

Report No.: EED32K00144501 Page 1 of 43

# TEST REPORT

**Product** Casambi BLE Module

**Trade mark** N/A

Model/Type reference RFM-CSB-3

**Serial Number** N/A

Report Number EED32K00144501

**FCC ID** : 2AJML-EUCSB3

Date of Issue Jul. 10, 2018

**Test Standards** 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

**EULUM DESIGN, LLC** 6131-B Kellers Church Road, Pipersville, PA 18947 USA

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

> > Report Seal

Tested By:

Tom-chen

Tom chen (Test Project)

Reviewed by:

ReJm (an Kevin yang (Reviewer)

Jul. 10, 2018 Date:

Max liang

Max Liang (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.:2448774568

www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com Hotline: 400-6788-333









Report No.: EED32K00144501

Page 2 of 43

# 2 Version

| Version No. | Date          | (6    | Description | ·  |
|-------------|---------------|-------|-------------|----|
| 00          | Jul. 10, 2018 |       | Original    |    |
|             | /*>           | 12    | 75          | /3 |
|             |               | (4/2) |             |    |











































































Report No.: EED32K00144501 Page 3 of 43

# 3 Test Summary

| o rest Summary                                                    |                                                      |                                        |        |
|-------------------------------------------------------------------|------------------------------------------------------|----------------------------------------|--------|
| Test Item                                                         | Test Requirement                                     | Test method                            | Result |
| Antenna Requirement                                               | 47 CFR Part 15Subpart C Section<br>15.203/15.247 (c) | ANSI C63.10-2013                       | PASS   |
| AC Power Line Conducted<br>Emission                               | 47 CFR Part 15Subpart C Section 15.207               | ANSI C63.10-2013                       | PASS   |
| Conducted Peak Output<br>Power                                    | 47 CFR Part 15Subpart C Section<br>15.247 (b)(3)     | ANSI C63.10-2013/<br>KDB 558074 D01v04 | PASS   |
| 6dB Occupied Bandwidth                                            | 47 CFR Part 15Subpart C Section<br>15.247 (a)(2)     | ANSI C63.10-2013/<br>KDB 558074 D01v04 | PASS   |
| Power Spectral Density                                            | 47 CFR Part 15Subpart C Section<br>15.247 (e)        | ANSI C63.10-2013/<br>KDB 558074 D01v04 | PASS   |
| Band-edge for RF<br>Conducted Emissions                           | 47 CFR Part 15Subpart C Section 15.247(d)            | ANSI C63.10-2013/<br>KDB 558074 D01v04 | PASS   |
| RF Conducted Spurious<br>Emissions                                | 47 CFR Part 15Subpart C Section 15.247(d)            | ANSI C63.10-2013/<br>KDB 558074 D01v04 | PASS   |
| Radiated Spurious<br>Emissions                                    | 47 CFR Part 15Subpart C Section<br>15.205/15.209     | ANSI C63.10-2013                       | PASS   |
| Restricted bands around fundamental frequency (Radiated Emission) | 47 CFR Part 15Subpart C Section<br>15.205/15.209     | ANSI C63.10-2013                       | PASS   |

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.



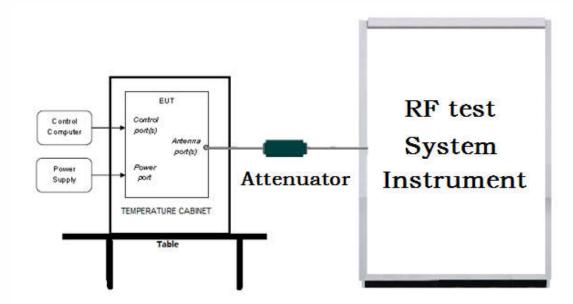


Report No.: EED32K00144501 Page 4 of 43

# 4 Content

| 1 COVER PAGE                                                                                                                                                |                                                                                                |                                            |       | 1           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------|-------|-------------|
| VERSION                                                                                                                                                     |                                                                                                |                                            |       | 2           |
| TEST SUMMARY                                                                                                                                                |                                                                                                |                                            |       | 3           |
| 4 CONTENT                                                                                                                                                   |                                                                                                |                                            |       | 4           |
|                                                                                                                                                             |                                                                                                |                                            |       |             |
| 5.1 TEST SETUP<br>5.1.1 For Conducted to<br>5.1.2 For Radiated Er<br>5.1.3 For Conducted to<br>5.2 TEST ENVIRONMENT                                         | test setup<br>nissions test setup<br>Emissions test setup                                      |                                            |       | 5<br>5<br>6 |
| GENERAL INFORMATION                                                                                                                                         | DN                                                                                             |                                            |       | 7           |
| 6.2 GENERAL DESCRIPTION 6.3 PRODUCT SPECIFICAT 6.4 DESCRIPTION OF SUP 6.5 TEST LOCATION 6.6 DEVIATION FROM STA 6.7 ABNORMALITIES FROM 6.8 OTHER INFORMATION | ON OF EUT  TON SUBJECTIVE TO THIS PORT UNITS  NDARDS  STANDARD CONDITIONS REQUESTED BY THE CUS | STANDARD                                   |       |             |
| 7 EQUIPMENT LIST                                                                                                                                            | •••••                                                                                          |                                            |       | 9           |
| RADIO TECHNICAL RE                                                                                                                                          | QUIREMENTS SPECIF                                                                              | ICATION                                    | ••••• | 11          |
| Appendix B): Conduct Appendix C): Band-ed Appendix D): RF Con Appendix E): Power Stappendix F): Antenna Appendix G): AC Power Appendix H): Restrict         | ted Peak Output Powedge for RF Conducted Educted Spurious Emiss Spectral Density               | rEmissionsionsionsissionissionissionission | 1)    |             |
|                                                                                                                                                             |                                                                                                |                                            |       |             |
| PHOTOGRAPHS OF EUT                                                                                                                                          | CONSTRUCTIONAL D                                                                               | DETAILS                                    |       | 39          |
|                                                                                                                                                             |                                                                                                |                                            |       | CLI         |
|                                                                                                                                                             |                                                                                                |                                            |       |             |






Report No.: EED32K00144501 Page 5 of 43

# 5 Test Requirement

# 5.1 Test setup

# 5.1.1 For Conducted test setup



## 5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

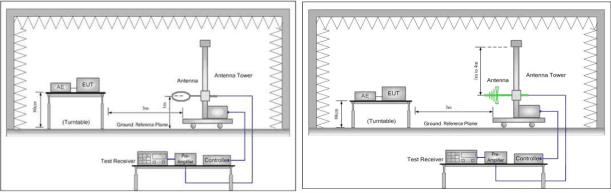
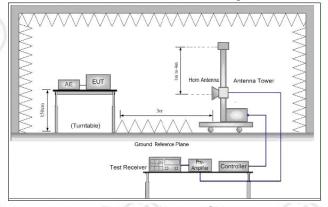
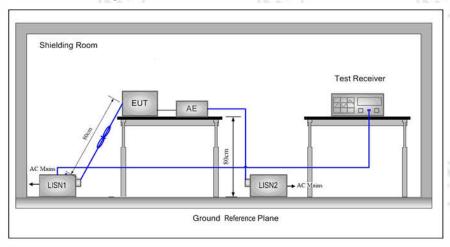



Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz





Figure 3. Above 1GHz

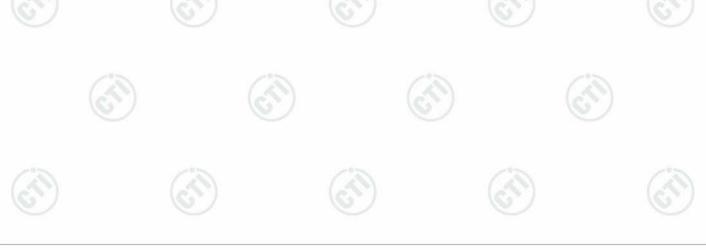
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com





# 5.1.3 For Conducted Emissions test setup Conducted Emissions setup




# 5.2 Test Environment

| Operating Environment: |          |              | (9) |
|------------------------|----------|--------------|-----|
| Temperature:           | 25.0 °C  |              |     |
| Humidity:              | 58% RH   | Table States |     |
| Atmospheric Pressure:  | 1010mbar |              |     |

# **5.3 Test Condition**

## Test channel:

| Test Mode          | Tx/Rx                           | RF Channel         |                 |            |  |
|--------------------|---------------------------------|--------------------|-----------------|------------|--|
| Test Mode          | TX/RX                           | Low(L)             | Middle(M)       | High(H)    |  |
| 0501               |                                 | Channel 1          | Channel 20      | Channel 40 |  |
| GFSK               | 2402MHz ~2480 MHz               | 2402MHz            | 2440MHz         | 2480MHz    |  |
| Transmitting mode: | The EUT transmitted the continu | uous signal at the | specific channe | l(s).      |  |
|                    |                                 |                    |                 |            |  |





Report No. : EED32K00144501 Page 7 of 43

# 6 General Information

# **6.1 Client Information**

| Applicant:               | EULUM DESIGN, LLC                                     |
|--------------------------|-------------------------------------------------------|
| Address of Applicant:    | 6131-B Kellers Church Road, Pipersville, PA 18947 USA |
| Manufacturer:            | EULUM DESIGN, LLC                                     |
| Address of Manufacturer: | 6131-B Kellers Church Road, Pipersville, PA 18947 USA |
| Factory:                 | EULUM DESIGN, LLC                                     |
| Address of Factory:      | 6131-B Kellers Church Road, Pipersville, PA 18947 USA |

# 6.2 General Description of EUT

| Product Name:                    | Casambi BLE Module               |        |     |     |
|----------------------------------|----------------------------------|--------|-----|-----|
| Model No.(EUT):                  | RFM-CSB-3                        |        | (0, |     |
| Trade mark:                      | N/A                              |        |     |     |
| EUT Supports Radios application: | 4.0 BT Single mode, 2402-2480MHz |        |     | 10  |
| Power Supply:                    | DC 3.3V                          | (5,73) |     | (5) |
| Sample Received Date:            | Jun. 11, 2018                    |        |     |     |
| Sample tested Date:              | Jun. 11, 2018 to Jul. 10, 2018   |        |     |     |

# 6.3 Product Specification subjective to this standard

|             | •            |             |                 |              |             |         |           |  |
|-------------|--------------|-------------|-----------------|--------------|-------------|---------|-----------|--|
| Operation F | requency:    | 2402MH      | 2402MHz~2480MHz |              |             |         |           |  |
| Bluetooth \ | /ersion:     | 4.0         |                 |              |             |         |           |  |
| Modulation  | Type:        | GFSK        | GFSK            |              |             |         |           |  |
| Number of   | Channel:     | 40          | 130             |              | (30)        |         | 13        |  |
| Firmware v  | version:     | v22.1(ma    | anufacturer de  | clare)       |             |         |           |  |
| Hardware v  | version:     | EU-CBM      | -3 Revision A   | (manufacture | er declare) |         |           |  |
| Antenna Ty  | pe and Gain: | Chip Ant    | enna and 1.3c   | lBi          |             |         |           |  |
| Test Voltag | je:          | DC 3.3V     |                 | (3)          | X.          | 130     | \ \       |  |
| Operation F | requency eac | h of channe | 1               | (6)          | )           | (6)     | )         |  |
| Channel     | Frequency    | Channel     | Frequency       | Channel      | Frequency   | Channel | Frequency |  |
| 1           | 2402MHz      | 11          | 2422MHz         | 21           | 2442MHz     | 31      | 2462MHz   |  |
| 2           | 2404MHz      | 12          | 2424MHz         | 22           | 2444MHz     | 32      | 2464MHz   |  |
| 3           | 2406MHz      | 13          | 2426MHz         | 23           | 2446MHz     | 33      | 2466MHz   |  |
| 4           | 2408MHz      | 14          | 2428MHz         | 24           | 2448MHz     | 34      | 2468MHz   |  |
| 5           | 2410MHz      | 15          | 2430MHz         | 25           | 2450MHz     | 35      | 2470MHz   |  |
| 6           | 2412MHz      | 16          | 2432MHz         | 26           | 2452MHz     | 36      | 2472MHz   |  |
| 7           | 2414MHz      | 17          | 2434MHz         | 27           | 2454MHz     | 37      | 2474MHz   |  |
| 8           | 2416MHz      | 18          | 2436MHz         | 28           | 2456MHz     | 38      | 2476MHz   |  |
| 9           | 2418MHz      | 19          | 2438MHz         | 29           | 2458MHz     | 39      | 2478MHz   |  |
| 10          | 2420MHz      | 20          | 2440MHz         | 30           | 2460MHz     | 40      | 2480MHz   |  |

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Report No. : EED32K00144501 Page 8 of 43

# 6.4 Description of Support Units

The EUT has been tested independently.

## 6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

## 6.6 Deviation from Standards

None.

## 6.7 Abnormalities from Standard Conditions

None.

# 6.8 Other Information Requested by the Customer

None.

# 6.9 Measurement Uncertainty (95% confidence levels, k=2)

| No.                               | Item                            | Measurement Uncertainty |
|-----------------------------------|---------------------------------|-------------------------|
| 1                                 | Radio Frequency                 | 7.9 x 10 <sup>-8</sup>  |
| 2                                 | DE nower conducted              | 0.31dB (30MHz-1GHz)     |
| 2                                 | RF power, conducted             | 0.57dB (1GHz-18GHz)     |
| 2                                 | Dedicted Courieus emission test | 4.5dB (30MHz-1GHz)      |
| 3 Radiated Spurious emission test | 4.8dB (1GHz-12.75GHz)           |                         |
| 4                                 | Conduction emission             | 3.6dB (9kHz to 150kHz)  |
| 4                                 | Conduction emission             | 3.2dB (150kHz to 30MHz) |
| 5                                 | Temperature test                | 0.64°C                  |
| 6                                 | Humidity test                   | 2.8%                    |
| 7                                 | DC power voltages               | 0.025%                  |







Report No.: EED32K00144501

7 Equipment List

|                            | RF test system |                              |                  |                           |                               |  |  |
|----------------------------|----------------|------------------------------|------------------|---------------------------|-------------------------------|--|--|
| Equipment                  | Manufacturer   | Model No.                    | Serial<br>Number | Cal. Date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |  |  |
| Signal Generator           | Keysight       | E8257D                       | MY53401106       | 03-13-2018                | 03-12-2019                    |  |  |
| Spectrum Analyzer          | Keysight       | N9010A                       | MY54510339       | 03-13-2018                | 03-12-2019                    |  |  |
| Signal Generator           | Keysight       | N5182B                       | MY53051549       | 03-13-2018                | 03-12-2019                    |  |  |
| High-pass filter           | Sinoscite      | FL3CX03WG18<br>NM12-0398-002 |                  | 01-10-2018                | 01-09-2019                    |  |  |
| power meter & power sensor | R&S            | OSP120                       | 101374           | 04-11-2018                | 04-10-2019                    |  |  |
| RF control unit            | JS Tonscend    | JS0806-2                     | 2015860006       | 03-13-2018                | 03-12-2019                    |  |  |

|                                    | Conducted disturbance Test |           |                  |                           |                                      |  |  |
|------------------------------------|----------------------------|-----------|------------------|---------------------------|--------------------------------------|--|--|
| Equipment                          | Manufacturer               | Model No. | Serial<br>Number | Cal. date<br>(mm-dd-yyyy) | Cal. Due<br>date<br>(mm-dd-<br>yyyy) |  |  |
| Receiver                           | R&S                        | ESCI      | 100435           | 05-25-2018                | 05-24-2019                           |  |  |
| Temperature/<br>Humidity Indicator | Belida                     | TT-512    | A19              | 01-24-2018                | 01-23-2019                           |  |  |
| LISN                               | R&S                        | ENV216    | 100098           | 05-11-2018                | 05-10-2019                           |  |  |







|                                     | 3M           | Semi/full-anechoid           | Chamber          |                           |                               |
|-------------------------------------|--------------|------------------------------|------------------|---------------------------|-------------------------------|
| Equipment                           | Manufacturer | Model No.                    | Serial<br>Number | Cal. date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |
| 3M Chamber &<br>Accessory Equipment | TDK          | SAC-3                        | /                | 06-04-2016                | 06-03-2019                    |
| TRILOG Broadband<br>Antenna         | SCHWARZBECK  | VULB9163                     | 9163-484         | 06-05-2018                | 06-04-2019                    |
| Preamplifier                        | JS Tonscend  | EMC051845SE                  | 980380           | 01-19-2018                | 01-18-2019                    |
| Horn Antenna                        | ETS-LINDGREN | 3117                         | 00057407         | 07-20-2015                | 07-18-2018                    |
| Loop Antenna                        | ETS          | 6502                         | 00071730         | 06-22-2017<br>06-21-2018  | 06-21-2018<br>06-20-2019      |
| Spectrum Analyzer                   | R&S          | FSP40                        | 100416           | 05-11-2018                | 05-10-2019                    |
| Receiver                            | R&S          | ESCI                         | 100435           | 05-25-2018                | 05-24-2019                    |
| LISN                                | schwarzbeck  | NNBM8125                     | 81251547         | 05-11-2018                | 05-10-2019                    |
| LISN                                | schwarzbeck  | NNBM8125                     | 81251548         | 05-11-2018                | 05-10-2019                    |
| Signal Generator                    | Agilent      | E4438C                       | MY45095744       | 03-13-2018                | 03-12-2019                    |
| Signal Generator                    | Keysight     | E8257D                       | MY53401106       | 03-13-2018                | 03-12-2019                    |
| Temperature/ Humidity<br>Indicator  | TAYLOR       | 1451                         | 1905             | 05-02-2018                | 05-01-2019                    |
| Communication test set              | Agilent      | E5515C                       | GB47050533       | 03-16-2018                | 03-15-2019                    |
| Cable line                          | Fulai(7M)    | SF106                        | 5219/6A          | 01-10-2018                | 01-09-2019                    |
| Cable line                          | Fulai(6M)    | SF106                        | 5220/6A          | 01-10-2018                | 01-09-2019                    |
| Cable line                          | Fulai(3M)    | SF106                        | 5216/6A          | 01-10-2018                | 01-09-2019                    |
| Cable line                          | Fulai(3M)    | SF106                        | 5217/6A          | 01-10-2018                | 01-09-2019                    |
| Communication test set              | R&S          | CMW500                       | 152394           | 03-16-2018                | 03-15-2019                    |
| High-pass filter                    | Sinoscite    | FL3CX03WG18NM1<br>2-0398-002 |                  | 01-10-2018                | 01-09-2019                    |
| band rejection filter               | Sinoscite    | FL5CX01CA09CL12<br>-0395-001 |                  | 01-10-2018                | 01-09-2019                    |
| band rejection filter               | Sinoscite    | FL5CX01CA08CL12<br>-0393-001 | (E)              | 01-10-2018                | 01-09-2019                    |
| band rejection filter               | Sinoscite    | FL5CX02CA04CL12<br>-0396-002 |                  | 01-10-2018                | 01-09-2019                    |
| band rejection filter               | Sinoscite    | FL5CX02CA03CL12<br>-0394-001 | - 0              | 01-10-2018                | 01-09-2019                    |



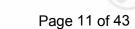























# 8 Radio Technical Requirements Specification

Reference documents for testing:

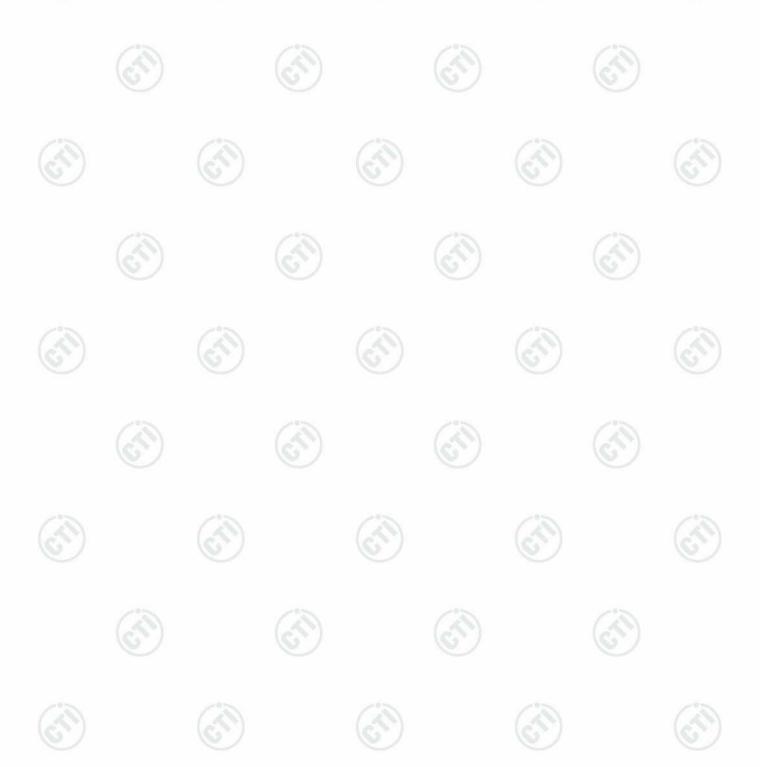
Report No.: EED32K00144501

| No.    | Identity         | Document Title                                                    |
|--------|------------------|-------------------------------------------------------------------|
| 1      | FCC Part15C      | Subpart C-Intentional Radiators                                   |
| 2      | ANSI C63.10-2013 | American National Standard for Testing Unlicesed Wireless Devices |
| est Re | sults List:      | Devices                                                           |

| est ivesuits List.                   |             |                                                                   |         |             |
|--------------------------------------|-------------|-------------------------------------------------------------------|---------|-------------|
| Test Requirement                     | Test method | Test item                                                         | Verdict | Note        |
| Part15C Section<br>15.247 (a)(2)     | ANSI C63.10 | 6dB Occupied Bandwidth                                            | PASS    | Appendix A) |
| Part15C Section<br>15.247 (b)(3)     | ANSI C63.10 | Conducted Peak Output<br>Power                                    | PASS    | Appendix B) |
| Part15C Section<br>15.247(d)         | ANSI C63.10 | Band-edge for RF Conducted Emissions                              | PASS    | Appendix C) |
| Part15C Section<br>15.247(d)         | ANSI C63.10 | RF Conducted Spurious<br>Emissions                                | PASS    | Appendix D) |
| Part15C Section<br>15.247 (e)        | ANSI C63.10 | Power Spectral Density                                            | PASS    | Appendix E) |
| Part15C Section<br>15.203/15.247 (c) | ANSI C63.10 | Antenna Requirement                                               | PASS    | Appendix F) |
| Part15C Section<br>15.207            | ANSI C63.10 | AC Power Line Conducted Emission                                  | PASS    | Appendix G) |
| Part15C Section 15.205/15.209        | ANSI C63.10 | Restricted bands around fundamental frequency (Radiated Emission) | PASS    | Appendix H) |
| Part15C Section<br>15.205/15.209     | ANSI C63.10 | Radiated Spurious Emissions                                       | PASS    | Appendix I) |



Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

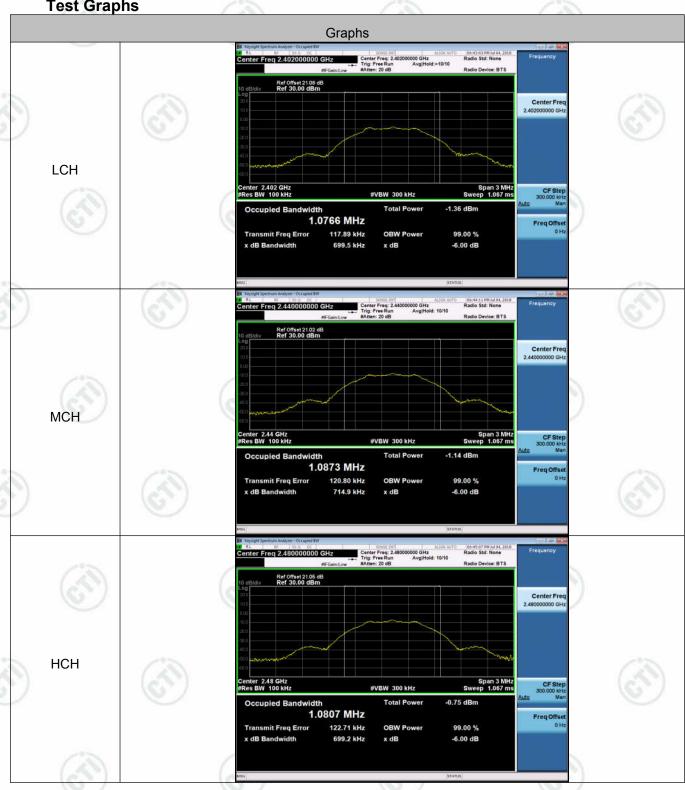





# Appendix A): 6dB Occupied Bandwidth

# **Test Result**

| Mode | Channel | 6dB Bandwidth [MHz] | 99% OBW[MHz] | Verdict | Remark   |
|------|---------|---------------------|--------------|---------|----------|
| BLE  | LCH     | 0.6995              | 1.0766       | PASS    |          |
| BLE  | MCH     | 0.7149              | 1.0873       | PASS    | Peak     |
| BLE  | НСН     | 0.6992              | 1.0807       | PASS    | detector |










**Test Graphs** 



















Page 14 of 43

# Appendix B): Conducted Peak Output Power

## **Test Result**

|      | 1.70A V |                         |         |
|------|---------|-------------------------|---------|
| Mode | Channel | Conduct Peak Power[dBm] | Verdict |
| BLE  | LCH     | -7.75                   | PASS    |
| BLE  | MCH     | -7.431                  | PASS    |
| BLE  | НСН     | -7.025                  | PASS    |


















**Test Graphs** 



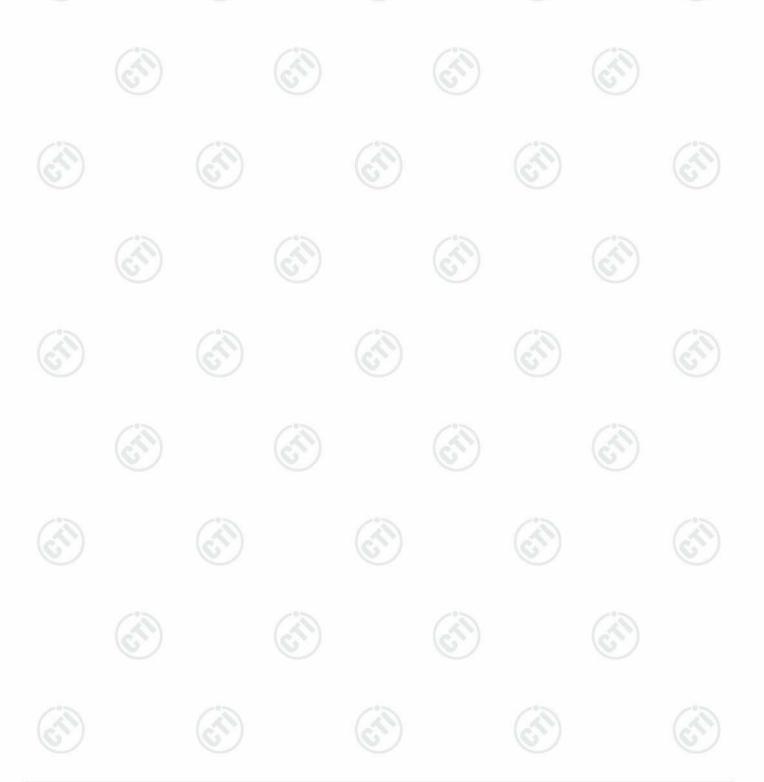








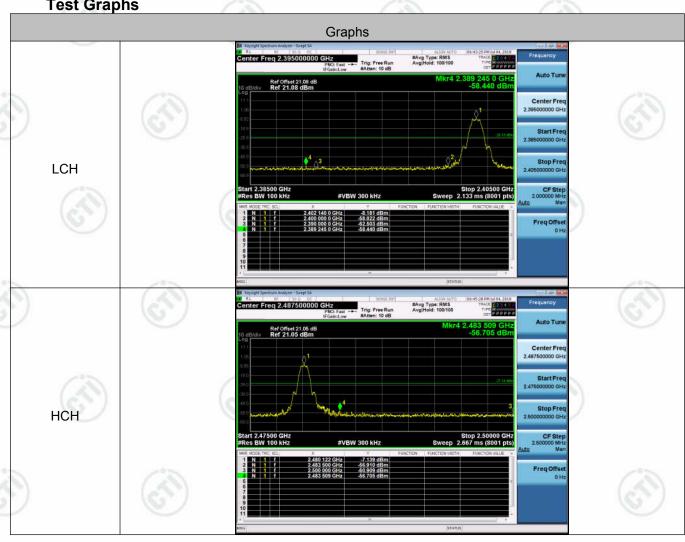







# Appendix C): Band-edge for RF Conducted Emissions

## **Result Table**


|   | Mode | Channel | Carrier Power[dBm] | Max.Spurious Level<br>[dBm] | Limit [dBm] | Verdict |
|---|------|---------|--------------------|-----------------------------|-------------|---------|
| - | BLE  | LCH     | -8.181             | -58.440                     | -28.18      | PASS    |
|   | BLE  | нсн     | -7.139             | -56.705                     | -27.14      | PASS    |







**Test Graphs** 



















<u>cri</u>





# **Appendix D): RF Conducted Spurious Emissions**

## **Result Table**

| 5,500 |         |            | 1.70.0                               |         |
|-------|---------|------------|--------------------------------------|---------|
| Mode  | Channel | Pref [dBm] | Puw[dBm]                             | Verdict |
| BLE   | LCH     | -8.087     | <limit< td=""><td>PASS</td></limit<> | PASS    |
| BLE   | MCH     | -7.65      | <limit< td=""><td>PASS</td></limit<> | PASS    |
| BLE   | НСН     | -7.189     | <limit< td=""><td>PASS</td></limit<> | PASS    |







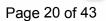


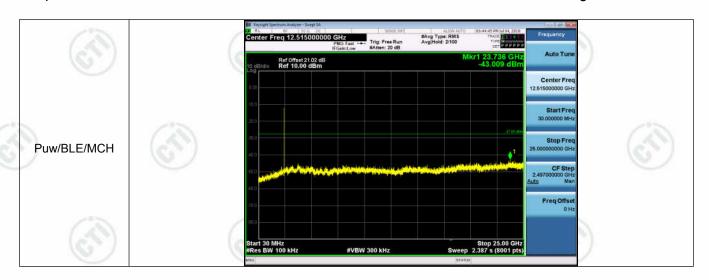







Report No. : EED32K00144501 Page 19 of 43


**Test Graphs** 


































Report No.: EED32K00144501

# **Appendix E): Power Spectral Density**

# **Result Table**

| Mode | Channel | PSD [dBm/3kHz] | Limit<br>[dBm/3kHz] | Verdict |
|------|---------|----------------|---------------------|---------|
| BLE  | LCH     | -23.171        | 8                   | PASS    |
| BLE  | MCH     | -21.201        | 8                   | PASS    |
| BLE  | HCH     | -22.584        | 8                   | PASS    |













































































**Test Graphs** 







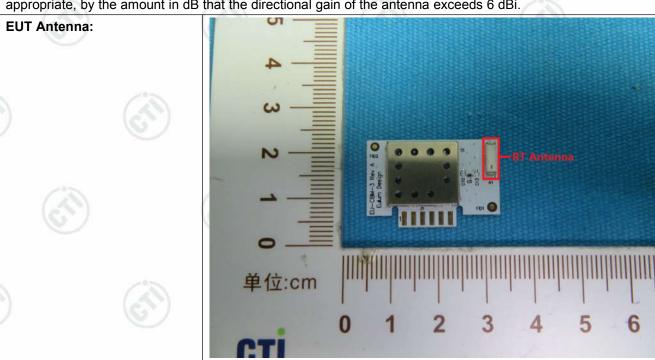











# **Appendix F): Antenna Requirement**

## 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

## 15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.



The antenna is chip Antenna and no consideration of replacement. The best case gain of the antenna is 1.3dBi.











Report No.: EED32K00144501 Page 24 of 43

# Appendix G): AC Power Line Conducted Emission

Test Procedure: Test frequency range: 150KHz-30MHz

- 1)The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a  $50\Omega/50\mu H + 5\Omega$  linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

| Fraguerou rongo (MIII-) | Limit (dBμV) |           |  |  |  |
|-------------------------|--------------|-----------|--|--|--|
| Frequency range (MHz)   | Quasi-peak   | Average   |  |  |  |
| 0.15-0.5                | 66 to 56*    | 56 to 46* |  |  |  |
| 0.5-5                   | 56           | 46        |  |  |  |
| 5-30                    | 60           | 50        |  |  |  |

The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

#### **Measurement Data**

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



































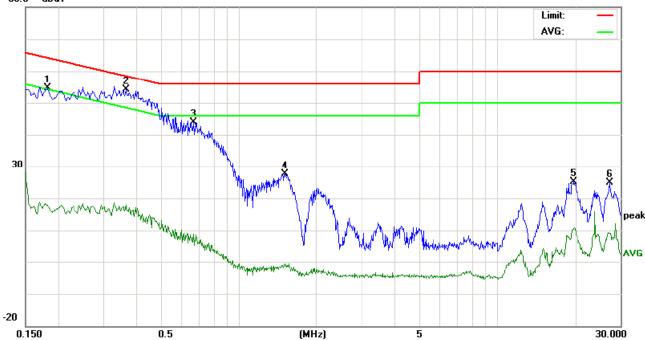




Report No.: EED32K00144501

Page 25 of 43

# 20 0.150 0.5 (MHz) 5 30.000


| No. | Freq.   |       | ding_Le<br>dBuV) | vel   | Correct<br>Factor | N     | leasuren<br>(dBuV) |       | Lin<br>(dB |       |        | rgin<br>dB) |     |         |
|-----|---------|-------|------------------|-------|-------------------|-------|--------------------|-------|------------|-------|--------|-------------|-----|---------|
|     | MHz     | Peak  | QP               | AVG   | dB                | peak  | QP                 | AVG   | QP         | AVG   | QP     | AVG         | P/F | Comment |
| 1   | 0.1660  | 42.32 | 37.35            | 17.63 | 9.75              | 52.07 | 47.10              | 27.38 | 65.15      | 55.15 | -18.05 | -27.77      | Р   |         |
| 2   | 0.3180  | 41.61 | 36.45            | 5.79  | 9.77              | 51.38 | 46.22              | 15.56 | 59.76      | 49.76 | -13.54 | -34.20      | Р   |         |
| 3   | 0.7460  | 22.38 | 17.85            | -9.51 | 9.75              | 32.13 | 27.60              | 0.24  | 56.00      | 46.00 | -28.40 | -45.76      | Р   |         |
| 4   | 1.4740  | 16.32 | 12.48            | -11.4 | 9.72              | 26.04 | 22.20              | -1.71 | 56.00      | 46.00 | -33.80 | -47.71      | Р   |         |
| 5   | 2.2580  | 10.68 | 6.57             | -12.7 | 9.71              | 20.39 | 16.28              | -3.05 | 56.00      | 46.00 | -39.72 | -49.05      | Р   |         |
| 6   | 19.6100 | 13.66 | 8.66             | -1.34 | 10.06             | 23.72 | 18.72              | 8.72  | 60.00      | 50.00 | -41.28 | -41.28      | Р   |         |







# Neutral line: 80.0 dBuV



| No. | Freq.   |       | ding_Le<br>dBuV) | vel   | Correct<br>Factor | IV    | leasuren<br>(dBuV) |       | Lin<br>(dB |       |        | rgin<br>dB) |     |         |
|-----|---------|-------|------------------|-------|-------------------|-------|--------------------|-------|------------|-------|--------|-------------|-----|---------|
|     | MHz     | Peak  | QP               | AVG   | dB                | peak  | QP                 | AVG   | QP         | AVG   | QP     | AVG         | P/F | Comment |
| 1   | 0.1819  | 44.83 | 39.63            | 5.70  | 9.73              | 54.56 | 49.36              | 15.43 | 64.39      | 54.39 | -15.03 | -38.96      | Р   |         |
| 2   | 0.3660  | 44.40 | 39.52            | 2.82  | 9.76              | 54.16 | 49.28              | 12.58 | 58.59      | 48.59 | -9.31  | -36.01      | Р   |         |
| 3   | 0.6700  | 34.20 | 30.03            | -9.90 | 9.75              | 43.95 | 39.78              | -0.15 | 56.00      | 46.00 | -16.22 | -46.15      | Р   |         |
| 4   | 1.5100  | 17.81 | 12.06            | -10.3 | 9.72              | 27.53 | 21.78              | -0.67 | 56.00      | 46.00 | -34.22 | -46.67      | Р   |         |
| 5   | 19.8340 | 14.98 | 10.52            | -2.92 | 10.06             | 25.04 | 20.58              | 7.14  | 60.00      | 50.00 | -39.42 | -42.86      | Р   |         |
| 6   | 27.3540 | 14.67 | 10.24            | -1.96 | 10.24             | 24.91 | 20.48              | 8.28  | 60.00      | 50.00 | -39.52 | -41.72      | Р   |         |

## Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

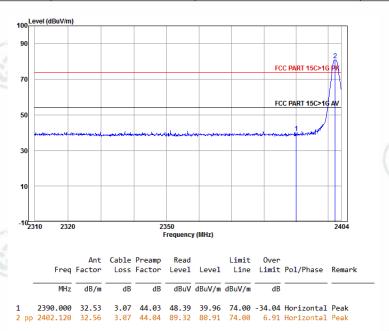




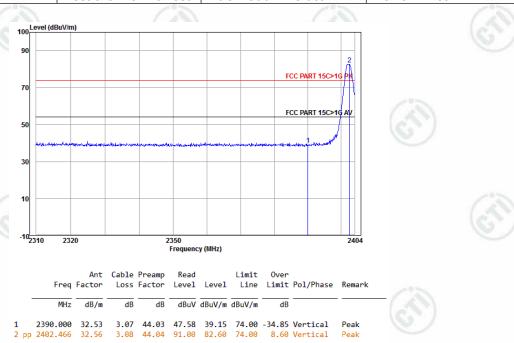


# Appendix H): Restricted bands around fundamental frequency (Radiated)

| (Radiated)      | (67)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (C)                                                                                                                                                                                                                                                     | 1                                                                                                                                         | . (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G7/                                                                                                         |                                           |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Receiver Setup: | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Detector                                                                                                                                                                                                                                                | RBW                                                                                                                                       | VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remark                                                                                                      |                                           |
|                 | 30MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Quasi-peak                                                                                                                                                                                                                                              | 120kHz                                                                                                                                    | 300kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Quasi-peal                                                                                                  | <                                         |
|                 | Al 4011-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Peak                                                                                                                                                                                                                                                    | 1MHz                                                                                                                                      | 3MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Peak                                                                                                        | 100                                       |
|                 | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Peak                                                                                                                                                                                                                                                    | 1MHz                                                                                                                                      | 10Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Average                                                                                                     | (65)                                      |
| Test Procedure: | a. The EUT was placed of at a 3 meter semi-aned determine the position. b. The EUT was set 3 meters was mounted on the total control of the antenna height is a determine the maximum polarizations of the antenna was turned from 0 deg. e. The test-receiver systematical and a semi-anal designation of the antenna was turned from 0 deg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | re as below: In the top of a rot choic camber. The of the highest raceters away from the pof a variable-he varied from one removalue of the fied enna are set to mission, the EUT to heights from the rees to 360 degreem was set to Pear               | ating table e table wa diation. he interfere eight antermeter to foeld strength make the m was arrangl meter to ees to find               | ence-receinna tower. ur meters b. Both hor neasurement ged to its was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rs above the 360 degrees ving antenna above the grizontal and vent. worst case a and the rotat num reading. | to a, which cound to retrica  nd the able |
|                 | f. Place a marker at the e<br>frequency to show com<br>bands. Save the spect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | end of the restrict                                                                                                                                                                                                                                     | easure any                                                                                                                                | emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s in the restri                                                                                             |                                           |
|                 | f. Place a marker at the e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | end of the restrict apliance. Also me rum analyzer plot channel ure as below: we is the test site, aber change form 1 meter and table owest channel, the ments are perford found the X axi                                                              | easure any<br>t. Repeat f<br>change fr<br>table 0.8<br>e is 1.5 met<br>ne Highest<br>med in X, is positioni                               | om Semi-<br>meter to 1<br>er).<br>channel<br>Y, Z axis p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s in the restri<br>ower and mo<br>Anechoic Ch<br>.5 meter( Ab<br>positioning fo<br>t is worse ca            | dulation<br>nambe<br>ove                  |
| imit:           | f. Place a marker at the efrequency to show combands. Save the spectror for lowest and highest  Above 1GHz test procedured.  g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the lower in the radiation measure Transmitting mode, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | end of the restrict apliance. Also me rum analyzer plot channel ure as below: we is the test site, aber change form 1 meter and table owest channel, the ments are perford found the X axi                                                              | easure any<br>t. Repeat f<br>change fr<br>table 0.8<br>e is 1.5 met<br>ne Highest<br>med in X, is positioni                               | emissions or each por each por semi-meter to 1 er). channel Y, Z axis por grant water to asured water to the second control of the s | s in the restri<br>ower and mo<br>Anechoic Ch<br>.5 meter( Ab<br>positioning fo<br>t is worse ca            | dulation<br>nambe<br>ove                  |
| imit:           | f. Place a marker at the efrequency to show combands. Save the spectror lowest and highest  Above 1GHz test procedure.  G. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the lower in the radiation measure that the test of the radiation measure that the second is the radiation measure that the radiati | end of the restrict apliance. Also me rum analyzer plot channel ure as below: we is the test site, aber change form 1 meter and table towest channel, the ments are perford found the X axings until all frequents                                      | easure any<br>t. Repeat f<br>, change fr<br>table 0.8<br>e is 1.5 met<br>ne Highest<br>med in X,<br>is positioni<br>encies me             | om Semi-<br>meter to 1<br>er).<br>channel<br>Y, Z axis p<br>ng which in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Anechoic Ch.5 meter( Ab                                                                                     | nambe<br>ove                              |
| imit:           | f. Place a marker at the end frequency to show combands. Save the spectron for lowest and highest.  Above 1GHz test procedured g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the lower in the radiation measure the Transmitting mode, and j. Repeat above procedure.  Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | end of the restrict apliance. Also me rum analyzer plot channel ure as below: we is the test site, aber change form 1 meter and table owest channel, the ments are perford found the X axi res until all frequencial Limit (dBµV/r                      | easure any<br>t. Repeat f<br>change fr<br>table 0.8<br>e is 1.5 met<br>ne Highest<br>med in X,<br>is positioni<br>encies me<br>m @3m)     | om Semi- meter to 1 er). channel Y, Z axis p ng which in easured wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Anechoic Cr.5 meter( Ab                                                                                     | dulation<br>nambe<br>ove                  |
| imit:           | f. Place a marker at the efrequency to show combands. Save the spectror for lowest and highest  Above 1GHz test procedured.  g. Different between above to fully Anechoic Chammand 18GHz the distance is how in the low in the result of the res | end of the restrict apliance. Also me rum analyzer plot channel ure as below:  ye is the test site, aber change form 1 meter and table owest channel, the ments are perford found the X axis res until all frequence Limit (dBµV/r 40.0                 | easure any<br>t. Repeat f<br>table 0.8<br>e is 1.5 met<br>ne Highest<br>med in X,<br>is positioni<br>encies me<br>m @3m)                  | om Semi- meter to 1 rer). channel Y, Z axis p ng which in asured wa  Rer Quasi-pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Anechoic Ch.5 meter( Abecositioning for tis worse cast complete.                                            | dulation<br>nambe<br>ove                  |
| Limit:          | f. Place a marker at the efrequency to show combands. Save the spectron for lowest and highest  Above 1GHz test procedure.  G. Different between above to fully Anechoic Chamman 18GHz the distance is horizontal to fully Anechoic Chamman 18GHz the EUT in the lower in the result of the radiation measure. Transmitting mode, and it is requency and the requency are requency and the requency are requency are requency and the requency are requency and the requency are requency are requency | end of the restrict apliance. Also me rum analyzer plot channel wre as below: The is the test site, aber change form 1 meter and table owest channel, the ments are performed found the X axion res until all frequences.  Limit (dBµV/r) 40.0 43.5     | easure any<br>t. Repeat f<br>t. Repeat f<br>table 0.8<br>e is 1.5 met<br>ne Highest<br>med in X,<br>is positioni<br>encies me<br>m @3m)   | om Semi- meter to 1 er). channel Y, Z axis p ng which inasured wa  Rer Quasi-pe Quasi-pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Anechoic Ch.5 meter( Abecositioning for tis worse cast complete.  mark eak Value                            | nambe<br>ove                              |
| Limit:          | f. Place a marker at the efrequency to show combands. Save the spectror for lowest and highest  Above 1GHz test procedured.  g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low in the radiation measure Transmitting mode, and j. Repeat above procedured.  Frequency  30MHz-88MHz  88MHz-216MHz  216MHz-960MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | end of the restrict apliance. Also me rum analyzer plot channel ure as below:  If it is the test site, aber change form 1 meter and table towest channel, the ments are performed found the X axion resuntil all frequency Limit (dBµV/r 40.0 43.5 46.0 | easure any<br>t. Repeat f<br>t. Repeat f<br>table 0.8<br>e is 1.5 met<br>ne Highest<br>med in X, '<br>is positioni<br>encies me<br>m @3m) | om Semi- meter to 1 er). channel Y, Z axis p ng which in asured wa  Rer Quasi-pe Quasi-pe Quasi-pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Anechoic Ch.5 meter( Abecositioning for tis worse cast complete.  mark eak Value eak Value                  | nambe<br>ove                              |





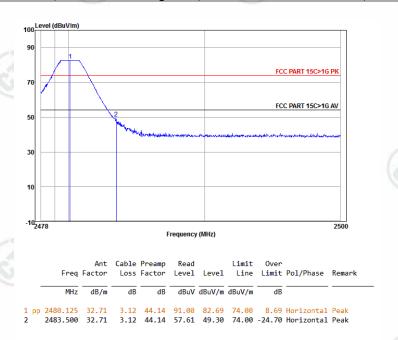


Report No.: EED32K00144501 Page 28 of 43

Test plot as follows:

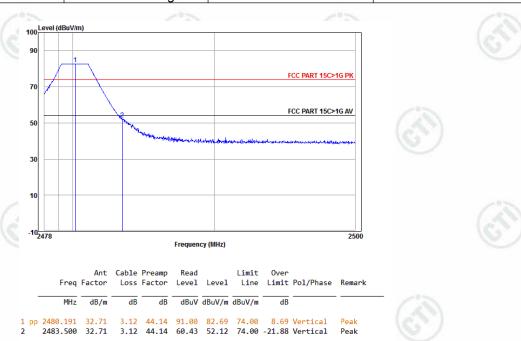
| Worse case mode:   | GFSK                 |                          | (67)         |
|--------------------|----------------------|--------------------------|--------------|
| Frequency: 2402MHz | Test channel: Lowest | Polarization: Horizontal | Remark: Peak |



| Worse case mode:   | GFSK                 |                        |              |
|--------------------|----------------------|------------------------|--------------|
| Frequency: 2402MHz | Test channel: Lowest | Polarization: Vertical | Remark: Peak |





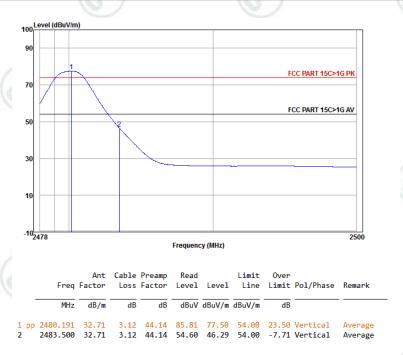




Report No.: EED32K00144501 Page 29 of 43

| Worse case mode:   | GFSK                  | (20)                     |              |
|--------------------|-----------------------|--------------------------|--------------|
| Frequency: 2480MHz | Test channel: Highest | Polarization: Horizontal | Remark: Peak |



| Worse case mode:   | GFSK                  |                        |              |
|--------------------|-----------------------|------------------------|--------------|
| Frequency: 2480MHz | Test channel: Highest | Polarization: Vertical | Remark: Peak |








Report No.: EED32K00144501 Page 30 of 43

| Worse case mode:   | GFSK                  |                        |                 |
|--------------------|-----------------------|------------------------|-----------------|
| Frequency: 2480MHz | Test channel: Highest | Polarization: Vertical | Remark: Average |



#### Note:



Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Report No.: EED32K00144501



# Appendix I): Radiated Spurious Emissions

| Receiver Setup: | Frequency         | Detector   | RBW    | VBW    | Remark     |  |
|-----------------|-------------------|------------|--------|--------|------------|--|
|                 | 0.009MHz-0.090MHz | Peak       | 10kHz  | 30kHz  | Peak       |  |
|                 | 0.009MHz-0.090MHz | Average    | 10kHz  | 30kHz  | Average    |  |
|                 | 0.090MHz-0.110MHz | Quasi-peak | 10kHz  | 30kHz  | Quasi-peak |  |
|                 | 0.110MHz-0.490MHz | Peak       | 10kHz  | 30kHz  | Peak       |  |
|                 | 0.110MHz-0.490MHz | Average    | 10kHz  | 30kHz  | Average    |  |
|                 | 0.490MHz -30MHz   | Quasi-peak | 10kHz  | 30kHz  | Quasi-peak |  |
|                 | 30MHz-1GHz        | Quasi-peak | 120kHz | 300kHz | Quasi-peak |  |
| (6)             | Ab av. 4011-      | Peak       | 1MHz   | 3MHz   | Peak       |  |
|                 | Above 1GHz        | Peak       | 1MHz   | 10Hz   | Average    |  |

### **Test Procedure:**

Limit:

## Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet

## Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Field strength | 1 imit

Measurement

3

3

Repeat above procedures until all frequencies measured was complete.

960MHz-1GHz

Above 1GHz

|     | Frequency         | (microvolt/meter) | (dBµV/m) | Remark     | distance (m) |
|-----|-------------------|-------------------|----------|------------|--------------|
|     | 0.009MHz-0.490MHz | 2400/F(kHz)       | -        | -0-        | 300          |
|     | 0.490MHz-1.705MHz | 24000/F(kHz)      | -        |            | 30           |
| /   | 1.705MHz-30MHz    | 30                | -        |            | 30           |
|     | 30MHz-88MHz       | 100               | 40.0     | Quasi-peak | 3            |
| 100 | 88MHz-216MHz      | 150               | 43.5     | Quasi-peak | 3            |
|     | 216MHz-960MHz     | 200               | 46.0     | Quasi-peak | 3            |

500

500

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

54.0

54.0

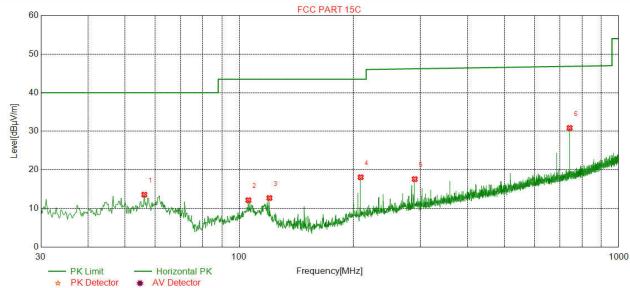
Quasi-peak

Average

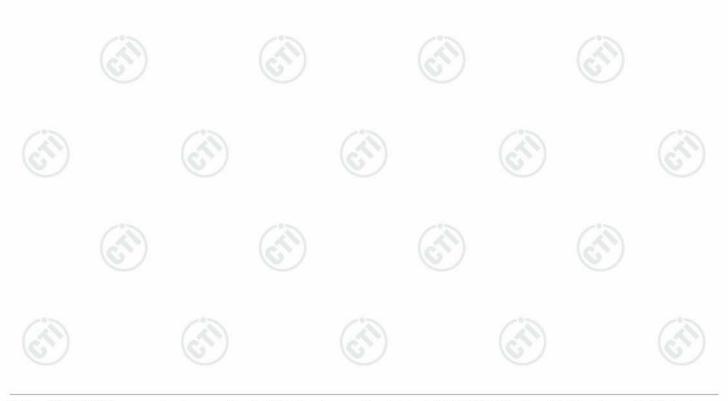
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com











Report No. : EED32K00144501 Page 32 of 43

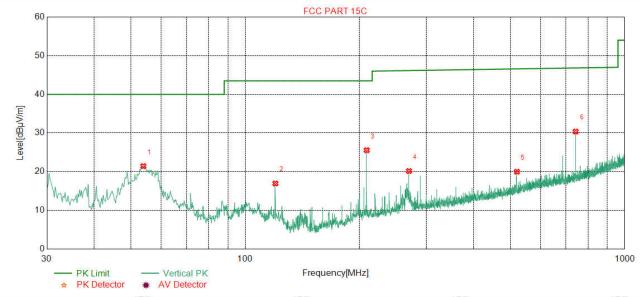
# Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Test mode: Transmitting

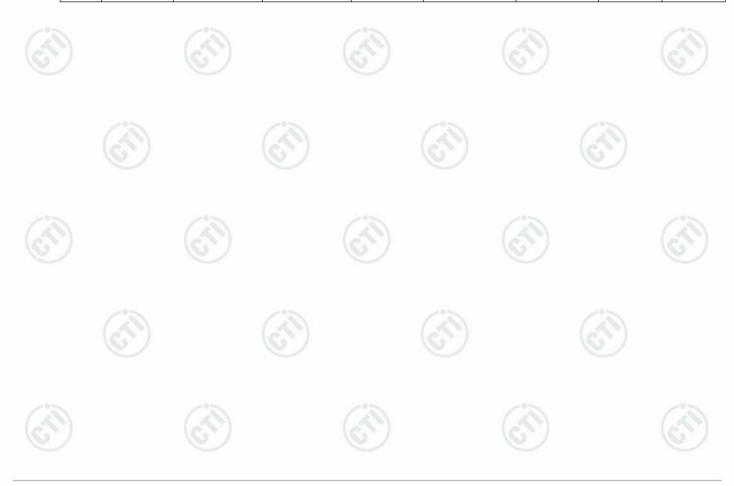


| NO. | Freq.<br>[MHz] | Reading<br>[dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Polarity   | Remark |
|-----|----------------|---------------------|-------------------|----------------|-------------------|----------------|------------|--------|
| 1   | 56.1952        | 32.61               | 13.60             | -19.01         | 40.00             | 26.40          | Horizontal | QP     |
| 2   | 105.6751       | 32.08               | 12.17             | -19.91         | 43.50             | 31.33          | Horizontal | QP     |
| 3   | 120.0340       | 34.29               | 12.72             | -21.57         | 43.50             | 30.78          | Horizontal | QP     |
| 4   | 208.9038       | 37.21               | 18.11             | -19.10         | 43.50             | 25.39          | Horizontal | QP     |
| 5   | 290.0120       | 34.47               | 17.62             | -16.85         | 46.20             | 28.58          | Horizontal | QP     |
| 6   | 742.5105       | 39.46               | 30.88             | -8.58          | 46.83             | 15.95          | Horizontal | QP     |










Page 33 of 43



| NO. | Freq.<br>[MHz] | Reading<br>[dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Polarity | Remark |
|-----|----------------|---------------------|-------------------|----------------|-------------------|----------------|----------|--------|
| 1   | 53.8668        | 40.12               | 21.44             | -18.68         | 40.00             | 18.56          | Vertical | QP     |
| 2   | 120.0340       | 38.54               | 16.97             | -21.57         | 43.50             | 26.53          | Vertical | QP     |
| 3   | 208.9038       | 44.65               | 25.55             | -19.10         | 43.50             | 17.95          | Vertical | QP     |
| 4   | 270.0260       | 37.49               | 20.17             | -17.32         | 46.15             | 25.98          | Vertical | QP     |
| 5   | 519.9480       | 31.80               | 20.00             | -11.80         | 46.59             | 26.59          | Vertical | QP     |
| 6   | 742.5105       | 38.96               | 30.38             | -8.58          | 46.83             | 16.45          | Vertical | QP     |







# **Transmitter Emission above 1GHz**

| Worse case mode: |                | GFSK                |                   | Test<br>channel: | Lowest            | Remark         | : Peak     |
|------------------|----------------|---------------------|-------------------|------------------|-------------------|----------------|------------|
| NO.              | Freq.<br>[MHz] | Reading<br>[dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB]   | Limit<br>[dBµV/m] | Margin<br>[dB] | Polarity   |
| 1                | 4804.000       | 45.13               | 50.30             | 5.17             | 74.00             | 23.70          | Horizontal |
| 2                | 7206.000       | 29.69               | 41.70             | 12.01            | 74.00             | 32.30          | Horizontal |
| 3                | 7683.3933      | 32.07               | 45.60             | 13.53            | 74.00             | 28.40          | Horizontal |
| 4                | 9608.000       | 30.82               | 46.11             | 15.29            | 74.00             | 27.89          | Horizontal |
| 5                | 11753.4503     | 31.73               | 50.81             | 19.08            | 74.00             | 23.19          | Horizontal |
| 6                | 12010.000      | 28.35               | 47.12             | 18.77            | 74.00             | 26.88          | Horizontal |
| 7                | 4804.000       | 43.80               | 48.97             | 5.17             | 74.00             | 25.03          | Vertical   |
| 8                | 7206.000       | 32.38               | 44.39             | 12.01            | 74.00             | 29.61          | Vertical   |
| 9                | 8406.9157      | 33.69               | 48.25             | 14.56            | 74.00             | 25.75          | Vertical   |
| 10               | 9608.000       | 29.34               | 44.63             | 15.29            | 74.00             | 29.37          | Vertical   |
| 11               | 11772.9523     | 30.68               | 49.74             | 19.06            | 74.00             | 24.26          | Vertical   |
| 12               | 12010.000      | 25.26               | 44.03             | 18.77            | 74.00             | 29.97          | Vertical   |

|         | Worse case mode: |                | GFSK                |                   | Test<br>channel: | Middle            |                | Remark: Peak |  |
|---------|------------------|----------------|---------------------|-------------------|------------------|-------------------|----------------|--------------|--|
|         | NO.              | Freq.<br>[MHz] | Reading<br>[dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB]   | Limit<br>[dBµV/m] | Margin<br>[dB] | Polarity     |  |
|         | 1                | 4880.000       | 45.31               | 51.18             | 5.87             | 74.00             | 22.82          | Horizontal   |  |
| 0       | 2                | 7320.000       | 30.50               | 42.80             | 12.30            | 74.00             | 31.20          | Horizontal   |  |
| 3       | 3                | 8431.2931      | 32.77               | 47.33             | 14.56            | 74.00             | 26.67          | Horizontal   |  |
| -       | 4                | 9760.000       | 30.73               | 46.30             | 15.57            | 74.00             | 27.70          | Horizontal   |  |
|         | 5                | 11278.5779     | 30.95               | 50.32             | 19.37            | 74.00             | 23.68          | Horizontal   |  |
|         | 6                | 12200.000      | 27.47               | 46.55             | 19.08            | 74.00             | 27.45          | Horizontal   |  |
|         | 7                | 4880.000       | 44.55               | 50.41             | 5.86             | 74.00             | 23.59          | Vertical     |  |
|         | 8                | 7320.000       | 30.74               | 43.04             | 12.30            | 74.00             | 30.96          | Vertical     |  |
|         | 9                | 8387.4137      | 33.99               | 48.36             | 14.37            | 74.00             | 25.64          | Vertical     |  |
|         | 10               | 9760.000       | 31.58               | 47.15             | 15.57            | 74.00             | 26.85          | Vertical     |  |
|         | 11               | 11207.3957     | 31.45               | 50.56             | 19.11            | 74.00             | 23.44          | Vertical     |  |
| j       | 12               | 12200.000      | 28.13               | 47.21             | 19.08            | 74.00             | 26.79          | Vertical     |  |
| A 100 I |                  |                |                     | 1                 |                  | 10.00             |                |              |  |







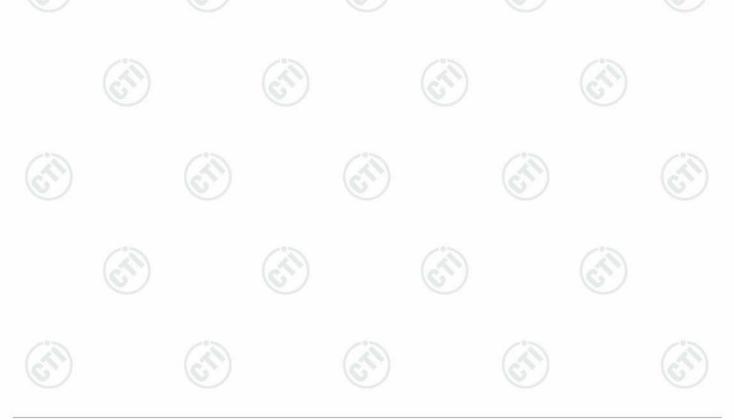








Report No. : EED32K00144501 Page 35 of 43


|                  |                | - 1 h               |                   | -31070           |                   | 70%            |            |  |
|------------------|----------------|---------------------|-------------------|------------------|-------------------|----------------|------------|--|
| Worse case mode: |                | GFSK                |                   | Test<br>channel: | Highest           | Remark         | : Peak     |  |
| NO.              | Freq.<br>[MHz] | Reading<br>[dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB]   | Limit<br>[dBµV/m] | Margin<br>[dB] | Polarity   |  |
| 1                | 4960.000       | 44.52               | 50.48             | 5.96             | 74.00             | 23.52          | Horizontal |  |
| 2                | 7440.000       | 28.53               | 41.05             | 12.52            | 74.00             | 32.95          | Horizontal |  |
| 3                | 8370.8371      | 32.55               | 46.66             | 14.11            | 74.00             | 27.34          | Horizontal |  |
| 4                | 9920.000       | 28.26               | 44.06             | 15.80            | 74.00             | 29.94          | Horizontal |  |
| 5                | 11252.2502     | 31.50               | 50.55             | 19.05            | 74.00             | 23.45          | Horizontal |  |
| 6                | 12400.000      | 28.75               | 48.00             | 19.25            | 74.00             | 26.00          | Horizontal |  |
| 7                | 4960.000       | 43.44               | 49.39             | 5.95             | 74.00             | 24.61          | Vertical   |  |
| 8                | 7440.000       | 30.44               | 42.96             | 12.52            | 74.00             | 31.04          | Vertical   |  |
| 9                | 8406.9157      | 34.45               | 49.01             | 14.56            | 74.00             | 24.99          | Vertical   |  |
| 10               | 9920.000       | 29.07               | 44.87             | 15.80            | 74.00             | 29.13          | Vertical   |  |
| 11               | 11818.7819     | 31.99               | 50.86             | 18.87            | 74.00             | 23.14          | Vertical   |  |
| 12               | 12400.000      | 28.27               | 47.52             | 19.25            | 74.00             | 26.48          | Vertical   |  |

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.





Report No. : EED32K00144501 Page 36 of 43

# PHOTOGRAPHS OF TEST SETUP

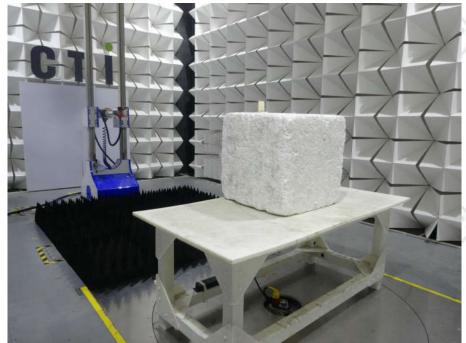
Test model No.: RFM-CSB-3



Radiated spurious emission Test Setup-1(9k-30M)



Radiated spurious emission Test Setup-2(30M-1G)






(cri







Radiated spurious emission Test Setup-3(Above 1GHz)



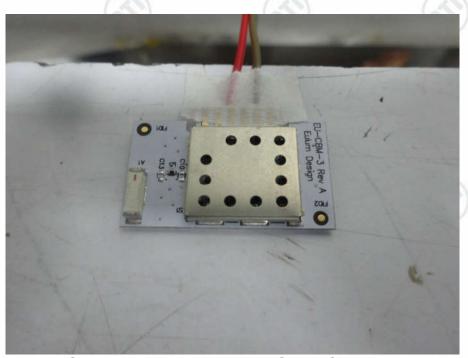
Radiated spurious emission Test Setup-4(Close up)














Report No. : EED32K00144501 Page 38 of 43



**Conducted Emissions Test Setup** 



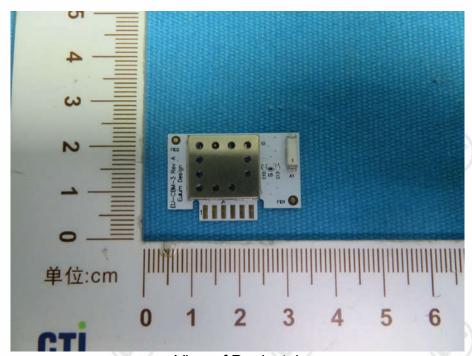
Conducted Emissions Test Setup(Close up)



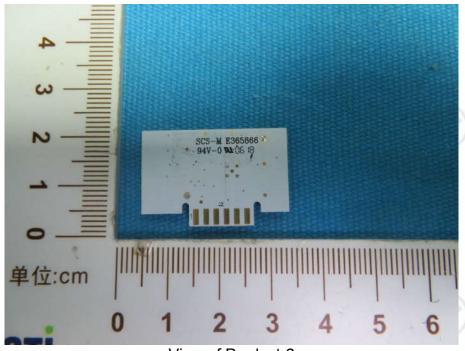










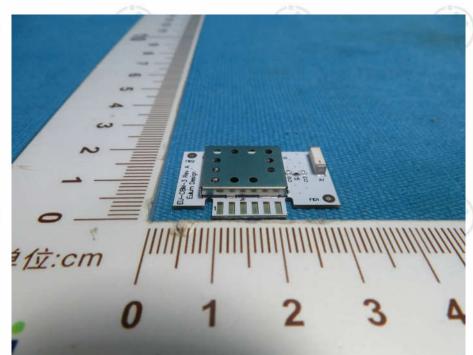

# **PHOTOGRAPHS OF EUT Constructional Details**

Test model No.: RFM-CSB-3

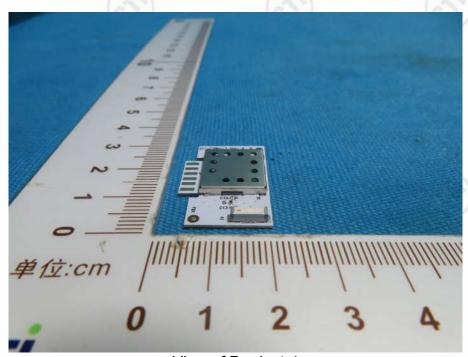


View of Product-1




View of Product-2




Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Report No. : EED32K00144501 Page 40 of 43



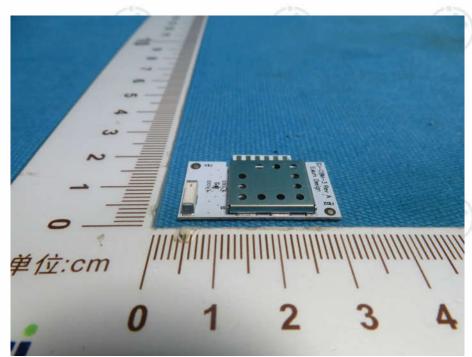
View of Product-3



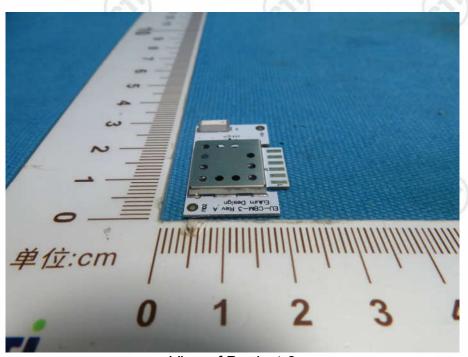
View of Product-4












Report No. : EED32K00144501 Page 41 of 43



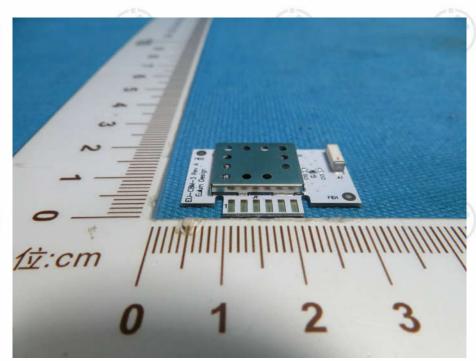
View of Product-5



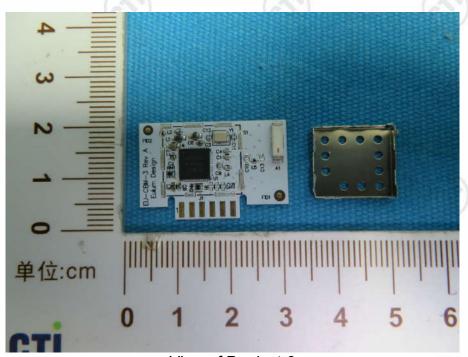
View of Product-6












Report No. : EED32K00144501 Page 42 of 43



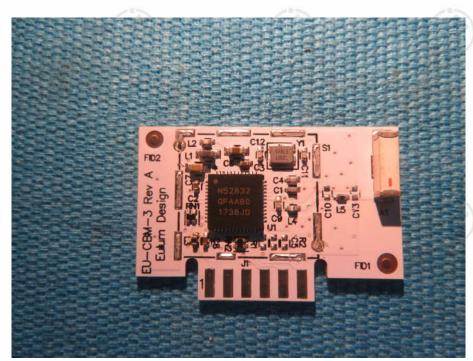
View of Product-7



View of Product-8



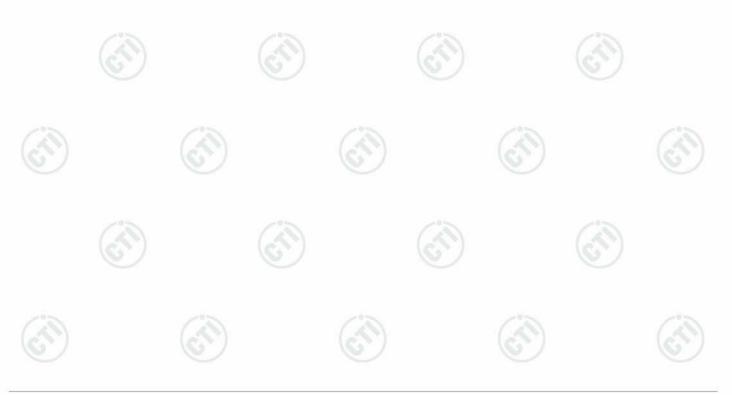












Report No. : EED32K00144501 Page 43 of 43



View of Product-9

## \*\*\* End of Report \*\*\*

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

