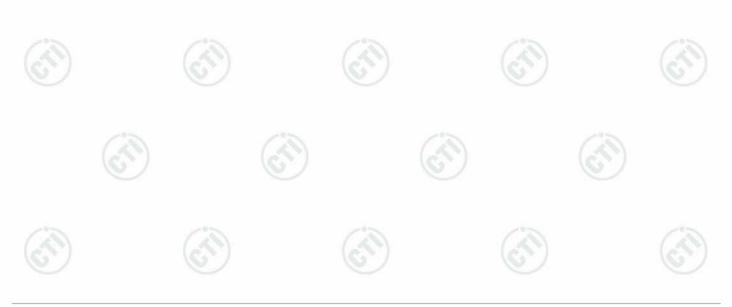
7 Equipment List

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002	(ii)	01-10-2018	01-09-2019
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-10-2018	01-09-2019
DC Power	Keysight	E3642A	MY54426035	03-13-2018	03-12-2019
PC-1	Lenovo	R4960d		03-13-2018	03-12-2019
BT&WI-FI Automatic control	R&S	OSP120	101374	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-2	15860006	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-1	15860004	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-4	158060007	03-13-2018	03-12-2019
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-13-2018	03-12-2019

Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	05-26-2017	05-25-2018	
Temperature/ Humidity Indicator	Defu	TH128	1	07-03-2017	07-02-2018	
LISN	R&S	ENV216	100098	05-11-2017	05-10-2018	
LISN	schwarzbeck	NNLK8121	8121-529	05-11-2017	05-10-2018	
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020	
Current Probe	R&S	EZ-17 816.2063.03	100106	05-31-2017	05-30-2018	
ISN	TESEQ	ISN T800	30297	02-06-2018	02-05-2019	

Report No. : EED32K00059601 Page 10 of 59

		Semi/full-anech	Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	04-26-2018	04-25-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-31-2017	07-30-2018
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-22-2017	08-21-2018
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-19-2018	01-18-2019
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Double ridge horn antenna	A.H.SYSTEM S	SAS-574	6042	06-06-2017	06-05-2018
Pre-amplifier	A.H.SYSTEM S	PAP-1840-60	6041	06-07-2015	06-05-2018
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	05-12-2017	05-11-2018
Receiver	R&S	ESCI	100435	05-26-2017	05-25-2018
Multi device Controller	maturo	NCD/070/107 11112		01-10-2018	01-09-2019
LISN	schwarzbeck	NNBM8125	81251547	05-12-2017	05-11-2018
LISN	schwarzbeck	NNBM8125	81251548	05-12-2017	05-11-2018
Signal Generator	Agilent	E4438C	MY45095 744	03-13-2018	03-12-2019
Signal Generator	Keysight	E8257D	MY53401 106	03-13-2018	03-12-2019
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-03-2017	05-02-2018
Temperature/ Humidity Indicator	TAYLOR	1451		05-02-2018	05-01-2019
Communication test set	Agilent	E5515C	GB47050 534	03-16-2018	03-15-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019
Communication test set	R&S	CMW500	104466	02-05-2018	02-04-2019
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-10-2018	01-09-2019
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001	(C)	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-10-2018	01-09-2019


8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$

Page 12 of 59

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.6675	1.0374	PASS
BLE	MCH	0.6498	1.0526	PASS
BLE	НСН	0.6688	1.0410	PASS

Test Graphs

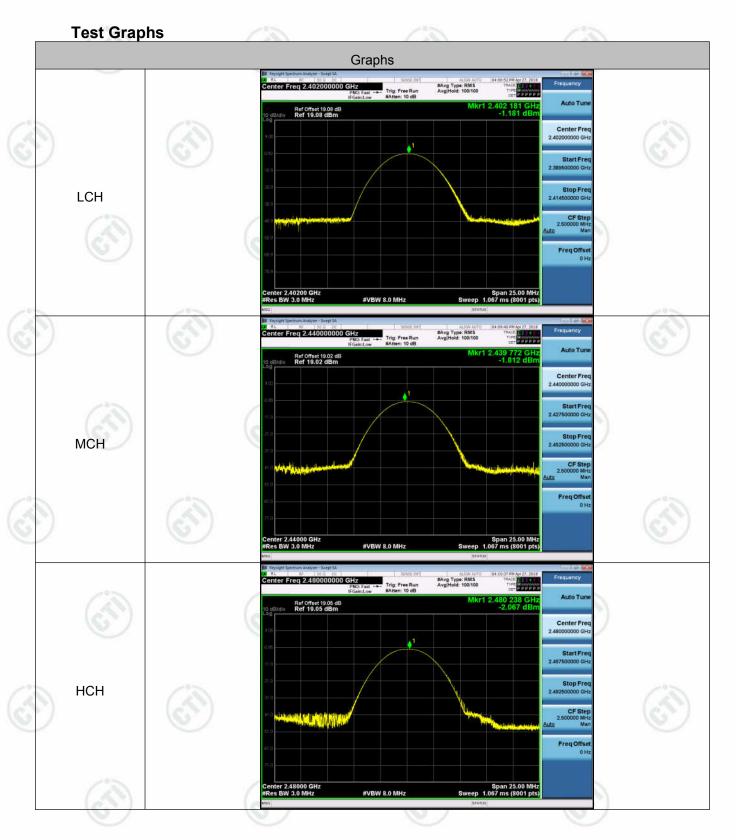
Report No. : EED32K00059601 Page 14 of 59

Appendix B): Conducted Peak Output Power

Test model No.: TRED-CSB-2A

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-1.181	PASS
BLE	MCH	-1.812	PASS
BLE	НСН	-2.067	PASS



(CL)

Report No.: EED32K00059601

Test model No.: SRPT-CSB

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-1.994	PASS
BLE	MCH	-2.506	PASS
BLE	НСН	-2.381	PASS



Test Graphs

Page 18 of 59 Report No.: EED32K00059601

Appendix C): Band-edge for RF Conducted Emissions

Result Table

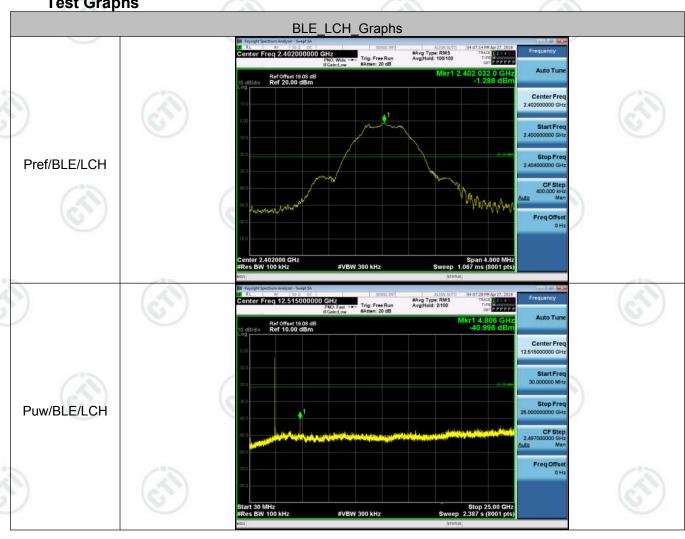
	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
5	BLE	LCH	-1.197	-56.066	-21.20	PASS
	BLE	НСН	-2.132	-54.090	-22.13	PASS

Test Graphs

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Puw[dBm]	Verdict	
BLE	LCH	-1.288	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-2.016	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	-2.196	<limit< td=""><td>PASS</td></limit<>	PASS



Test Graphs



Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-15.042	PASS	PASS
BLE	MCH	-13.261	PASS	PASS
BLE	НСН	-15.263	PASS	PASS

Test Graphs

Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

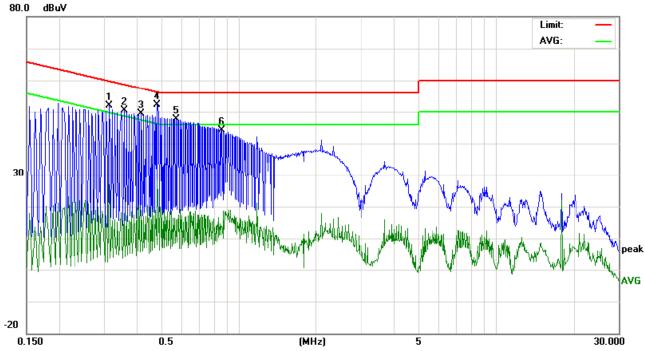
EUT Antenna:

The antenna is Chip Antenna and no consideration of replacement. The best case gain of the antenna is 1.3dBi.

Report No.: EED32K00059601 Page 27 of 59

Test Procedure:	Test frequency range :150KHz			
	1)The mains terminal disturbar	•		
	The EUT was connected to Stabilization Network) which should be a stable of all others.	ch provides a 50Ω/50	μH + 5Ω linear imp	edance. The
	power cables of all other u which was bonded to the gr for the unit being measure multiple power cables to a s exceeded.	round reference plane d. A multiple socket (e in the same way a outlet strip was use	s the LISN 1 d to connect
	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangem		
	4) The test was performed with EUT shall be 0.4 m from the reference plane was bonder.	e vertical ground refeed to the horizontal gr	rence plane. The ve ound reference plar	rtical ground ne. The LISN
	1 was placed 0.8 m from to ground reference plane for plane. This distance was be All other units of the EUT at LISN 2.	or LISNs mounted o etween the closest po	n top of the grour pints of the LISN 1 a	nd reference and the EUT.
(cri)	In order to find the maximum of the interface cables reconducted measurement.			
Limit:		1 1 14 /-	ID. AA	
	Frequency range (MHz)	Limit (c	1	
	/°	Quasi-peak	Average	100
	0.15-0.5	66 to 56*	56 to 46*	(6.5%)
	0.5-5	56	46	
	5-30	60	50	
	* The limit decreases linearly MHz to 0.50 MHz.	with the logarithm of	the frequency in the	e range 0.15

NOTE : The lower limit is applicable at the transition frequency


Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Test model No.: TRED-CSB-2A

Live line:

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	Measurement (dBuV)				Limit (dBuV)		Margin (dB)		
_	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.3140	42.18	38.72	17.03	9.78	51.96	48.50	26.81	59.86	49.86	-11.36	-23.05	Р	
2	0.3580	40.69	36.17	8.18	9.76	50.45	45.93	17.94	58.77	48.77	-12.84	-30.83	Р	
3	0.4180	39.76	35.95	9.22	9.74	49.50	45.69	18.96	57.49	47.49	-11.80	-28.53	Р	
4	0.4860	42.32	39.48	18.48	9.72	52.04	49.20	28.20	56.24	46.24	-7.04	-18.04	Р	
5	0.5740	37.79	34.57	6.23	9.74	47.53	44.31	15.97	56.00	46.00	-11.69	-30.03	Р	
6	0.8660	34.27	31.10	4.22	9.75	44.02	40.85	13.97	56.00	46.00	-15.15	-32.03	Р	

Page 28 of 59

Page 29 of 59

Neutral line: 80.0 dBuV Limit: AVG: 30 -20 0.150 0.5 (MHz) 5 30.000

No.	Freq.		ding_Le dBu∀)	vel	Factor	Measurement (dBuV)			Limit (dBu∀)			/largin (dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.3260	41.73	38.47	10.17	9.77	51.50	48.24	19.94	59.55	49.55	-11.31	-29.61	Р	
2	0.3580	40.80	37.20	11.86	9.76	50.56	46.96	21.62	58.77	48.77	-11.81	-27.15	Р	
3	0.4060	39.87	36.46	8.41	9.75	49.62	46.21	18.16	57.73	47.73	-11.52	-29.57	Р	
4	0.4740	39.48	35.94	9.69	9.72	49.20	45.66	19.41	56.44	46.44	-10.78	-27.03	Р	
5	0.5780	38.75	35.22	10.77	9.74	48.49	44.96	20.51	56.00	46.00	-11.04	-25.49	Р	
6	0.8940	36.97	33.17	20.30	9.75	46.72	42.92	30.05	56.00	46.00	-13.08	-15.95	Р	

(4)



Report No.: EED32K00059601

Test model No.: SRPT-CSB

Live line:

No.	Freq.		aing_∟e dBuV)	vei	Factor	IV	(dBuV)		(dB	nii uV)		rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.2980	43.75	40.21	17.05	9.78	53.53	49.99	26.83	60.30	50.30	-10.31	-23.47	Р	
2	0.3580	40.96	36.18	8.41	9.76	50.72	45.94	18.17	58.77	48.77	-12.83	-30.60	Р	
3	0.4380	41.62	37.48	10.95	9.73	51.35	47.21	20.68	57.10	47.10	-9.89	-26.42	Р	
4	0.5340	41.63	37.42	10.96	9.72	51.35	47.14	20.68	56.00	46.00	-8.86	-25.32	Р	
5	0.6540	39.86	36.51	8.63	9.75	49.61	46.26	18.38	56.00	46.00	-9.74	-27.62	Р	
6	0.7460	39.64	35.99	17.33	9.75	49.39	45.74	27.08	56.00	46.00	-10.26	-18.92	Р	



Neutral line: 80.0 dBuV Limit: AVG: 30 0.150 0.5 (MHz) 5 30.000

	No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasurem (dBuV)		Lin (dB			rgin dB)		
Ī		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.2779	41.28	38.45	13.60	9.76	51.04	48.21	23.36	60.88	50.88	-12.67	-27.52	Р	
_	2	0.3660	40.96	36.99	12.44	9.76	50.72	46.75	22.20	58.59	48.59	-11.84	-26.39	Р	
3	3	0.4100	43.40	40.25	18.95	9.75	53.15	50.00	28.70	57.65	47.65	-7.65	-18.95	Р	
	4	0.4860	39.91	36.11	10.99	9.72	49.63	45.83	20.71	56.24	46.24	-10.41	-25.53	Р	
	5	0.5860	41.80	37.47	19.86	9.74	51.54	47.21	29.60	56.00	46.00	-8.79	-16.40	Р	
	6	0.6660	40.85	36.98	17.51	9.75	50.60	46.73	27.26	56.00	46.00	-9.27	-18.74	Р	

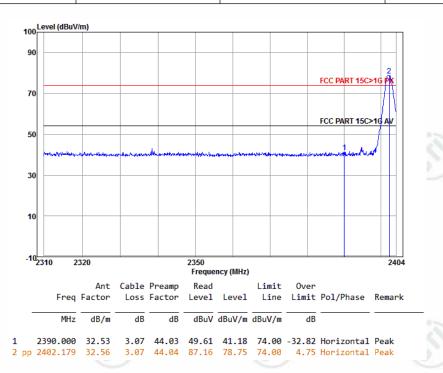
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32K00059601 Page 32 of 59

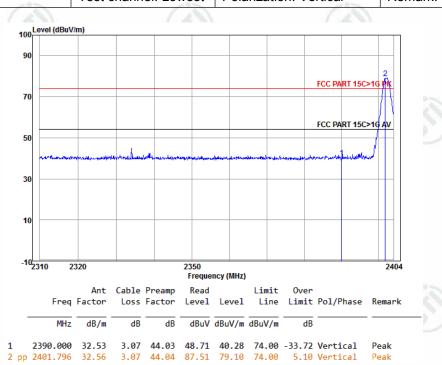
Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency			
		Detector R	BW VBW	Remark
	30MHz-1GHz	Quasi-peak 12	0kHz 300kHz	Quasi-peak
	Al. 1011	Peak 1	MHz 3MHz	Peak
	Above 1GHz	Peak 1	MHz 10Hz	Average
est Procedure:	Below 1GHz test procedu	re as below:		1/2
	a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximum polarizations of the ant d. For each suspected en the antenna was tuned was turned from 0 degre. The test-receiver system Bandwidth with Maximum f. Place a marker at the effrequency to show combands. Save the spectro for lowest and highest	n the top of a rotating thoic camber. The tage of the highest radiation ters away from the inters away from the inters away from one metern value of the field seenna are set to make to heights from 1 may rees to 360 degrees may was set to Peak Eum Hold Mode. The top in the restricted in pliance. Also measurum analyzer plot. Rechannel	ble was rotated and the control of t	iving antenna, was above the grour rizontal and vertent. worst case and the rotatable and the rotatable and Specified the transmit in the restricters.
	g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the load in the radiation measure Transmitting mode, and j. Repeat above procedure.	ve is the test site, char ber change form tab 1 meter and table is bwest channel, the F ments are performed d found the X axis po	ole 0.8 meter to 1 1.5 meter). Highest channel d in X, Y, Z axis positioning which i	.5 meter(Above positioning for it is worse case.
Limit:	Frequency	Limit (dBµV/m @	()3m) Re	mark
	30MHz-88MHz	40.0	Quasi-po	eak Value
	88MHz-216MHz	43.5	Quasi-po	
		- 		eak Value
	216MHz-960MHz	46.0	Quasi-po	eak Value eak Value
	216MHz-960MHz 960MHz-1GHz	46.0 54.0		
			Quasi-po	eak Value



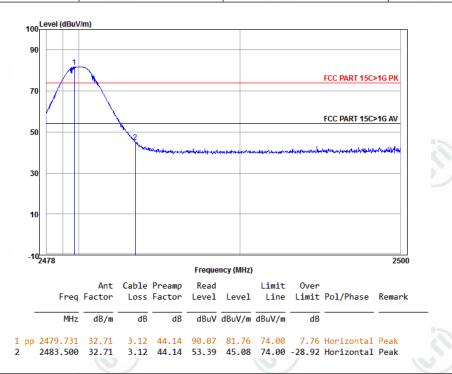
Report No.: EED32K00059601 Page 33 of 59

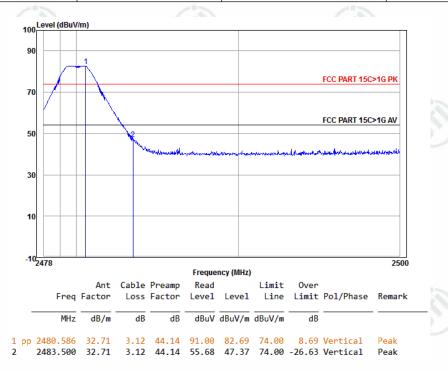
Test plot as follows:


Worse sees made:	GFSK	(6,2)	(32)
Worse case mode:	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode:

GFSK


Test channel: Lowest | Polarization: Vertical | Remark: Peak


Report No.: EED32K00059601 Page 34 of 59

Mara a saca mada.	GFSK							
Worse case mode:	Test channel: Highest	Polarization: Horizontal	Remark: Peak					

Worse case mode:

| GFSK | Test channel: Highest | Polarization: Vertical | Remark: Peak |

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(6)	Ab av. 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet

Above 1GHz test procedure as below:

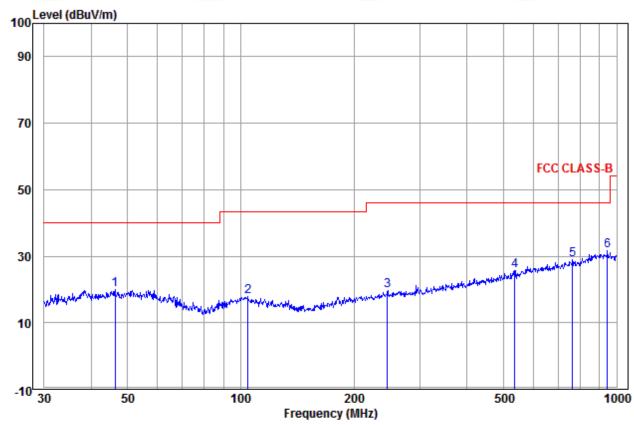
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

LII	HIL.	

Limit.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-		300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

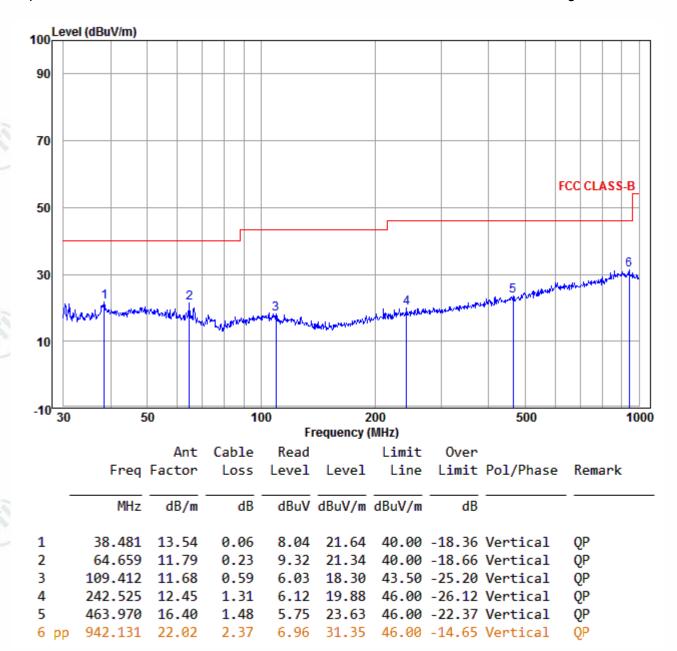
Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.


Report No.: EED32K00059601 Page 36 of 59

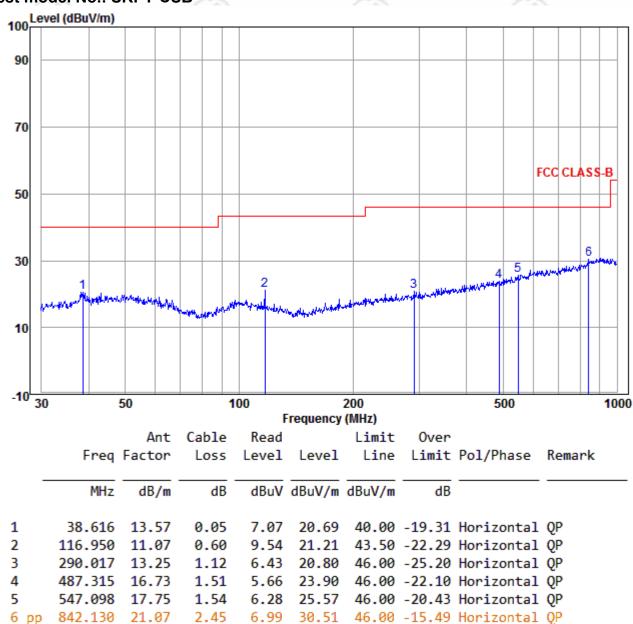
Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Radiated Emission below 1GHz Test model No.: TRED-CSB-2A

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_									
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	46.340	14.33	0.09	5.64	20.06	40.00	-19.94	Horizontal	QP
2	104.536	12.10	0.59	5.30	17.99	43.50	-25.51	Horizontal	QP
3	245.951	12.52	1.32	5.72	19.56	46.00	-26.44	Horizontal	QP
4	535.707	17.55	1.53	6.56	25.64	46.00	-20.36	Horizontal	QP
5	763.376	19.58	2.50	6.80	28.88	46.00	-17.12	Horizontal	QP
6 рр	945.440	22.01	2.36	7.39	31.76	46.00	-14.24	Horizontal	QР



Page 37 of 59



Report No.: EED32K00059601 Page 38 of 59

Test model No.: SRPT-CSB

842.130

3

5

11.79

11.53

16.80

21.91

64.659

201.393

492.469

887.610

6.62 19.26

9.13

6.72

7.25

21.15

25.03

31.64

40.00 -18.85 Vertical 43.50 -24.24 Vertical

46.00 -20.97 Vertical

46.00 -14.36 Vertical

0.23

1.11

1.51

2.48

Transmitter Emission above 1GHz

Test model No.: TRED-CSB-2A

Worse case	mode:	GFSK		Test char	nnel:	Lowest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1267.104	30.38	1.96	44.29	49.47	37.52	74.00	-36.48	Pass	S H
1814.218	31.42	2.65	43.67	48.11	38.51	74.00	-35.49	Pass	Н
4804.000	34.69	5.98	44.60	52.70	48.77	74.00	-25.23	Pass	Н
6140.854	35.98	7.40	44.52	49.51	48.37	74.00	-25.63	Pass	Н
7206.000	36.42	6.97	44.77	50.57	49.19	74.00	-24.81	Pass	Н
9608.000	37.88	6.98	45.58	46.08	45.36	74.00	-28.64	Pass	Н
1333.284	30.53	2.06	44.20	48.37	36.76	74.00	-37.24	Pass	V
1581.218	31.02	2.39	43.91	48.92	38.42	74.00	-35.58	Pass	V
4804.000	34.69	5.98	44.60	53.24	49.31	74.00	-24.69	Pass	V
6645.070	36.23	7.27	44.57	49.31	48.24	74.00	-25.76	Pass	V
7206.000	36.42	6.97	44.77	49.28	47.90	74.00	-26.10	Pass	V
9608.000	37.88	6.98	45.58	46.32	45.60	74.00	-28.40	Pass	V

mode:	GFSK		Test channel:		Middle	Remark: P	Remark: Peak	
Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
30.39	1.97	44.29	49.17	37.24	74.00	-36.76	Pass	H)
31.48	2.70	43.63	48.29	38.84	74.00	-35.16	Pass	H
34.85	6.13	44.60	53.20	49.58	74.00	-24.42	Pass	Н
35.96	7.41	44.51	48.93	47.79	74.00	-26.21	Pass	Н
36.43	6.85	44.87	48.35	46.76	74.00	-27.24	Pass	Н
38.05	7.12	45.55	47.03	46.65	74.00	-27.35	Pass	Н
30.21	1.85	44.39	49.14	36.81	74.00	-37.19	Pass	V
30.99	2.36	43.93	49.21	38.63	74.00	-35.37	Pass	V
34.85	6.13	44.60	52.42	48.80	74.00	-25.20	Pass	V
36.12	7.33	44.54	49.59	48.50	74.00	-25.50	Pass	V
36.43	6.85	44.87	49.18	47.59	74.00	-26.41	Pass	V
38.05	7.12	45.55	46.36	45.98	74.00	-28.02	Pass	V
	Antenna Factor (dB/m) 30.39 31.48 34.85 35.96 36.43 38.05 30.21 30.99 34.85 36.12 36.43	Antenna Factor (dB/m) 30.39 31.48 2.70 34.85 6.13 35.96 7.41 36.43 6.85 38.05 7.12 30.21 1.85 30.99 2.36 34.85 6.13 36.12 7.33 36.43 6.85	Antenna Factor (dB/m) Cable Loss (dB) Preamp Gain (dB) 30.39 1.97 44.29 31.48 2.70 43.63 34.85 6.13 44.60 35.96 7.41 44.51 36.43 6.85 44.87 30.21 1.85 44.39 30.99 2.36 43.93 34.85 6.13 44.60 36.12 7.33 44.54 36.43 6.85 44.87	Antenna Factor (dB/m) Cable Loss (dB) Preamp Gain (dB) Read Level (dBμV) 30.39 1.97 44.29 49.17 31.48 2.70 43.63 48.29 34.85 6.13 44.60 53.20 35.96 7.41 44.51 48.93 36.43 6.85 44.87 48.35 38.05 7.12 45.55 47.03 30.21 1.85 44.39 49.14 30.99 2.36 43.93 49.21 34.85 6.13 44.60 52.42 36.12 7.33 44.54 49.59 36.43 6.85 44.87 49.18	Antenna Factor (dB/m) Cable Loss (dB) Preamp Gain (dB) Read Level (dBμV/m) Level (dBμV/m) 30.39 1.97 44.29 49.17 37.24 31.48 2.70 43.63 48.29 38.84 34.85 6.13 44.60 53.20 49.58 35.96 7.41 44.51 48.93 47.79 36.43 6.85 44.87 48.35 46.76 38.05 7.12 45.55 47.03 46.65 30.21 1.85 44.39 49.14 36.81 30.99 2.36 43.93 49.21 38.63 34.85 6.13 44.60 52.42 48.80 36.12 7.33 44.54 49.59 48.50 36.43 6.85 44.87 49.18 47.59	Antenna Factor (dB/m) Cable Loss (dB) Preamp Gain (dB) Read Level (dBμV) Level (dBμV/m) Limit Line (dBμV/m) 30.39 1.97 44.29 49.17 37.24 74.00 31.48 2.70 43.63 48.29 38.84 74.00 34.85 6.13 44.60 53.20 49.58 74.00 35.96 7.41 44.51 48.93 47.79 74.00 36.43 6.85 44.87 48.35 46.76 74.00 30.21 1.85 44.39 49.14 36.81 74.00 30.99 2.36 43.93 49.21 38.63 74.00 36.12 7.33 44.54 49.59 48.50 74.00 36.43 6.85 44.87 49.18 47.59 74.00	Antenna Factor (dB/m) Cable Loss (dB) Preamp Gain (dB) Read Level (dBμV/m) Level (dBμV/m) Limit Line (dBμV/m) Over Limit (dB) 30.39 1.97 44.29 49.17 37.24 74.00 -36.76 31.48 2.70 43.63 48.29 38.84 74.00 -35.16 34.85 6.13 44.60 53.20 49.58 74.00 -24.42 35.96 7.41 44.51 48.93 47.79 74.00 -26.21 36.43 6.85 44.87 48.35 46.76 74.00 -27.24 38.05 7.12 45.55 47.03 46.65 74.00 -27.35 30.21 1.85 44.39 49.14 36.81 74.00 -37.19 30.99 2.36 43.93 49.21 38.63 74.00 -25.20 36.12 7.33 44.54 49.59 48.50 74.00 -25.50 36.43 6.85 44.87 49.18 47.59 74.00 -	Antenna Factor (dB/m) Cable Loss (dB) Preamp Gain (dB) Read Level (dBμV/m) Level (dBμV/m) Limit Line (dBμV/m) Over Limit (dB) Result 30.39 1.97 44.29 49.17 37.24 74.00 -36.76 Pass 31.48 2.70 43.63 48.29 38.84 74.00 -35.16 Pass 34.85 6.13 44.60 53.20 49.58 74.00 -24.42 Pass 35.96 7.41 44.51 48.93 47.79 74.00 -26.21 Pass 36.43 6.85 44.87 48.35 46.76 74.00 -27.24 Pass 30.21 1.85 44.39 49.14 36.81 74.00 -37.19 Pass 30.99 2.36 43.93 49.21 38.63 74.00 -25.20 Pass 36.12 7.33 44.54 49.59 48.50 74.00 -25.50 Pass 36.43 6.85 44.87 49.18 47.59 74.0

	707		7107	70%					
Worse case	mode:	GFSK		Test char	nnel:	Highest	Remark: P	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1273.572	30.40	1.97	44.28	47.95	36.04	74.00	-37.96	Pass	~ H
1541.476	30.95	2.34	43.95	48.22	37.56	74.00	-36.44	Pass	H)
4960.000	35.02	6.29	44.60	48.23	44.94	74.00	-29.06	Pass	H
6251.257	36.03	7.37	44.53	49.23	48.10	74.00	-25.90	Pass	Н
7440.000	36.45	6.73	44.97	47.25	45.46	74.00	-28.54	Pass	Н
9920.000	38.22	7.26	45.52	46.84	46.80	74.00	-27.20	Pass	Н
1219.635	30.27	1.89	44.36	48.33	36.13	74.00	-37.87	Pass	V
1545.405	30.96	2.35	43.95	47.92	37.28	74.00	-36.72	Pass	V
4960.000	35.02	6.29	44.60	50.36	47.07	74.00	-26.93	Pass	V
6125.242	35.97	7.41	44.51	49.48	48.35	74.00	-25.65	Pass	V
7440.000	36.45	6.73	44.97	47.35	45.56	74.00	-28.44	Pass	V
9920.000	38.22	7.26	45.52	47.40	47.36	74.00	-26.64	Pass	V

Test model No.: SRPT-CSB

Worse case	mode:	GFSK		Test char	nnel:	Lowest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1273.572	30.40	1.97	44.28	48.89	36.98	74.00	-37.02	Pass	H
1561.221	30.99	2.36	43.93	48.30	37.72	74.00	-36.28	Pass	₩/
4804.000	34.69	5.98	44.60	47.81	43.88	74.00	-30.12	Pass	Н
5689.360	35.67	7.13	44.53	49.22	47.49	74.00	-26.51	Pass	Н
7206.000	36.42	6.97	44.77	47.69	46.31	74.00	-27.69	Pass	Н
9608.000	37.88	6.98	45.58	49.22	48.50	74.00	-25.50	Pass	Н
1293.173	30.44	2.00	44.25	48.24	36.43	74.00	-37.57	Pass	V
1630.264	31.11	2.45	43.85	48.00	37.71	74.00	-36.29	Pass	V
4804.000	34.69	5.98	44.60	48.78	44.85	74.00	-29.15	Pass	V
5660.469	35.64	7.10	44.53	49.45	47.66	74.00	-26.34	Pass	V
7206.000	36.42	6.97	44.77	48.38	47.00	74.00	-27.00	Pass	V
9608.000	37.88	6.98	45.58	45.91	45.19	74.00	-28.81	Pass	V

Report No. : EED32K00059601 Page 42 of 59

Worse case	mode:	GFSK	(1)	Test chai	nnel:	Middle	Remark: P	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1257.465	30.36	1.95	44.30	49.55	37.56	74.00	-36.44	Pass	Н
1818.842	31.43	2.66	43.66	47.65	38.08	74.00	-35.92	Pass	Н
4880.000	34.85	6.13	44.60	48.78	45.16	74.00	-28.84	Pass	Н
5940.967	35.86	7.38	44.51	49.05	47.78	74.00	-26.22	Pass	Н
7320.000	36.43	6.85	44.87	48.83	47.24	74.00	-26.76	Pass	Н
9760.000	38.05	7.12	45.55	46.49	46.11	74.00	-27.89	Pass	Н
1204.210	30.24	1.87	44.38	47.96	35.69	74.00	-38.31	Pass	V
1553.293	30.97	2.35	43.94	48.74	38.12	74.00	-35.88	Pass	V
4880.000	34.85	6.13	44.60	47.75	44.13	74.00	-29.87	Pass	V
6461.583	36.14	7.32	44.55	48.96	47.87	74.00	-26.13	Pass	V
7320.000	36.43	6.85	44.87	48.37	46.78	74.00	-27.22	Pass	V
9760.000	38.05	7.12	45.55	46.55	46.17	74.00	-27.83	Pass	V

Worse case	mode:	GFSK		Test char	nnel:	Highest	Remark: P	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1326.513	30.52	2.05	44.21	48.73	37.09	74.00	-36.91	Pass	C.H.
1593.340	31.04	2.40	43.89	47.86	37.41	74.00	-36.59	Pass	(H
4960.000	35.02	6.29	44.60	49.16	45.87	74.00	-28.13	Pass	Н
5895.771	35.82	7.34	44.51	49.38	48.03	74.00	-25.97	Pass	Н
7440.000	36.45	6.73	44.97	46.79	45.00	74.00	-29.00	Pass	Н
9920.000	38.22	7.26	45.52	47.00	46.96	74.00	-27.04	Pass	Н
1399.353	30.67	2.15	44.12	47.96	36.66	74.00	-37.34	Pass	V
1545.405	30.96	2.35	43.95	48.61	37.97	74.00	-36.03	Pass	V
4960.000	35.02	6.29	44.60	50.98	47.69	74.00	-26.31	Pass	V
6125.242	35.97	7.41	44.51	49.31	48.18	74.00	-25.82	Pass	V
7440.000	36.45	6.73	44.97	46.08	44.29	74.00	-29.71	Pass	V
9920.000	38.22	7.26	45.52	46.70	46.66	74.00	-27.34	Pass	V

Note:

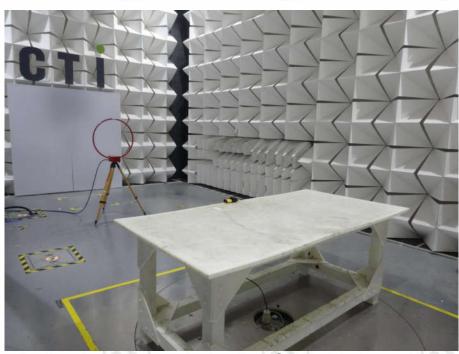
Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

¹⁾ The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

²⁾ Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

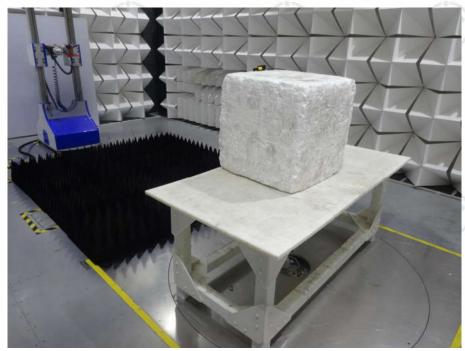


PHOTOGRAPHS OF TEST SETUP

Test model No.: TRED-CSB-2A

Radiated spurious emission Test Setup-1(Below 30MHz)

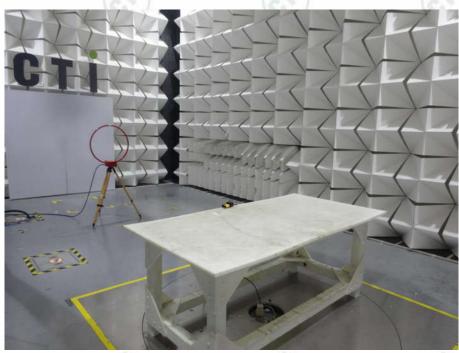
Radiated spurious emission Test Setup-2(30MHz-1GHz)



Report No. : EED32K00059601 Page 44 of 59

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup



Test model No.: SRPT-CSB

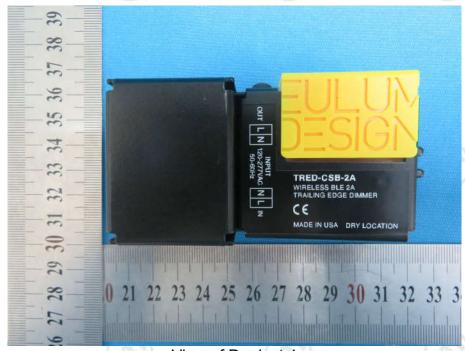
Radiated spurious emission Test Setup-1(Below 30MHz)

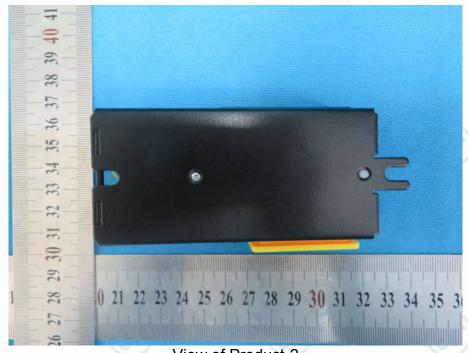
Radiated spurious emission Test Setup-2(30MHz-1GHz)

Report No. : EED32K00059601 Page 46 of 59

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup



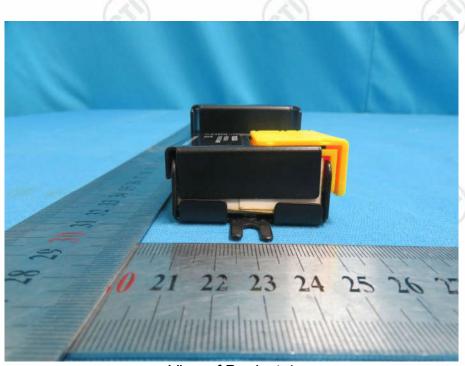


PHOTOGRAPHS OF EUT Constructional Details

Test model No.: TRED-CSB-2A

View of Product-1

View of Product-2



Report No. : EED32K00059601 Page 48 of 59

View of Product-3

View of Product-4



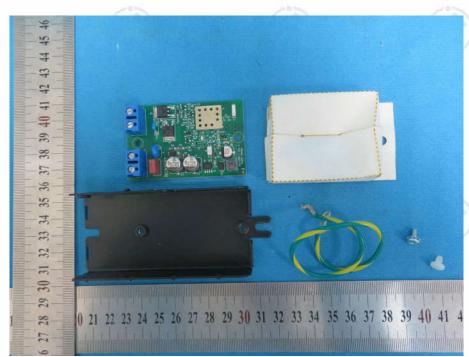
Report No. : EED32K00059601 Page 49 of 59

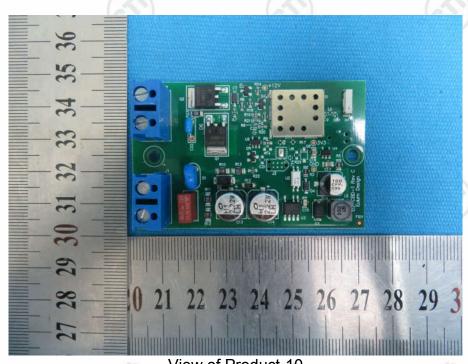
View of Product-5

Page 50 of 59 Report No.: EED32K00059601

View of Product-7

View of Product-8

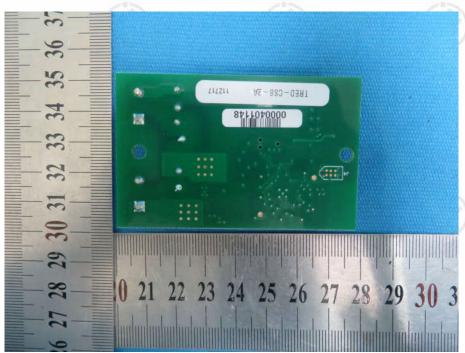


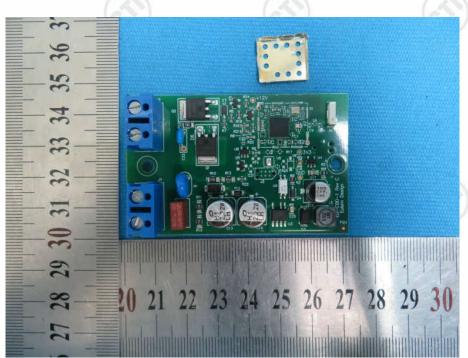


Page 51 of 59 Report No.: EED32K00059601

View of Product-9

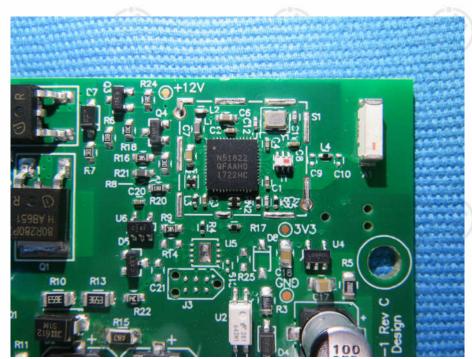
View of Product-10





View of Product-11

View of Product-12

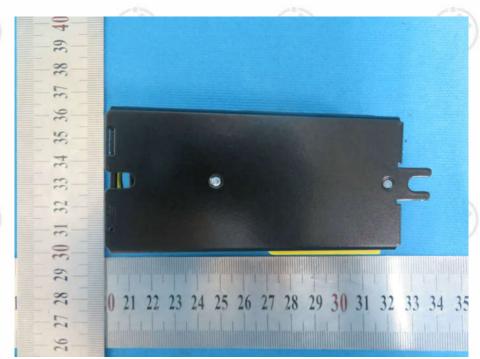


Report No. : EED32K00059601 Page 53 of 59

View of Product-13

Test model No.: SRPT-CSB

View of Product-1

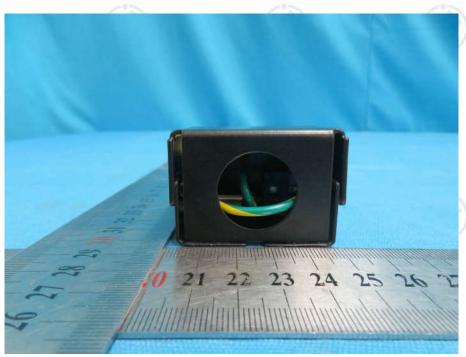


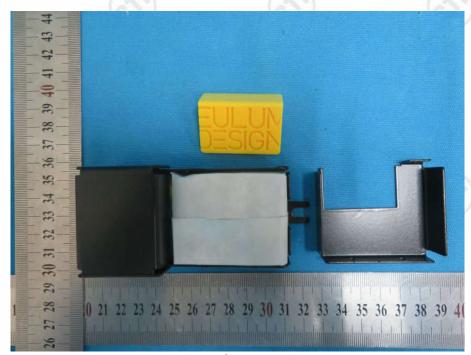
Page 54 of 59 Report No.: EED32K00059601

View of Product-2

View of Product-4

View of Product-5

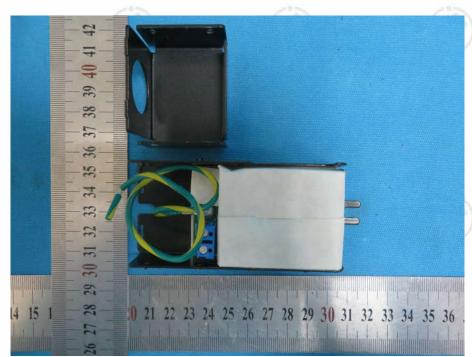


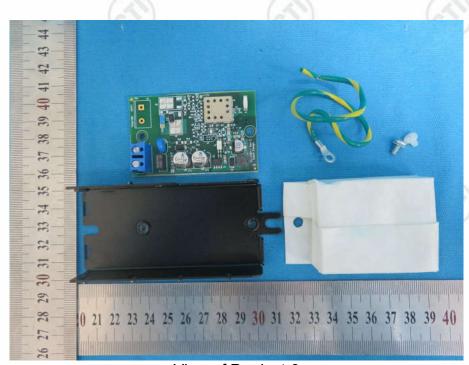


Report No. : EED32K00059601 Page 56 of 59

View of Product-6

View of Product-7

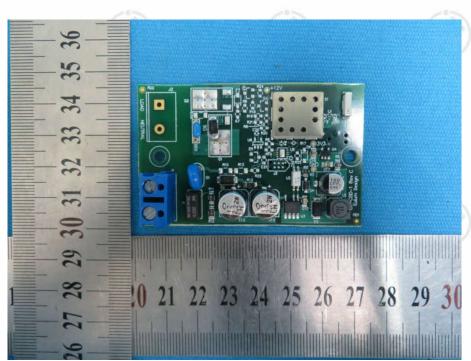




Report No.: EED32K00059601 Page 57 of 59

View of Product-8

View of Product-9

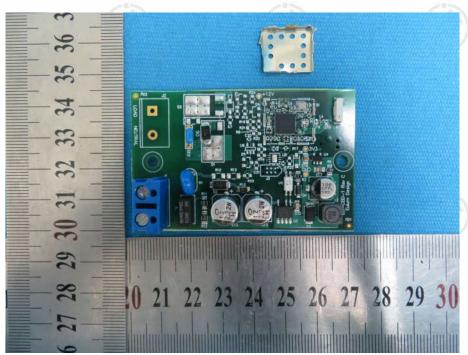




Report No. : EED32K00059601 Page 58 of 59

View of Product-10

View of Product-11



Report No. : EED32K00059601 Page 59 of 59

View of Product-12

View of Product-13

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com