

FCC Test Report

(PART 90R)

Report No.: RFBFBE-WTW-P22030942-3

FCC ID: 2AJLF-VAB-1

Test Model: VAB-1

Received Date: 2022/6/7

Test Date: 2022/7/20 ~ 2022/7/30

Issued Date: 2022/8/22

Applicant: DataRemote Incorporated

Address: 18001 Old Cutler Rd. Suite 600, Miami, FL 33157

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location (1): No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City

33383, Taiwan

Test Location (2): B2F., No.215, Sec. 3, Beixin Rd., Xindian Dist., New Taipei City 231, Taiwan

FCC Registration / 788550 / TW0003

Designation Number: 427177 / TW0011

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Table of Contents

Release Control Record					
1	Cer	tificate of Conformity	. 5		
2	Sun	nmary of Test Results	. 6		
	21	Measurement Uncertainty	6		
		Test Site and Instruments			
3	Gon	neral Information	Ω		
J					
		General Description of EUT			
	3.2	Configuration of System under Test			
	3.3	Test Mode Applicability and Tested Channel Detail			
		General Description of Applied Standards and references			
4		t Types and Results			
-					
	4.1	Output Power Measurement			
		4.1.1 Limits of Output Power Measurement			
		4.1.3 Test Setup			
		4.1.4 Test Results			
	4.2	Modulation Characteristics Measurement			
		4.2.1 Limits of Modulation Characteristics			
		4.2.2 Test Setup			
		4.2.3 Test Procedure			
	43	Frequency Stability Measurement			
	4.5	4.3.1 Limits of Frequency Stability Measurement			
		4.3.2 Test Procedure			
		4.3.3 Test Setup			
		4.3.4 Test Results			
	4.4	Occupied Bandwidth Measurement			
		4.4.1 Limits of Occupied Bandwidth Measurement			
		4.4.3 Test Setup			
		4.4.4 Test Results			
	4.5	Emission Mask Measurement			
		4.5.1 Limits of Emission Mask Measurement			
		4.5.2 Test Setup			
		4.5.3 Test Procedures			
	46	4.5.4 Test Results			
	4.0	4.6.1 Limits of Band Edge Measurement			
		4.6.2 Test Setup			
		4.6.3 Test Procedures	26		
		4.6.4 Test Results			
	4.7				
		4.7.1 Limits of Conducted Spurious Emissions Measurement			
		4.7.3 Test Procedure			
		4.7.4 Test Results			
	4.8	Radiated Emission Measurement	34		
		4.8.1 Limits of Radiated Emission Measurement			
		4.8.2 Test Procedure			
		4.8.3 Deviation from Test Standard			
		4.8.4 Test Setup			
		T.O.O TOST NOSURE	50		

5 Pictures of Test Arrangements	41
Appendix – Information of the Testing Laboratories	

Release Control Record

Issue No.	Description	Date Issued
RFBFBE-WTW-P22030942-3	Original Release	2022/8/22

1 Certificate of Conformity

Product: Cellular Backup Router

Brand: DATAREMOTE

Test Model: VAB-1

Sample Status: Engineering Sample

Applicant: DataRemote Incorporated

Test Date: 2022/7/20 ~ 2022/7/30

Standards: FCC Part 90, Subpart I, R

FCC Part 2

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :	Vera Huang	, Date:	2022/8/22	
	Vera Huang / Specialist			
Approved by :	Jeremy Lin Jeremy Lin / Project Engineer	, Date:	2022/8/22	

2 Summary of Test Results

	Applied Standard: FCC Part 90 & Part 2 (LTE 14)						
FCC Clause	Test Item	Result	Remarks				
2.1046 90.542 (a)(7) Effective Radiated Power		Pass	Meet the requirement of limit.				
2.1047	Modulation Characteristics	Pass	Meet the requirement.				
2.1055 90.539 (e)	Frequency Stability	Pass	Meet the requirement of limit.				
2.1049	Occupied Bandwidth	Pass	Meet the requirement of limit.				
90.210 (n)	Emission Masks	Pass	Meet the requirement of limit.				
2.1053 90.543 (e)(2)(3)	Band Edge Measurements	Pass	Meet the requirement of limit.				
2.1051 90.543 (e)(3)	Conducted Spurious Emissions	Pass	Meet the requirement of limit.				
2.1053 90.543 (e)(f)	Radiated Spurious Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -17.31 dB at 1591.00 MHz.				

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
	9 kHz ~ 30 MHz	3.0400 dB
Radiated Emissions up to 1 GHz	30 MHz ~ 200 MHz	2.0153 dB
	200 MHz ~ 1000 MHz	2.0224 dB
Radiated Emissions above 1 GHz	1 GHz ~ 18 GHz	1.0121 dB
Radiated Effissions above 1 GHz	18 GHz ~ 40 GHz	1.1508 dB

2.2 Test Site and Instruments

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until	
Antenna Tower Max-Full	I UNAT 5+ I		N/A	N/A	
Antenna Tower Controller Max-Full	MF-7802	N/A	N/A	N/A	
Bi_Log Antenna Schwarzbeck	VULB9168	9168-616	2021/10/27	2022/10/26	
Preamplifier Agilent	310N	187226	2022/6/14	2023/6/13	
Pre-amplifier EMCI	EMC001340	980201	2021/9/15	2022/9/14	
RF Coaxial Cable EMCI	5D-NM-BM	140903+140902	2022/1/15	2023/1/14	
RF Coaxial Cable	EMC104-SM-SM-10000	Cable-CH1-01(RFC-SMS-100- SMS-120+RFC-SMS-100-SMS-4	2022/6/14	2023/6/13	
ETS-Lindgren	RFC-SMS-100-SMS-24-IN		2022/6/14	2023/6/13	
Software ADT_Radiated_		N/A	N/A	NI/A	
BV ADT V7.6.15.9.5		IV/A	IN/A	N/A	
Test Receiver Agilent	N9038A	MY52260177	2021/9/1	2022/8/31	
Turn Table Max-Full	TT-1510	N/A	N/A	N/A	
Turn Table Controller Max-Full	MF-7802	N/A	N/A	N/A	
Boresight antenna tower fixture BV	BAF-02	8	N/A	N/A	
Horn Antenna 3117 ETS-Lindgren		00143293	2021/11/14	2022/11/13	
Horn Antenna Schwarzbeck	BBHA 9170	BBHA9170241	2021/10/26	2022/10/25	
Radio Communication Analyzer MT8821C Anritsu		6261806803	2022/2/16	2023/2/15	

Notes:

^{1.} The test was performed in XD - 966 chamber 6.

^{2.} The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3 General Information

3.1 General Description of EUT

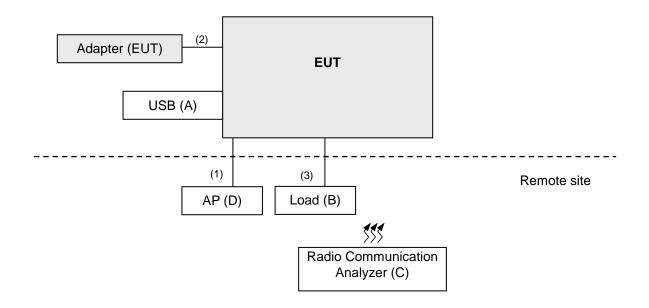
Product	Cellular Backup Router			
Brand	DATAREMOTE			
Test Model	VAB-1			
Status of EUT	Engineering Sample			
Power Supply Rating	12Vdc / 19Vdc (from adapter)			
Modulation Type	LTE	QPSK, 16QAM		
Fraguenay Banga	LTE Band 14 (Channel Bandwidth: 5 MHz) 790.5 ~ 795.5 MHz			
Frequency Range	LTE Band 14 (Channel Bandwidth: 10 MHz)	793 MHz		
Emissian Designator	LTE Band 14 (Channel Bandwidth: 5 MHz) 4M49G7D			
Emission Designator	LTE Band 14 (Channel Bandwidth: 10 MHz)	8M94G7D		
Max. ERP Power	LTE Band 14 (Channel Bandwidth: 5 MHz)	162.181 mW (22.10dBm)		
wax. ERP Power	LTE Band 14 (Channel Bandwidth: 10 MHz) 160.694 mW (22.06dBr			
Antenna Type	Refer to Note as below			
Accessory Device	Refer to Note as below			
Data Cable Supplied Refer to Note as below				

Note:

1. The EUT contains following accessory devices.

	Brand	MOSO		
	Model	MSS-V2500WR120-030E0-US		
AC Adapter 1	AC Input	100-240V, 50/60Hz, 1A max.		
	DC Output	12V, 2.5A		
	DC Output Cable	1.5m, Non-shielded		
	Brand	MOSO		
	Model	MS-V3420R190-065L0-US		
AC Adapter 2	AC Input	100-240V, 50/60Hz, 1.5A max.		
	DC Output	DC Output 19V, 3.42A		
	DC Output Cable	1.5m, Non-shielded		
Ethernet Cable 1	Signal Line	1.5m, Non-shielded, yellow		
Ethernet Cable 2	Signal Line	1.5m, Non-shielded, red		
Phone Cable	Signal Line	1.5m, Non-shielded, gray		
Power Cable 1	Model	BGW-210		
Power Cable 1	Signal Line	1.5m, Non-shielded, black		
Dower Cable 2	Model	BGW-320		
Power Cable 2	Signal Line	1.5m, Non-shielded, white		

^{*}After pretesting, Adapter 1 was the worst case and chosen for final test.


2. The antenna information is listed as below.

Antenna Type	Dipole Antenna			
Dand	Antenna Gain (dBi)			
Band	Ant. 1	Ant. 2		
LTE 14	1.65	1.65		

- 3. Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.
- 4. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Configuration of System under Test

3.2.1 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α	USB	SanDisk	BM210257950Z	N/A	N/A	Supplied by lab
В	Load	N/A	N/A	N/A	N/A	Supplied by lab
С	Radio Communication Analyzer	Anritsu	MT8821C	6261806803	N/A	Supplied by lab
D	AP	ASUS	AC750	H7ITDV002001	NA	Supplied by lab

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	RJ-45 Cable	4	2	No	0	Supplied by lab
2.	AC Cable	1	1.5	No	0	Supplied by applicant
3.	RJ-41 Cable	1	2	No	0	Supplied by lab

3.3 Test Mode Applicability and Tested Channel Detail

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis, and antenna ports

The worst case was found when positioned as the table below. Following channel(s) was (were) selected for the final test as listed below:

Band	Radiated Emission
LTE Band 14	90 degree

LTE Band 14

EUT Configure Mode	Test Item	Available Channel	Tested Channel	Channel Bandwidth	Modulation	RB#
	ERP	23305 to 23355	23305, 23330, 23355	5 MHz	QPSK, 16QAM	1 Half Full
_	LKF	23330	23330	10 MHz	QPSK, 16QAM	1 Half Full
-	Modulation Characteristics	23330	23330	10 MHz	QPSK, 16QAM	Full
	Frequency	23305 to 23355	23305, 23355	5 MHz	QPSK	Full
-	Stability	23330	23330	10 MHz	QPSK	Full
	Occupied	23305 to 23355	23305, 23330, 23355	5 MHz	QPSK, 16QAM	Full
-	- Bandwidth	23330	23330	10 MHz	QPSK, 16QAM	Full
	Emission Mask	23305 to 23355	23305, 23330, 23355	5 MHz	QPSK, 16QAM	Full
-	EIIIISSIOII WASK	23330	23330	10 MHz	QPSK, 16QAM	Full
	Dand Edua	23305 to 23355	23305, 23355	5 MHz	QPSK, 16QAM	1 Half Full
-	Band Edge	23330	23330	10 MHz	QPSK, 16QAM	1 Half Full
	Conducted	23305 to 23355	23305, 23330, 23355	5 MHz	QPSK	1
	Emission	23330	23330	10 MHz	QPSK	1
-	Radiated Emission Below 1GHz	23305 to 23355	23355	5 MHz	QPSK	1
	Radiated	23305 to 23355	23305, 23330, 23355	5 MHz	QPSK	1
-	Emission Above 1GHz	23330	23330	10 MHz	QPSK	1

Note:

- This device was tested under all bandwidths, RB configurations and modulations. The worst case was
 found in QPSK modulation. Therefore, only ERP, modulation characteristics, occupied bandwidth,
 emission mask and band edge, peak to average ratio items had been tested under QPSK, 16QAM mode,
 the other items were performed under QPSK mode only.
- 2. For radiated emission above 1 GHz, according to 3GPP 36.521 Section 6.6.3.1.4, choose the lowest, 5 MHz & highest channel bandwidth for final test.
- 3. For radiated emissions below 1 GHz, select the worst radiated emission channel for final testing.

Test Condition:

Test Item	Environmental Conditions	Input Power	Tested By
ERP	25 deg. C, 65 % RH	120 Vac, 60 Hz	James Yang
Modulation Characteristics	25 deg. C, 65 % RH	120 Vac, 60 Hz	James Yang
Frequency Stability	25 deg. C, 65 % RH	120 Vac, 60 Hz	James Yang
Occupied Bandwidth	25 deg. C, 65 % RH	120 Vac, 60 Hz	James Yang
Emission Mask	25 deg. C, 65 % RH	120 Vac, 60 Hz	James Yang
Band Edge	25 deg. C, 65 % RH	120 Vac, 60 Hz	James Yang
Conducted Emission	25 deg. C, 65 % RH	120 Vac, 60 Hz	James Yang
Radiated Emission Below 1GHz	26 deg. C, 62 % RH	120 Vac, 60 Hz	Charles Hsiao
Radiated Emission Above 1GHz	25 deg. C, 60 % RH	120 Vac, 60 Hz	Karl Lee

3.4 General Description of Applied Standards and references

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test Standard:

FCC 47 CFR Part 2

FCC 47 CFR Part 90

ANSI/TIA/EIA-603-E 2016

ANSI 63.26-2015

All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 971168 D01 Power Meas License Digital Systems v03r01

KDB 971168 D02 Misc Rev Approv License Devices v02r01

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Output Power Measurement

4.1.1 Limits of Output Power Measurement

Portable stations (hand-held devices) transmitting in the 758-768 MHz band and the 788-798 MHz band are limited to 3 watts ERP.

4.1.2 Test Procedures

Conducted Power Measurement:

The EUT was set up for the maximum power with LTE link data modulation and link up with simulator (Built-in power meter). Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

Maximum EIRP / ERP

The relevant equation for determining the maximum ERP or EIRP from the measured RF output power is given in Equation as follows:

 $EIRP = P_{Meas} + G_{T}$

 $ERP = P_{Meas} + G_T - 2.15$

where

ERP or EIRP effective radiated power or equivalent isotropically radiated power, respectively

(expressed in the same units as P_{Meas}, e.g., dBm or dBW)

 $\begin{array}{ll} P_{\text{Meas}} & \text{measured transmitter output power or PSD, in dBm or dBW} \\ G_{\text{T}} & \text{gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP)} \end{array}$

4.1.3 Test Setup

Conducted Power Measurement:

Communication
Simulator
(Built-in power meter)

4.1.4 Test Results

Conducted Output Power (dBm)

	LTE Band 14							
	1400	RB Size	RB Offset	Low	Mid	High		
BW	MCS Index	Cha	innel	23305	23330	23355		
	index	Frequen	cy (MHz)	790.5	793	795.5		
		1	0	22.42	22.60	22.55		
		1	12	22.41	22.51	22.51		
		1	24	22.55	22.51	22.46		
5M	QPSK	12	0	21.76	21.57	21.71		
		12	6	21.66	21.65	21.60		
		12	13	21.70	21.79	21.58		
		25	0	21.63	21.58	21.75		
		1	0	21.69	21.62	21.67		
		1	12	21.75	21.70	21.67		
		1	24	21.75	21.75	21.74		
5M	16QAM	12	0	20.73	20.84	20.86		
		12	6	20.98	20.94	20.83		
		12	13	20.81	20.80	20.83		
		25	0	20.78	20.72	20.94		

	LTE Band 14						
	1400	RB Size	RB Offset	Mid			
BW	MCS Index	Cha	innel	23330			
	index	Frequen	cy (MHz)	793			
		1	0	22.50			
		1	24	22.56			
		1	49	22.52			
10M	QPSK	25	0	21.62			
		25	12	21.69			
		25	25	21.67			
		50	0	21.60			
		1	0	21.65			
		1	24	21.58			
		1	49	21.62			
10M	16QAM	25	0	20.85			
		25	12	20.92			
		25	25	20.70			
		50	0	21.00			

ERP Power (dBm)

	LTE Band 14							
	1400	RB Size	RB Offset	Low	Mid	High		
BW	MCS Index	Cha	innel	23305	23330	23355		
	IIIdex	Frequen	cy (MHz)	790.5	793	795.5		
		1	0	21.92	22.10	22.05		
		1	12	21.91	22.01	22.01		
		1	24	22.05	22.01	21.96		
5M	QPSK	12	0	21.26	21.07	21.21		
		12	6	21.16	21.15	21.10		
		12	13	21.20	21.29	21.08		
		25	0	21.13	21.08	21.25		
		1	0	21.19	21.12	21.17		
		1	12	21.25	21.20	21.17		
		1	24	21.25	21.25	21.24		
5M	16QAM	12	0	20.23	20.34	20.36		
		12	6	20.48	20.44	20.33		
		12	13	20.31	20.30	20.33		
		25	0	20.28	20.22	20.44		

^{*}ERP = Conducted + antenna gain (1.65dBi)-2.15

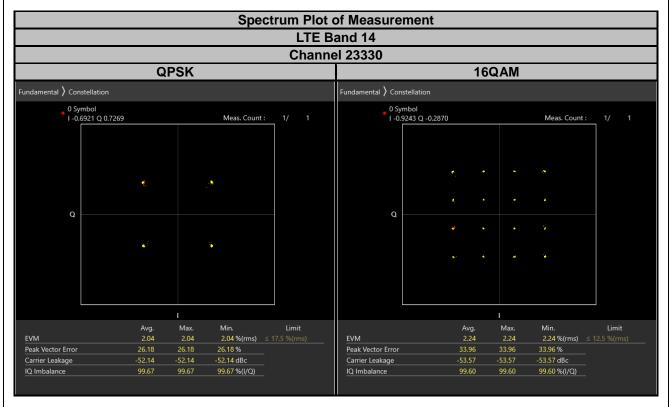
	LTE Band 14						
	1400	RB Size	RB Offset	Mid			
BW	MCS Index	Cha	innel	23330			
	ilidex	Frequen	cy (MHz)	793			
		1	0	22.00			
		1	24	22.06			
		1	49	22.02			
10M	QPSK	25	0	21.12			
		25	12	21.19			
		25	25	21.17			
		50	0	21.10			
		1	0	21.15			
		1	24	21.08			
		1	49	21.12			
10M	16QAM	25	0	20.35			
		25	12	20.42			
		25	25	20.20			
		50	0	20.50			

^{*}ERP = Conducted + antenna gain (1.65dBi)-2.15

4.2 Modulation Characteristics Measurement

4.2.1 Limits of Modulation Characteristics

N/A


4.2.2 Test Setup

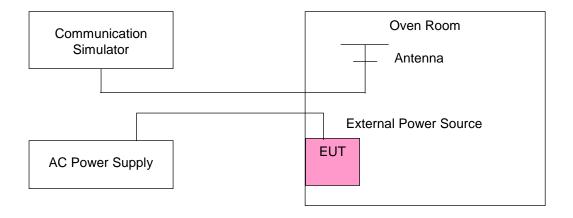
4.2.3 Test Procedure

Connect the EUT to Communication Simulator via the antenna connector. The frequency band is set as EUT supported Modulation and Channels, the EUT output is matched with 50 ohm load, the waveform quality and constellation of the EUT was tested.

4.2.4 Test Results

4.3 Frequency Stability Measurement

4.3.1 Limits of Frequency Stability Measurement


The frequency stability of mobile, portable and control transmitters operating in the wideband segment must be 1.25 parts per million or better when AFC is locked to a base station, and 5 parts per million or better when AFC is not locked.

4.3.2 Test Procedure

- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the AC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the ±0.5°C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

NOTE: The frequency error was recorded frequency error from the communication simulator.

4.3.3 Test Setup

4.3.4 Test Results

Frequency Error vs. Voltage

	LTE Band 14				
Voltage	Channel Bandwidth: 5 MHz				
(Volts)	Low C	hannel	High C	hannel	
, ,	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
108	790.5000035	0.004	795.5000014	0.002	
120	790.5000036	0.005	795.5000032	0.004	
132	790.5000035	0.004	795.5000036	0.005	

 $\textbf{Note:} \ \text{The applicant defined the normal working voltage is from 108 Vac to 132 Vac.}$

Frequency Error vs. Temperature

		LTE Band 14					
	Channel Bandwidth: 5 MHz						
Temp. (°C)	Low Cl	hannel	High C	hannel			
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)			
-30	790.5000031	0.004	795.5000037	0.005			
-20	790.5000037	0.005	795.5000023	0.003			
-10	790.5000032	0.004	795.5000026	0.003			
0	790.5000031	0.004	795.5000012	0.002			
10	790.5000034	0.004	795.5000030	0.004			
20	790.4999968	-0.004	795.4999988	-0.002			
30	790.4999973	-0.003	795.4999988	-0.002			
40	790.4999974	-0.003	795.4999974	-0.003			
50	790.4999970	-0.004	795.4999966	-0.004			

Frequency Error vs. Voltage

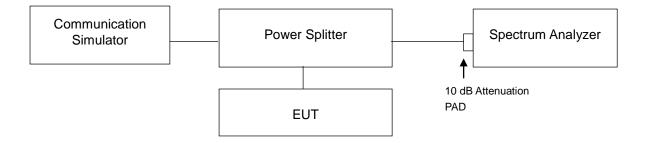
W 16	Voltage (Volts) LTE Band 14 Channel Bandwidth: 10 MHz				
_					
(Voits)	Frequency (MHz)	Frequency Error (ppm)			
108	793.0000013	0.002			
120	793.0000032	0.004			
132	793.0000025	0.003			

Note: The applicant defined the normal working voltage is from 108 Vac to 132 Vac.

Frequency Error vs. Temperature

	LTE Band 14				
Temp. (°C)	Channel Bar	ndwidth: 10 MHz			
	Frequency (MHz)	Frequency Error (ppm)			
-30	793.0000019	0.002			
-20	793.0000024	0.003			
-10	793.0000015	0.002			
0	793.0000019	0.002			
10	793.0000036	0.005			
20	792.9999973	-0.003			
30	792.9999978	-0.003			
40	792.999987	-0.002			
50	792.9999966	-0.004			

4.4 Occupied Bandwidth Measurement

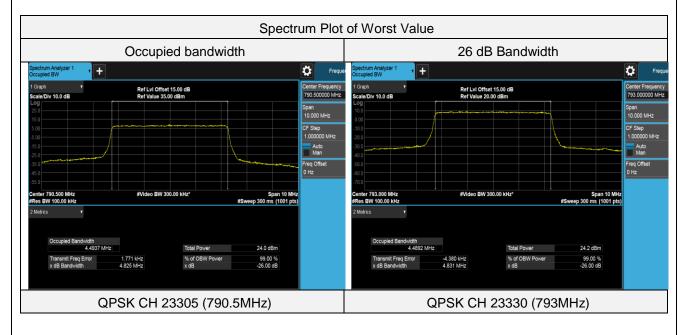

4.4.1 Limits of Occupied Bandwidth Measurement

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 %of the total mean power of a given emission.

4.4.2 Test Procedure

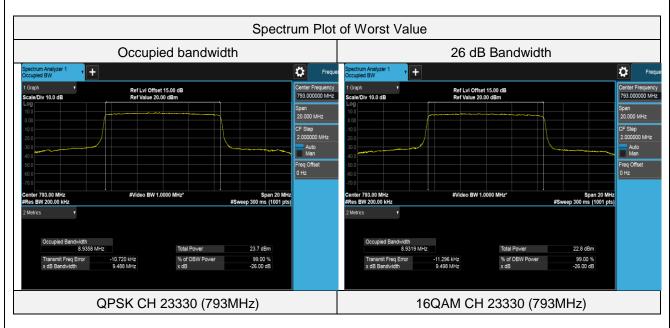
The EUT makes a call to the communication simulator. All measurements were done at low, middle and high operational frequency range. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.

4.4.3 Test Setup



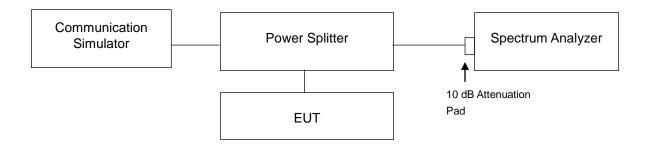
4.4.4 Test Results

LTE Band 14 (Channel Bandwidth 5MHz)


Test Condition	Channel	Frequency (MHz)	Occupied bandwidth (MHz)	26 dB Bandwidth (MHz)
QPSK	23305	790.5	4.4937	4.825
QPSK	23330	793	4.4892	4.831
QPSK	23355	795.5	4.4899	4.824
16QAM	23305	790.5	4.4893	4.814
16QAM	23330	793	4.4874	4.807
16QAM	23355	795.5	4.4866	4.819

LTE Band 14 (Channel Bandwidth 10MHz)

Test Condition	Channel	Frequency (MHz)	Occupied bandwidth (MHz)	26 dB Bandwidth (MHz)
QPSK	23330	793	8.9358	9.488
16QAM	23330	793	8.9319	9.498

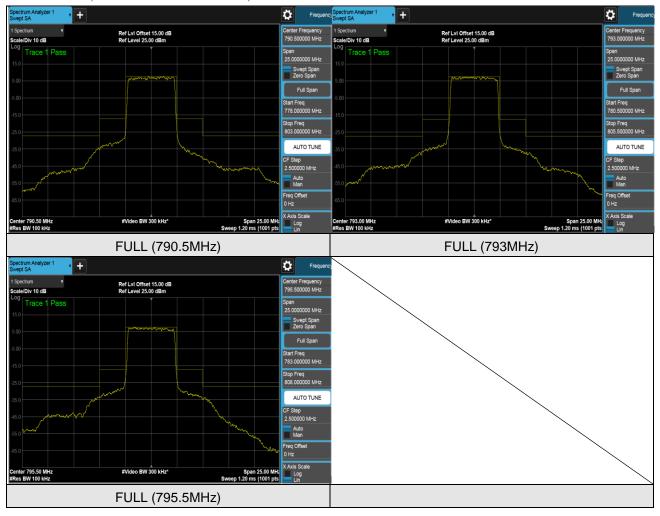


4.5 Emission Mask Measurement

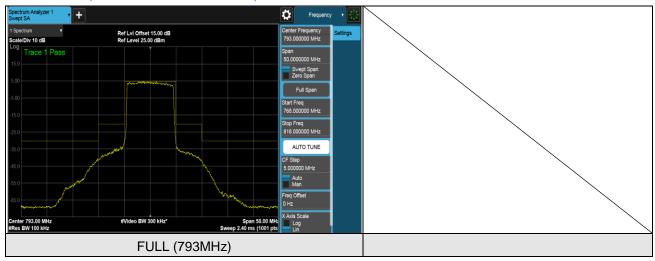
4.5.1 Limits of Emission Mask Measurement

- 1. On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
- 2. On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
- 3. On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.

4.5.2 Test Setup

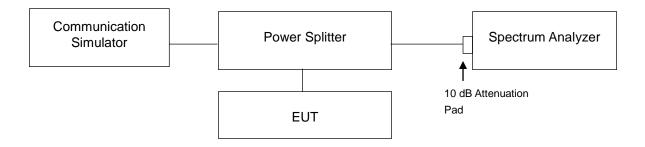

4.5.3 Test Procedures

- a. The measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.
- b. Record the test plot.


4.5.4 Test Results

LTE Band 14 (Channel Bandwidth 5MHz)

LTE Band 14 (Channel Bandwidth 10MHz)

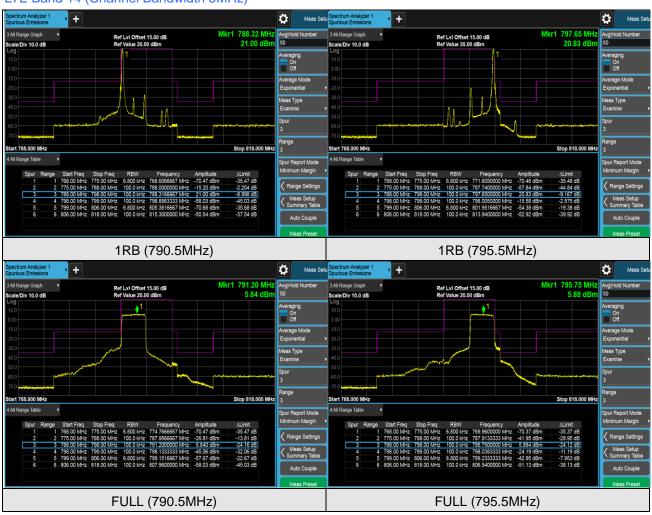


4.6 Band Edge Measurement

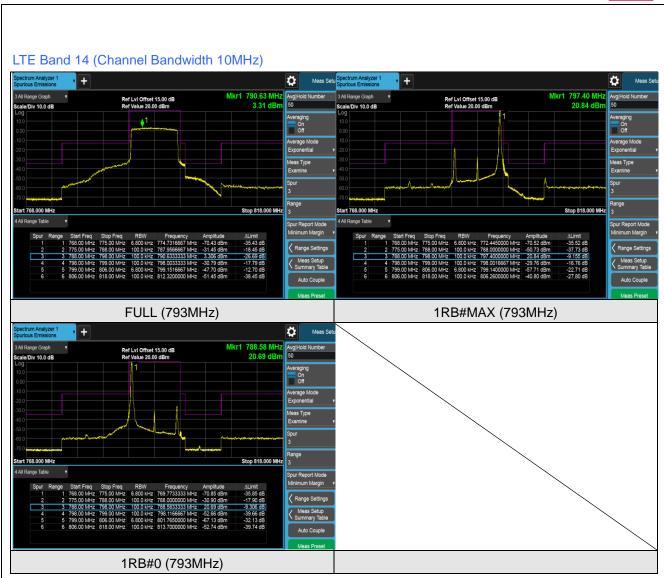
4.6.1 Limits of Band Edge Measurement

- (1) On all frequencies between 769 775 MHz and 799 805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations.
- (2) On all frequencies between 769 775 MHz and 799 805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations.
- (3) On any frequency between 775 788 MHz, above 805 MHz, and below 758 MHz, by at least 43 + 10 log (P).

4.6.2 Test Setup

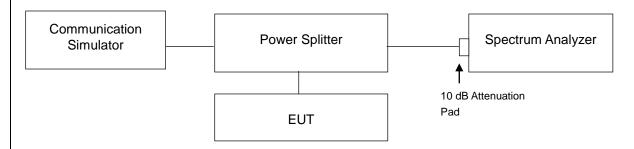

4.6.3 Test Procedures

- a. All measurements were done at low and high operational frequency range.
- b. The detector of the spectrum is RMS, and if the device can be configured to transmit continuously (duty cycle ≥ 98%), set the (sweep time) > (number of points in sweep) × (symbol period) (e.g., by a factor of 10 x symbol period x number of points). Increasing the sweep time (i.e., slowing the sweep speed) will allow for averaging over multiple symbols.
- c. The band edge measurement used the power splitter via EUT RF power connector between signal generator and spectrum analyzer. This splitter loss, attenuator loss and cable loss are the worst loss 15 dB in the transmitted path track.
- d. Record the max. trace plot into the test report.



4.6.4 Test Results

LTE Band 14 (Channel Bandwidth 5MHz)

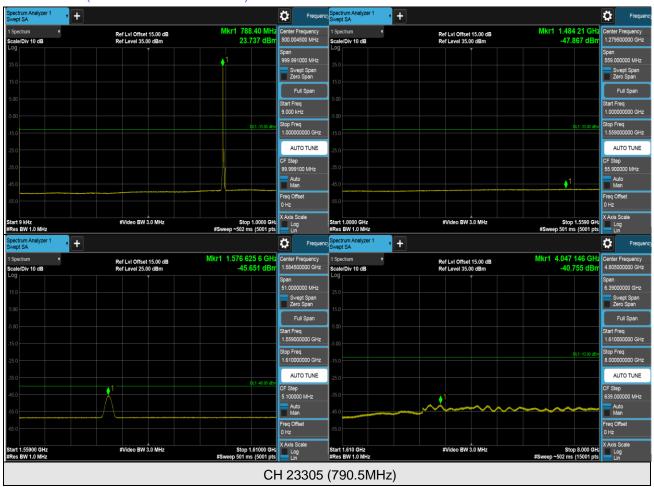

4.7 Conducted Spurious Emissions

4.7.1 Limits of Conducted Spurious Emissions Measurement

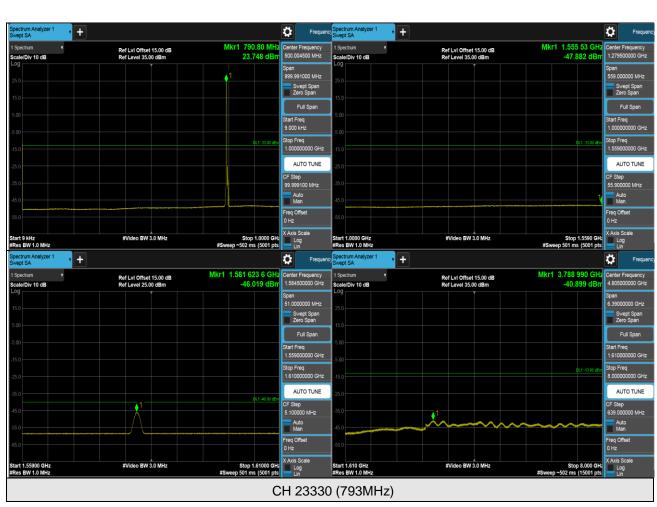
The power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 +10 log₁₀(P) dB. The limit of emission is equal to -13 dBm.

On all frequencies between 769–775 MHz and 799–805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations.

4.7.2 Test Setup


4.7.3 Test Procedure

- a. The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range.
- b. The detector of the spectrum is RMS, and if the device can be configured to transmit continuously (duty cycle ≥ 98%), set the (sweep time) > (number of points in sweep) × (symbol period) (e.g., by a factor of 10 × symbol period × number of points). Increasing the sweep time (i.e., slowing the sweep speed) will allow for averaging over multiple symbols.
- c. Measuring frequency range is from 9 kHz to 1 GHz. 10 dB attenuation pad is connected with spectrum. RBW = 1 MHz and VBW = 3 MHz are used for conducted emission measurement.
- d. Measuring frequency range is from 1 GHz to 8 GHz. 10 dB attenuation pad is connected with spectrum. RBW = 1 MHz and VBW = 3 MHz are used for conducted emission measurement.



4.7.4 Test Results

LTE Band 14 (Channel Bandwidth 5MHz)

LTE Band 14 (Channel Bandwidth 10MHz)

4.8 Radiated Emission Measurement

4.8.1 Limits of Radiated Emission Measurement

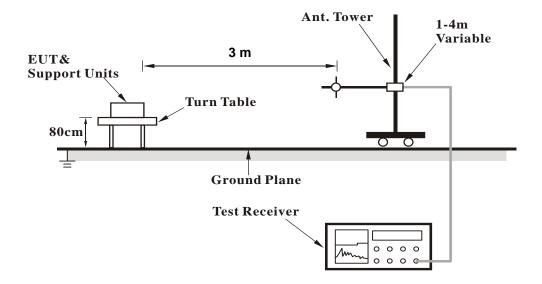
- (1) The power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 +10 log (P) dB. The limit of emission is equal to -13 dBm.
- (2) For operations in the 758-775 MHz and 788-805 MHz bands, all emissions including harmonics in the band 1559-1610 MHz shall be limited to −70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and −80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth.

4.8.2 Test Procedure

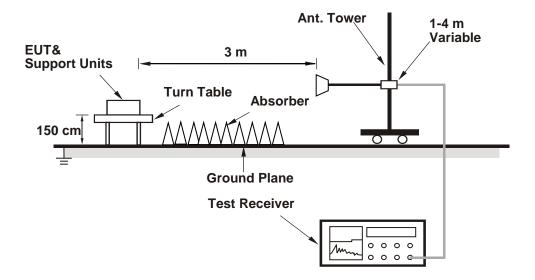
- a. In the semi-anechoic chamber, EUT placed on the 0.8m(below or equal 1GHz) and/or 1.5m(above 1GHz) height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. Perform a field strength measurement and record the worse read value, is the field strength value via a spectrum reading obtained corrected for antenna factor, cable loss and pre-amplifier factor and then mathematically convert the measured field strength level to EIRP/ERP level.
- d. Following C63.26 section 5.5 and 5.2.7
 - EIRP (dBm) = E (dBμV/m) + 20log(D) 104.8; where D is the measurement distance (in the far field region) in m.
 - ERP (dBm) = E (dBµV/m) + 20log(D) 104.8 2.15; where D is the measurement distance (in the far field region) in m.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.
- The emission levels were against the limit of frequency range 9 kHz ~ 30 MHz:
 The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.


4.8.3 Deviation from Test Standard

No deviation.



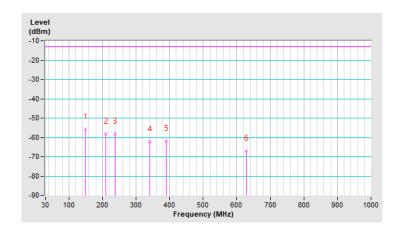
4.8.4 Test Setup

<Radiated Emission below or equal 1 GHz>

<Radiated Emission above 1 GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.8.5 Test Results

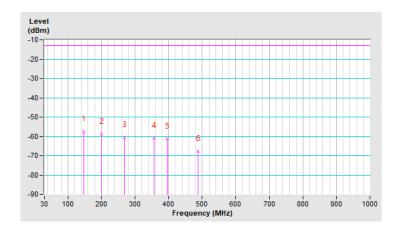

Below 1GHz

LTE Band 14, Channel Bandwidth 5MHz

Mode	TX channel 23355 (795.5MHz)	Frequency Range	Below 1000 MHz					
Environmental Conditions	26deg. C, 62%RH	Input Power	120Vac, 60Hz					
Tested By	Charles Hsiao							

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	148.85	-55.90	-13.00	-42.90	1.76 H	140	59.13	-115.03		
2	210.66	-58.00	-13.00	-45.00	1.43 H	130	60.29	-118.29		
3	236.65	-58.18	-13.00	-45.18	1.95 H	326	58.74	-116.92		
4	341.10	-62.05	-13.00	-49.05	1.51 H	111	51.47	-113.52		
5	390.80	-61.88	-13.00	-48.88	1.45 H	144	50.46	-112.34		
6	628.00	-66.85	-13.00	-53.85	1.19 H	99	40.55	-107.40		

- 1. ERP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + 20log(D) 104.8 2.15
- 3. Margin value = ERP Limit value.
- 4. The other ERP levels were very low against the limit.



Mode	TX channel 23355 (795.5MHz)	Frequency Range	Below 1000 MHz
Environmental Conditions	26deg. C, 62%RH	Input Power	120Vac, 60Hz
Tested By	Charles Hsiao		

	Antenna Polarity & Test Distance : Vertical at 3m									
No	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	146.82	-57.36	-13.00	-44.36	1.75 V	157	57.62	-114.98		
2	199.98	-58.72	-13.00	-45.72	1.53 V	208	59.67	-118.39		
3	268.50	-60.63	-13.00	-47.63	1.15 V	24	55.03	-115.66		
4	356.50	-60.70	-13.00	-47.70	1.18 V	158	52.60	-113.30		
5	396.50	-61.14	-13.00	-48.14	1.14 V	154	51.08	-112.22		
6	487.77	-67.66	-13.00	-54.66	1.66 V	64	42.59	-110.25		

- 1. ERP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + 20log(D) 104.8 2.15
- 3. Margin value = ERP Limit value.
- 4. The other ERP levels were very low against the limit.

Above 1GHz

LTE Band 14, Channel Bandwidth: 5MHz

Mode	TX channel 23305 (790.5MHz)	Frequency Range	1GHz ~ 8GHz
Environmental Conditions	25deg. C, 60%RH	Input Power	120Vac, 60Hz
Tested By	Karl Lee		

	Antenna Polarity & Test Distance : Horizontal at 3 m									
	Frequency	EIRP	Limit	Margin	Antenna	Table	Raw	Correction		
No	(MHz)				Height	Angle	Value	Factor		
	(IVITIZ)	(dBm)	(dBm)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)		
1	1581.00	-58.05	-40.00	-18.05	1.72 H	95	37.20	-95.25		
		P	ntenna Polai	rity & Test Dis	stance : Verti	cal at 3m				
	Fraguenay	EIRP	Limit	Morgin	Antenna	Table	Raw	Correction		
No	Frequency			Margin	Height	Angle	Value	Factor		
	(MHz)	(dBm)	(dBm)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)		
1	1581.00	-58.24	-40.00	-18.24	2.30 V	162	37.01	-95.25		

Remarks:

- 1. EIRP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + 20log(D) 104.8
- 3. Margin value = EIRP Limit value
- 4. The other EIRP levels were very low against the limit.

Mode	TX channel 23330 (793.0MHz)	Frequency Range	1GHz ~ 8GHz
Environmental Conditions	25deg. C, 60%RH	Input Power	120Vac, 60Hz
Tested By	Karl Lee		

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	1586.00	-58.85	-40.00	-18.85	2.96 H	108	36.36	-95.21	
		P	ntenna Polai	rity & Test Dis	stance : Verti	cal at 3m			
No	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	1586.00	-58.59	-40.00	-18.59	1.12 V	234	36.62	-95.21	

- 1. EIRP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + 20log(D) 104.8
- 3. Margin value = EIRP Limit value
- 4. The other EIRP levels were very low against the limit.

Mode	TX channel 23355 (795.5MHz)	Frequency Range	1GHz ~ 8GHz
Environmental Conditions	25deg. C, 60%RH	Input Power	120Vac, 60Hz
Tested By	Karl Lee		

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	1591.00	-57.31	-40.00	-17.31	2.11 H	145	37.86	-95.17	
		A	ntenna Polai	ity & Test Dis	stance : Verti	cal at 3m			
1	1591.00	-58.60	-40.00	-18.60	1.30 V	86	36.57	-95.17	

- 1. EIRP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + 20log(D) 104.8
- 3. Margin value = EIRP Limit value
- 4. The other EIRP levels were very low against the limit.

LTE Band 14, Channel Bandwidth: 10MHz

Mode	TX channel 23330 (793.0MHz)	Frequency Range	1GHz ~ 8GHz
Environmental Conditions	25deg. C, 60%RH	Input Power	120Vac, 60Hz
Tested By	Karl Lee		

Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	1586.00	-57.88	-40.00	-17.88	1.42 H	18	39.48	-97.36	
Antenna Polarity & Test Distance : Vertical at 3m									
No	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	1586.00	-59.02	-40.00	-19.02	2.09 V	145	36.19	-95.21	

- 1. EIRP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + 20log(D) 104.8
- 3. Margin value = EIRP Limit value
- 4. The other EIRP levels were very low against the limit.

5 Pi	ctures of Test Arrangements						
Please refer to the attached file (Test Setup Photo).							

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---