

RADIO TEST REPORT FCC ID: 2AJK8-SWA1

Product:	Smart WiFi socket
Trade Name:	N/A
Model No.:	SWA1
Serial Model:	SWA2, SWA3, SWA4
Report No.:	NTEK-2016NT10199429F
Issue Date:	05 Nov. 2016

Prepared for

Shenzhen Lingan Intelligent Technology Co.,Ltd Baiwang R&D Bldg, Shahe West Road, Nanshan, Shenzhen 518055 P.R.China

Prepared by

NTEK TESTING TECHNOLOGY CO., LTD. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen, 518126 P.R. China Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

	T CERTIFICATION
2 SUMMARY O	F TEST RESULTS4
3 FACILITIES	AND ACCREDITATIONS
3.2 LABORA	ES
4 GENERAL DI	ESCRIPTION OF EUT
	N OF TEST MODES
6 SETUP OF EQ	UIPMENT UNDER TEST10
6.2 SUPPORT6.3 EQUIPME	DIAGRAM CONFIGURATION OF TEST SYSTEM
7 TEST REQUI	REMENTS14
 7.2 RADIATE 7.3 6DB BAN 7.4 20DB BAN 7.5 DUTY CY 7.6 MAXIMU 7.7 POWER S 	TED EMISSIONS TEST14ED SPURIOUS EMISSION19IDWIDTH28NDWIDTH32'CLE36JM OUTPUT POWER38SPECTRAL DENSITY40NOT IN RESTRICTED BAND44

1 TEST RESULT CERTIFICATION

Shenzhen Lingan Intelligent Technology Co.,Ltd			
Baiwang R&D Bldg, Shahe West Road, Nanshan, Shenzhen 518055 P.R.China			
Shenzhen Lingan Intelligent Technology Co.,Ltd			
Baiwang R&D Bldg, Shahe West Road, Nanshan, Shenzhen 518055 P.R.China			
Smart WiFi socket			
SWA1			
SWA2, SWA3, SWA4			

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J:2016	
FCC 47 CFR Part 15, Subpart C:2016	
KDB 174176 D01 Line Conducted FAQ v01r01	Complied
ANSI C63.10-2013	
FCC KDB 558074 D01 DTS Meas Guidance v03r05	

This device described above has been tested by NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of NTEK Testing Technology Co., Ltd., this document may be altered or revised by NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	: 19 Oct. 2016 ~ 05 Nov. 2016
Testing Engineer	: Jusan Su (Susan Su)
Technical Manager	: Jason chen (Jason Chen)
Authorized Signatory	:(Sam Chen)

2 SUMMARY OF TEST RESULTS				
FCC Part15 (15.247), Subpart C				
Standard Section	Test Item	Verdict	Remark	
15.207	Conducted Emission	PASS		
15.247 (a)(2)	6dB Bandwidth	PASS		
15.247 (b)	Maximum Output Power	PASS		
15.247 (c)	Radiated Spurious Emission	PASS		
15.247 (d)	Power Spectral Density	PASS		
15.205	Emission in non-restricted Band	PASS		
15.203	Antenna Requirement	PASS		

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

2. All test items were verified and recorded according to the standards and without any deviation during the test.

 This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
EMC Lab.	: Accredited by CNAS, 2014.09.04
	The certificate is valid until 2017.09.03
	The Laboratory has been assessed and proved to be in compliance with
	CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
	The Certificate Registration Number is L5516.
	Accredited by Industry Canada, August 29, 2012
	The Certificate Registration Number is 9270A-1.
	Accredited by FCC, September 06, 2013
	The Certificate Registration Number is 238937.
Name of Firm	: NTEK Testing Technology Co., Ltd
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(<1G)	±4.68dB
5	All emissions, radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

Page 6 of 49

Report No.:NTEK-2016NT10199429F

Revision History					
Report No.	Version	Description	Issued Date		
NTEK-2016NT10199429F	Rev.01	Initial issue of report	Nov 05, 2016		

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	Smart WiFi socket	
Trade Name	N/A	
FCC ID	2AJK8-SWA1	
Model No.	SWA1	
Serial Model	SWA2, SWA3, SWA4	
Model Difference	All the model are the same circuit and RF module, except the model No.	
Operating Frequency	2412-2462MHz for 802.11b/g/11n(HT20);	
Modulation	DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;	
Number of Channels	11 channels for 802.11b/g/11n(HT20);	
Antenna	PCB Antenna	
Antenna Gain	1dBi	
	DC supply:	
Power supply	Adapter supply:	
HW Version	N/A	
SW Version	N/A	

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

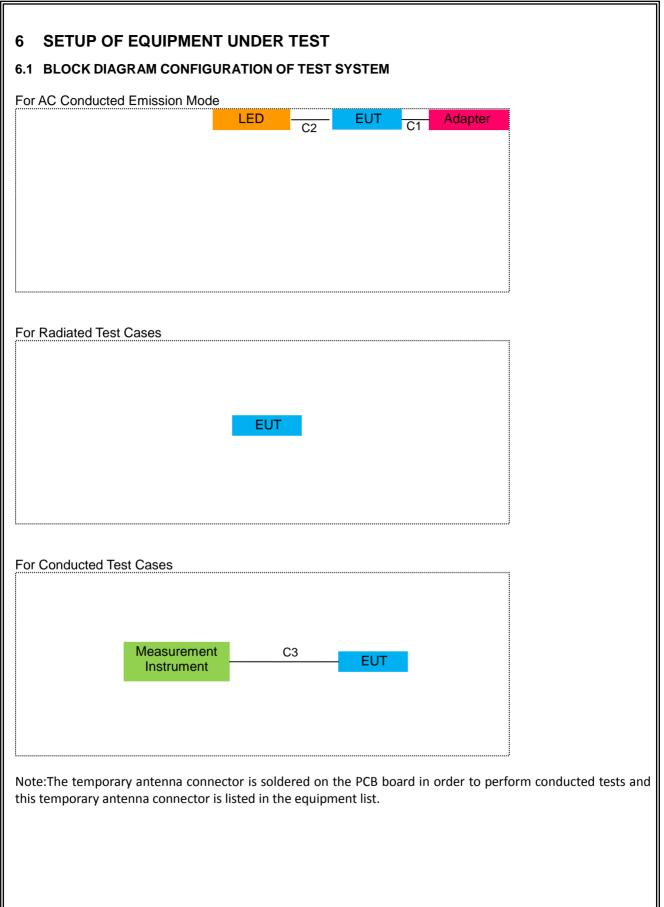
The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The Y-plane results were found as the worst case and were shown in this report.

Frequency and Channel list for 802.11b/g/n (HT20):

Channel	Frequency(MHz)		
1	2412		
2	2417		
5	2432		
6	2437		
10	2457		
11	2462		


Note: fc=2412MHz+k×5MHz k=0 to 10

1. EUT built-in battery-powered, fully-charged battery use of the test battery

est Mode:		-		
Test Items	Mode	Data Rate	Channel	Ant
AC Power Line Conducted Emissions	Normal Link	-	-	-
	11b/CCK	1 Mbps	1/6/11	1
Maximum Conducted Output	11g/BPSK	6 Mbps	1/6/11	1
Power	11n HT20	MCS0	1/6/11	1
Power Spectral Density	11b/CCK	1 Mbps	1/6/11	1
Fower Spectral Density	11g/BPSK	6 Mbps	1/6/11	1
	11n HT20	MCS0	1/6/11	1
6dB Spectrum Bandwidth	11b/CCK	1 Mbps	1/6/11	1
	11g/BPSK	6 Mbps	1/6/11	1
	11n HT20	MCS0	1/6/11	1
Radiated Emissions Below 1GHz	Normal Link	-	-	-
Radiated Emissions Above	11b/CCK	1 Mbps	1/6/11	1
IGHZ	11g/BPSK	6 Mbps	1/6/11	1
	11n HT20	MCS0	1/6/11	1
Band Edge Emissions	11b/CCK	1 Mbps	1/6/11	1
_	11g/BPSK	6 Mbps	1/6/11	1
	11n HT20	MCS0	1/6/11	1

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Note
E-1	Smart WiFi socket	N/A	SWA1	2AJK8-SWA1	EUT
E-2	Adapter	N/A	WA-10P05FU	N/A	Peripherals
E-3	LED	N/A	N/A	N/A	N/A

Item	Cable Type	Shielded Type	Ferrite Core	Length	Note
C-1	Power Cable	NO	NO	1.0m	
C-2	Power Cable	YES	YES	1.0m	
C-3	RF Cable	NO	NO	0.5m	

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Item	Kind of Equipment	Manufacturer	Туре No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Agilent	E4407B	MY45108040	2016.07.06	2017.07.05	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2016.07.06	2017.07.05	1 year
3	EMI Test Receiver	Agilent	N9038A	MY53227146	2016.06.06	2017.06.05	1 year
4	Test Receiver	R&S	ESPI	101318	2016.06.06	2017.06.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2016.07.06	2017.07.05	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2016.06.06	2017.06.05	1 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2016.07.06	2017.07.05	1 year
8	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2016.07.06	2017.07.05	1 year
9	Amplifier	EM	EM-30180	060538	2015.12.22	2016.12.21	1 year
10	Amplifier	MITEQ	TTA1840-35- HG	177156	2016.06.06	2017.06.05	1 year
11	Loop Antenna	ARA	PLA-1030/B	1029	2016.06.06	2017.06.05	1 year
12	Power Meter	DARE	RPR3006W	100696	2016.07.06	2017.07.05	1 year
13	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2016.07.06	2017.07.05	1 year
14	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2016.07.06	2017.07.05	1 year
15	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2016.06.06	2017.06.05	1 year
16	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2016.06.06	2017.06.05	1 year
17	temporary antenna connector	NTS	R001	N/A	N/A	N/A	N/A
	(Note)						

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

Page 13 of 49

Report No.:NTEK-2016NT10199429F

Condu	Conduction Test equipment								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period		
1	Test Receiver	R&S	ESCI	101160	2016.06.06	2017.06.05	1 year		
2	LISN	R&S	ENV216	101313	2016.08.24	2017.08.23	1 year		
3	LISN	EMCO	3816/2	00042990	2016.08.24	2017.08.23	1 year		
4	50Ω Coaxial Switch	Anritsu	MP59B	6200264417	2016.06.07	2017.06.06	1 year		
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2016.06.08	2017.06.07	1 year		
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2016.06.08	2017.06.07	1 year		
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2016.06.08	2017.06.07	1 year		

Note: Each piece of equipment is scheduled for calibration once a year.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

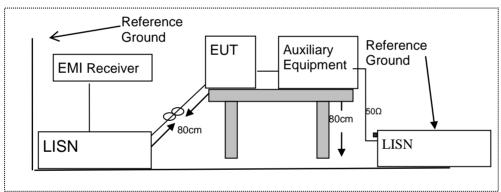
7.1.1 Applicable Standard

According to FCC Part 15.207(a) and KDB 174176 D01 Line Conducted FAQ v01r01

7.1.2 Conformance Limit

Frequency(MHz)	Conducted Emission Limit			
Frequency(Miriz)	Quasi-peak	Average		
0.15-0.5	66-56*	56-46*		
0.5-5.0	56	46		
5.0-30.0	60	50		

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

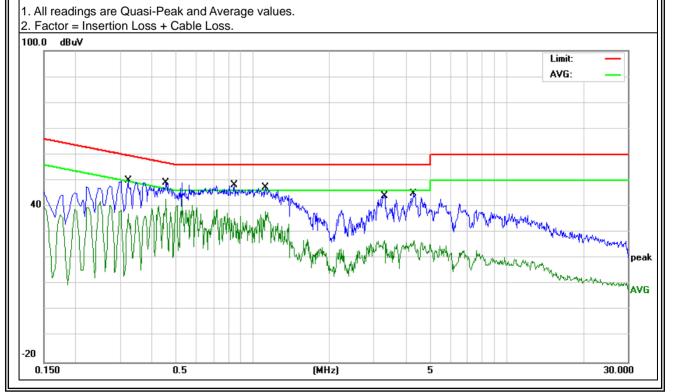
7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

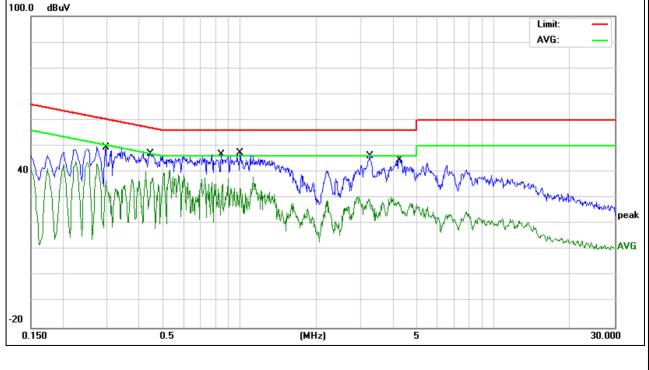
7.1.4 Test Configuration

7.1.5 Test Procedure

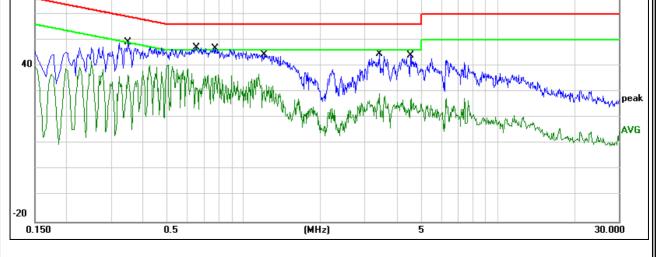
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.


- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

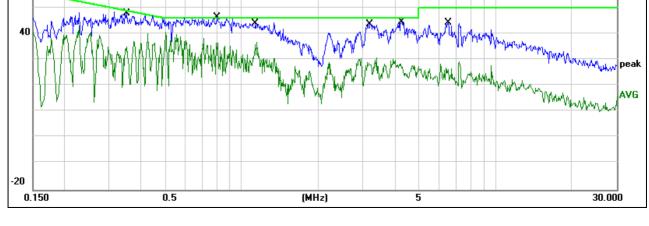
7.1.6 Test Results


EUT: Smart WiFi socket			N	Model Name. : SWA1			
Temperature: 26 °C			F	Relativ	e Humidity:	56%	
Pressure:	1010hPa		F	Phase	:	L	
Test Voltage :	AC 120V/	60Hz	Г	Fest M	lode:	Normal Link	
Frequency	Reading Level	Correct Factor	Measure-r	ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµ\	/)	(dBµV)	(dB)	Remark
0.322	39.85	10.12	49.97	7	59.65	-9.68	QP
0.322	24.23	10.12	34.35	5	49.65	-15.3	AVG
0.454	39.28	9.92	49.2	2	56.8	-7.6	QP
0.454	32.91	9.92	42.83	3	46.8	-3.97	AVG
0.8457	38.58	9.82	48.4	ŀ	56	-7.6	QP
0.8457	25.68	9.82	35.5	;	46	-10.5	AVG
1.122	37.64	9.86	47.5	5	56	-8.5	QP
1.122	28.18	9.86	38.04	4	46	-7.96	AVG
3.306	34.35	9.79	44.14	4	56	-11.86	QP
3.306	17.07	9.79	26.86	6	46	-19.14	AVG
4.3139	35.25	9.81	45.06	6	56	-10.94	QP
4.3139	16.21	9.81	26.02	2	46	-19.98	AVG

Remark:



UT:	Smart WiFi	Smart WiFi socket		el Name. :	SWA1	
Temperature:	26 ℃	26 ℃		tive Humidity:	56%	
Pressure:	1010hPa		Phas	e :	Ν	
Fest Voltage :	AC 120V/60)Hz	Test	Mode:	Normal Link	
		•				
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.2953	39.26	10.13	49.39	60.37	-10.98	QP
0.2953	26.34	10.13	36.47	50.37	-13.9	AVG
0.442	37.24	9.96	47.2	57.02	-9.82	QP
0.442	20.45	9.96	30.41	47.02	-16.61	AVG
0.8457	36.85	9.85	46.7	56	-9.3	QP
0.8457	21.02	9.85	30.87	46	-15.13	AVG
1.002	37.61	9.89	47.5	56	-8.5	QP
1.002	23.56	9.89	33.45	46	-12.55	AVG
3.25	36.25	9.78	46.03	56	-9.97	QP
3.25	18.07	9.78	27.85	46	-18.15	AVG
4.2499	34.74	9.78	44.52	56	-11.48	QP
4.2499	17.28	9.78	27.06	46	-18.94	AVG



EUT:	Smart WiFi	Smart WiFi socket		del Name. :	SWA1	
Temperature:	26 ℃		Re	lative Humidity:	56%	
Pressure:	1010hPa			ase :	L	
Test Voltage :	AC 240V/50	Hz	Te	st Mode:	Normal Link	
Frequency	Reading Level	Correct Factor	Measure-men	t Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.3497	39.21	10.09	49.3	58.97	-9.67	QP
0.3497	26.42	10.09	36.51	48.97	-12.46	AVG
0.65	37.31	9.79	47.1	56	-8.9	QP
0.65	21.43	9.79	31.22	46	-14.78	AVG
0.77	37.09	9.81	46.9	56	-9.1	QP
0.77	23.57	9.81	33.38	46	-12.62	AVG
1.2056	34.55	9.85	44.4	56	-11.6	QP
1.2056	18.83	9.85	28.68	46	-17.32	AVG
3.426	34.81	9.79	44.6	56	-11.4	QP
3.426	19.65	9.79	29.44	46	-16.56	AVG
4.5297	34.28	9.82	44.1	56	-11.9	QP
4.5297	16.65	9.82	26.47	46	-19.53	AVG
	e Quasi-Peak an tion Loss + Cable		5.			<u> </u>
100.0 dBuV						
					Lim AV(

EUT:	Smart WiFi	Smart WiFi socket		lodel Name. :	SWA1	
Temperature:	26 ℃	Rela		Relative Humidity: 56%		
Pressure:	1010hPa		P	hase :	N	
Test Voltage :	AC 240V/50	Hz	Т	est Mode:	Normal Link	
Frequency	Reading Level	Correct Factor	Measure-me	ent Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.3518	37.91	10.09	48	58.92	-10.92	QP
0.3518	24.95	10.09	35.04	48.92	-13.88	AVG
0.798	36.66	9.84	46.5	56	-9.5	QP
0.798	24.33	9.84	34.17	46	-11.83	AVG
1.129	34.33	9.87	44.2	56	-11.8	QP
1.129	26.08	9.87	35.95	46	-10.05	AVG
3.1979	33.95	9.78	43.73	56	-12.27	QP
3.1979	18.22	9.78	28	46	-18	AVG
4.2499	34.74	9.78	44.52	56	-11.48	QP
4.2499	17.28	9.78	27.06	46	-18.94	AVG
6.4977	34.68	9.82	44.5	60	-15.5	QP
6.4977	16.53	9.82	26.35	50	-23.65	AVG
Remark: I. All readings ar 2. Factor = Inser	16.53 e Quasi-Peak an tion Loss + Cable	d Average values		50	-23.65	AVG
100.0 dBuV					Limi	t:
					AVG	

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	MHz	GHz				
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46				
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5				
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
6.26775-6.26825	123-138	2200-2300	14.47-14.5				
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4				
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
12.57675-12.57725	322-335.4	3600-4400	(2)				
13.36-13.41							

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	2400/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

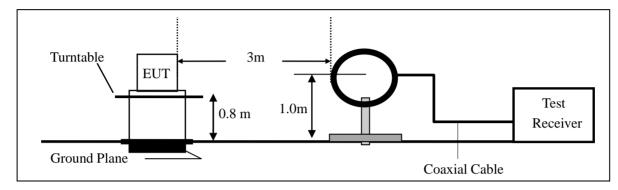
Frequency(MHz)	Class B (dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

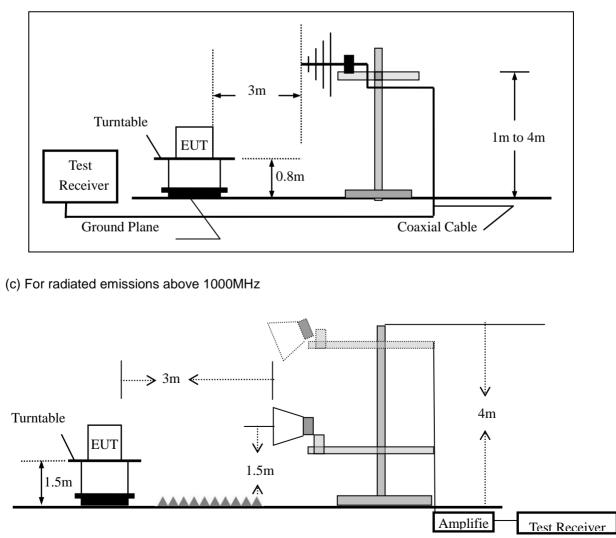
2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments


The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting					
Attenuation	Auto					
Start Frequency	1000 MHz					
Stop Frequency	10th carrier harmonic					
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average					

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz and frequencies above 1GHz,
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

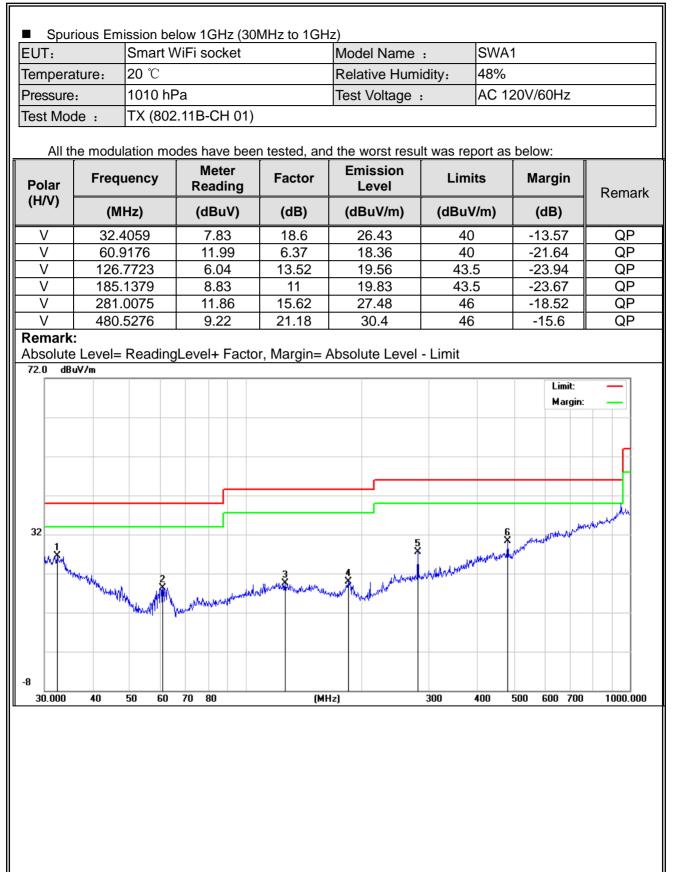
During the radiated emission test, the Spectrum Analyzer was set with the following configurations:								
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth					

30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

Spurious Er	Spurious Emission below 30MHz (9KHz to 30MHz)								
EUT:	Smart WiFi socket	Model No.:	SWA1						
Temperature:	20 (Relative Humidity:	48%						
Test Mode:	Normal Link	Test By:	Susan Su						


Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

Ро		Freq	uency	F	Mete Readi		Fac	tor		ission evel		Lim	its	M	largi	n	Rem	hark
(H/	/V)	(N	IHz)		(dBu	V)	(d	B)	(dE	BuV/m)		(dBu\	//m)		(dB)		Roman	
ŀ	1	31.	6202		5.9	5	19.	.02	2	4.97		4()	- '	15.03	3	Q	Р
H	4	132	.2205		7.0	7	13.	26	2	0.33		43	.5	-2	23.17	7	Q	Р
ŀ	4	184	.4898		9.46	6	11.	.08	2	0.54		43	.5	-2	22.96	6	Q	Р
ŀ	4	323	.3204		8.19	9	16.	99	2	5.18		46	6	-2	20.82	2	Q	Р
ŀ	4	400	.4319		18.2	5	20.	23	3	8.48		46	6	-	7.52		Q	Р
ŀ	1	480	.5276		11.3	6	21.	18	3	2.54		46	6	-'	13.46	6	Q	Р
4bs 72.0		Level:	= Read	lingLe	vel+	Facto	or, Ma	rgin= /	Abso	lute Le	vel -	Limit					· · · · ·	-
															Lin Ma	nit: rgin:	_	
32					f								5. X	6 X		Jures.		-
		the state and a state of the st	Munimum	regeligen op (AA)	allana	www.h	ann an Anna Anna Anna Anna Anna Anna An		3	YAMAN AND		Andrew	provident the					
8 30).000	40	50 6	<u>50</u> 70	80			(MHz	<u> </u>		30		400	500	600	700	1000	

Spurious	s Emissio	n Above 1G	Hz (1GHz	to 27GH	z)					
EUT:	Sr	nart WiFi so	ocket		Model No.:		SWA1			
Temperature	emperature: 20 °C Relative H						48%			
Test Mode:	T)	K (802.11B)			Test By:		Susan Su			
All the modulation modes have been tested, and the worst result was report as below:										
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m) (dB)	1		
	/		ow Channe	l (2412 MI	Hz)(802.11b)					
4824.213	61.54	5.21	35.59	44.30	58.04	74.00	-15.96	Pk	Vertical	
4824.213	40.24	5.21	35.59	44.30	36.74	54.00	-17.26	AV	Vertical	
7236.207	59.63	6.48	36.27	44.60	57.78	74.00	-16.22	Pk	Vertical	
7236.207	43.32	6.48	36.27	44.60	41.47	54.00	-12.53	AV	Vertical	
4824.362	60.46	5.21	35.55	44.30	56.92	74.00	-17.08	Pk	Horizontal	
4824.362	42.25	5.21	35.55	44.30	38.71	54.00	-15.29	AV	Horizontal	
7236.456	62.27	6.48	36.27	44.52	60.50	74.00	-13.5	Pk	Horizontal	
7236.456	46.63	6.48	36.27	44.52	44.86	54.00	-9.14	AV	Horizontal	
		Mi	ddle Chann	iel (2437 N	/Hz)(802.11b	o)Above	1G			
4874.361	62.02	5.21	35.66	44.20	58.69	74.00	-15.31	Pk	Vertical	
4874.361	42.24	5.21	35.66	44.20	38.91	54.00	-15.09	AV	Vertical	
7311.255	59.43	7.10	36.50	44.43	58.60	74.00	-15.40	Pk	Vertical	
7311.255	46.42	7.10	36.50	44.43	45.59	54.00	-8.41	AV	Vertical	
4874.132	60.37	5.21	35.66	44.20	57.04	74.00	-16.96	Pk	Horizontal	
4874.132	47.21	5.21	35.66	44.20	43.88	54.00	-10.12	AV	Horizontal	
7311.357	59.87	7.10	36.50	44.43	59.04	74.00	-14.96	Pk	Horizontal	
7311.357	43.45	7.10	36.50	44.43	42.62	54.00	-11.38	AV	Horizontal	
		Н	ligh Channe	el (2462 M	Hz)(802.11b)	Above 1	G			
4924.145	63.46	5.21	35.52	44.21	59.98	74.00	-14.02	Pk	Vertical	
4924.145	42.35	5.21	35.52	44.21	38.87	54.00	-15.13	AV	Vertical	
7386.372	60.54	7.10	36.53	44.60	59.57	74.00	-14.43	Pk	Vertical	
7386.372	44.42	7.10	36.53	44.60	43.45	54.00	-10.55	AV	Vertical	
4924.145	64.29	5.21	35.52	44.21	60.81	74.00	-13.19	Pk	Horizontal	
4924.145	46.63	5.21	35.52	44.21	43.15	54.00	-10.85	AV	Horizontal	
7386.265	60.02	7.10	36.53	44.60	59.05	74.00	-14.95	Pk	Horizontal	
7386.265	44.43	7.10	36.53	44.60	43.46	54.00	-10.54	AV	Horizontal	

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

(2) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(4)"802.11b" mode is the worst mode. When PK value is lower than the Average value limit, average don't record.

NTEK

Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Commen		
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)				
	Low Channel (2412 MHz)(802.11b)Above 1G										
4824.213	61.54	5.21	35.59	44.30	58.04	74.00	-15.96	Pk	Vertical		
4824.213	40.24	5.21	35.59	44.30	36.74	54.00	-17.26	AV	Vertical		
7236.207	59.63	6.48	36.27	44.60	57.78	74.00	-16.22	Pk	Vertical		
7236.207	43.32	6.48	36.27	44.60	41.47	54.00	-12.53	AV	Vertica		
4824.362	60.46	5.21	35.55	44.30	56.92	74.00	-17.08	Pk	Horizont		
4824.362	42.25	5.21	35.55	44.30	38.71	54.00	-15.29	AV	Horizont		
7236.456	62.27	6.48	36.27	44.52	60.50	74.00	-13.5	Pk	Horizont		
7236.456	46.63	6.48	36.27	44.52	44.86	54.00	-9.14	AV	Horizont		
	Middle Channel (2437 MHz)(802.11b)Above 1G										
4874.361	62.02	5.21	35.66	44.20	58.69	74.00	-15.31	Pk	Vertica		
4874.361	42.24	5.21	35.66	44.20	38.91	54.00	-15.09	AV	Vertica		
7311.255	59.43	7.10	36.50	44.43	58.60	74.00	-15.40	Pk	Vertica		
7311.255	46.42	7.10	36.50	44.43	45.59	54.00	-8.41	AV	Vertica		
4874.132	60.37	5.21	35.66	44.20	57.04	74.00	-16.96	Pk	Horizont		
4874.132	47.21	5.21	35.66	44.20	43.88	54.00	-10.12	AV	Horizont		
7311.357	59.87	7.10	36.50	44.43	59.04	74.00	-14.96	Pk	Horizont		
7311.357	43.45	7.10	36.50	44.43	42.62	54.00	-11.38	AV	Horizont		
			High Chan	nel (2462 Mł	Hz)(802.11b)	Above 1G					
4924.145	63.46	5.21	35.52	44.21	59.98	74.00	-14.02	Pk	Vertica		
4924.145	42.35	5.21	35.52	44.21	38.87	54.00	-15.13	AV	Vertica		
7386.372	60.54	7.10	36.53	44.60	59.57	74.00	-14.43	Pk	Vertica		
7386.372	44.42	7.10	36.53	44.60	43.45	54.00	-10.55	AV	Vertica		
4924.145	64.29	5.21	35.52	44.21	60.81	74.00	-13.19	Pk	Horizont		
4924.145	46.63	5.21	35.52	44.21	43.15	54.00	-10.85	AV	Horizont		
7386.265	60.02	7.10	36.53	44.60	59.05	74.00	-14.95	Pk	Horizont		
7386.265	44.43	7.10	36.53	44.60	43.46	54.00	-10.54	AV	Horizonta		

d 2210MU- 10000MU- th rot ...

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

Spurious Emission in Restricted Bands 3260MMHz- 18000MHz

All the modulation modes have been tested, the worst result was report as below:

Frequenc y	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
3260	60.13	4.04	29.57	44.70	49.04	74	-24.96	Pk	Vertical
3260	54.66	4.04	29.57	44.70	43.57	54	-10.43	AV	Vertical
3260	61.42	4.04	29.57	44.70	50.33	74	-23.67	Pk	Horizontal
3260	56.03	4.04	29.57	44.70	44.94	54	-9.06	AV	Horizontal
3332	64.27	4.26	29.87	44.40	54.00	74	-20.00	Pk	Vertical
3332	53.13	4.26	29.87	44.40	42.86	54	-11.14	AV	Vertical
3332	62.14	4.26	29.87	44.40	51.87	74	-22.13	Pk	Horizontal
3332	52.15	4.26	29.87	44.40	41.88	54	-12.12	AV	Horizontal
17797	42.63	10.99	43.95	43.50	54.07	74	-19.93	Pk	Vertical
17797	32.47	10.99	43.95	43.50	43.91	54	-10.09	AV	Vertical
17788	43.52	11.81	43.69	44.60	54.42	74	-19.58	Pk	Horizontal
17788	31.63	11.81	43.69	44.60	42.53	54	-11.47	AV	Horizontal

"802.11b" mode is the worst mode. When PK value is lower than the Average value limit, average don't record.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 DTS 01 Meas. Guidance v03r05

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

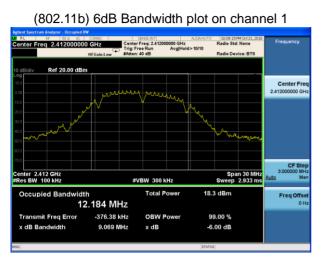
The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows KDB 558074 DTS 01 Meas. Guidance v03r05 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW = 100KHz VBW \geq 3*RBW Sweep = auto Detector function = peak Trace = max hold



7.3.6 Test Results

EUT:	Smart WiFi socket	Model No.:	SWA1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	TX 802.11b/g/n20M	Test By:	Susan Su

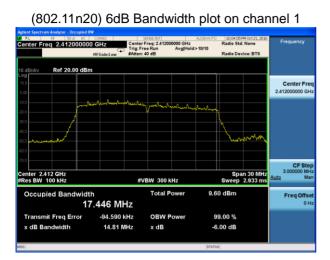
M. I.	Channel	Frequency	6dB bandwidth	Limit	Deck	
Mode	Channel	(MHz)	(MHz)	(kHz)	Result	
802.11b	Low	2412	9.07	500	Pass	
	Middle	2437	9.61	500	Pass	
	High	2462	9.08	500	Pass	
	Low	2412	14.25	500	Pass	
802.11g	Middle	2437	15.81	500	Pass	
	High	2462	9.56	500	Pass	
	Low	2412	14.81	500	Pass	
802.11n20	Middle	2437	16.42	500	Pass	
	High	2462	11.38	500	Pass	

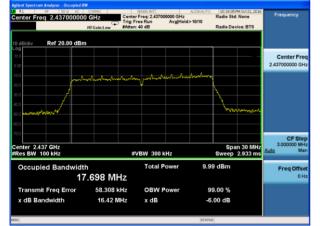
Test plot

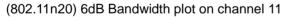
(802.11b) 6dB Bandwidth plot on channel 6

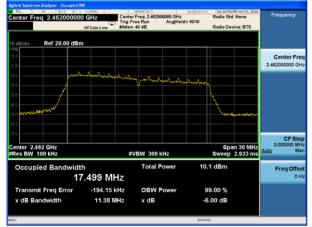
(802.11g) 6dB Bandwidth plot on channel 6

(802.11b) 6dB Bandwidth plot on channel 11






Report No.:NTEK-2016NT10199429F


Test plot

(802.11n20) 6dB Bandwidth plot on channel 6

7.4 20DB BANDWIDTH

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 DTS 01 Meas. Guidance v03r05

7.4.2 Conformance Limit

N/A

7.4.3 Measuring Instruments

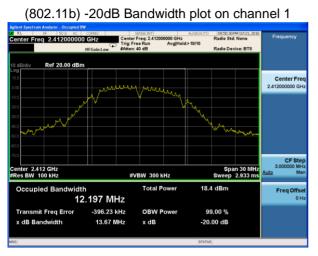
The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows KDB 558074 DTS 01 Meas. Guidance v03r05 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW = 100KHz VBW \ge 3*RBW Sweep = auto Detector function = peak Trace = max hold


7.4.6 Test Results

EUT:	Smart WiFi socket	Model No.:	SWA1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	TX 802.11b/g/n20M	Test By:	Susan Su

Mada	Changel	Frequency	-20dB bandwidth	De seel4	
Mode	Channel	(MHz)	(MHz)	Result	
802.11b	Low	2412	13.67	Pass	
	Middle	2437	14.59	Pass	
	High	2462	14.15	Pass	
802.11g	Low	2412	17.38	Pass	
	Middle	2437	18.05	Pass	
	High	2462	17.55	Pass	
802.11n20	Low	2412	18.29	Pass	
	Middle	2437	18.90	Pass	
	High	2462	18.47	Pass	

Test plot

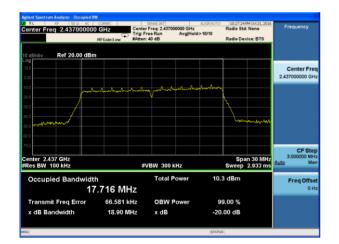
(802.11g) -20dB Bandwidth plot on channel 1

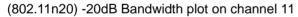
(802.11b) -20dB Bandwidth plot on channel 6

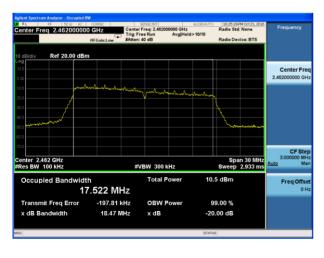
(802.11g) -20dB Bandwidth plot on channel 6

(802.11b) -20dB Bandwidth plot on channel 11

(802.11g) -20dB Bandwidth plot on channel 11


Report No.:NTEK-2016NT10199429F


Test plot


(802.11n20) -20dB Bandwidth plot on channel 1

Center Fre	8F 50 R AC eq 2.412000000		SENSE INI Center Freq: 2. Trig: Free Run #Atten: 40 dB		ALIGNAUTO	09:57:21 Radio Sto Radio De		Frequency
10 dB/div	Ref 20.00 dBn	۱					_	
10.0 0.00								Center Fr 2.412000000 G
-10.0	~~~^~		manym	mhanh	mm			
40.0								
50.0	woment					- gran	amart	
70.0								CF St 3.000000 M
Center 2.4 #Res BW			#VBW 3	00 kHz		Spa Sweep	an 30 MHz 2.933 ms	Auto N
Occup	ied Bandwidt 17	^h 7.457 MH		al Power	10.	2 dBm		Freq Offs 0
Transm	iit Freq Error	-96.101		W Power	9	9.00 %		
x dB Ba	andwidth	18.29 №	lHz xd	В	-20	.00 dB		
sa					STATU	s		

(802.11n20) -20dB Bandwidth plot on channel 6

7.5 DUTY CYCLE

7.5.1 Applicable Standard

According to KDB 558074)6)b), issued 06/09/2015

7.5.2 Conformance Limit

No limit requirement.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074(issued 06/09/2015)

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if T \leq 6.25 microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total} and Duty Cycle Factor=10*log(1/Duty Cycle)

7.5.6 Test Results

EUT:	Smart WiFi socket	Model No.:	SWA1
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	TX 802.11b/g/n20M	Test By:	Susan Su

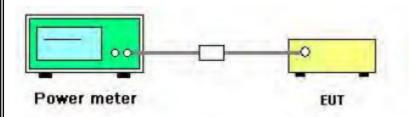
_	Test Results							
	Mode	Data rate	Channel	T _{on}	T _{total}	Duty Cycle %	Duty Cycle Factor (dB)	1/T Minimum VBW (kHz)
Γ	802.11b	1Mbps	6	10	10	100	0.00	0.01
	802.11g	6Mbps	6	10	10	100	0.00	0.01
Γ	802.11n HT20	MCS0	6	10	10	100	0.00	0.01

7.6 MAXIMUM OUTPUT POWER

7.6.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 DTS 01 Meas. Guidance v03r05

7.6.2 Conformance Limit


The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.6.3 Measuring Instruments

The following table is the setting of the power meter.

Power Meter Parameter	Setting
Detector	Average

7.6.4 Test Setup

7.6.5 Test Procedure

- 1. Test procedures refer KDB 558074 D01 v03r05 section 9.2.3.2 Measurement using a power meter (PM).
- 2. Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since this measurement is made only during the ON time of the transmitter, no duty cycle correction is required.
- 3. Multiple antenna system was performed in accordance with KDB 662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.

7.6.6 EUT opration during Test

The EUT was programmed to be in continuously transmitting mode.

7.6.7 Test Results

EUT:	Smart WiFi socket	Model No.:	SWA1
Temperature:	20 (Relative Humidity:	48%
Test Mode:	TX 802.11b/g/n20M	Test By:	Susan Su

Mode	Channel	Frequency (MHz)	Conducted Output Power (dBm)	Limit (dBm)	Result
	Low	2412	14.36	30.00	Pass
802.11b	Middle	2437	13.88	30.00	Pass
	High	2462	14.03	30.00	Pass
	Low	2412	9.23	30.00	Pass
802.11g	Middle	2437	9.17	30.00	Pass
	High	2462	9.49	30.00	Pass
	Low	2412	9.37	30.00	Pass
802.11n20	Middle	2437	9.21	30.00	Pass
	High	2462	9.57	30.00	Pass

7.7 POWER SPECTRAL DENSITY

7.7.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 DTS 01 Meas. Guidance v03r05

7.7.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows Measurement Procedure 10.3 Method AVGPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05

This procedure may be used when the maximum (average) conducted output power was used to demonstrate compliance to the output power limit. This is the baseline method for determining the maximum (average) conducted PSD level. If the instrument has an RMS power averaging detector, it must be used; otherwise, use the sample detector. The EUT must be configured to transmit continuously (duty cycle ≥ 98%); otherwise sweep triggering/signal gating must be implemented to ensure that measurements are made only when the EUT is transmitting at its maximum power control level (no transmitter off time is to be considered).

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set span to at least 1.5 times the OBW.
- c) Set RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.

d) Set VBW ≥3 x RBW.

e) Detector = power averaging (RMS) or sample detector (when RMS not available).

- f) Ensure that the number of measurement points in the sweep $\ge 2 \times \text{span/RBW}$.
- g) Sweep time = auto couple.
- h) Employ trace averaging (RMS) mode over a minimum of 100 traces.
- i) Use the peak marker function to determine the maximum amplitude level.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducin

7.7.6 Test Results

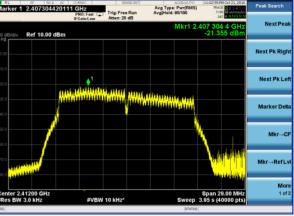
EUT:	Smart WiFi socket	Model No.:	SWA1
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	TX 802.11b/g/n20M	Test By:	Susan Su

Mada	Channel	Frequency (MHz)	Power Density	Limit	Result
Mode			(dBm/3KHz)	(dBm/3KHz)	
	Low	2412	-12.58	8.00	Pass
802.11b	Middle	2437	-13.46	8.00	Pass
	High	2462	-12.34	8.00	Pass
	Low	2412	-21.36	8.00	Pass
802.11g	Middle	2437	-22.19	8.00	Pass
	High	2462	-20.24	8.00	Pass
	Low	2412	-21.55	8.00	Pass
802.11n20	Middle	2437	-21.77	8.00	Pass
	High	2462	-20.50	8.00	Pass

Page 42 of 49

(802.11b) PSD plot on channel 6

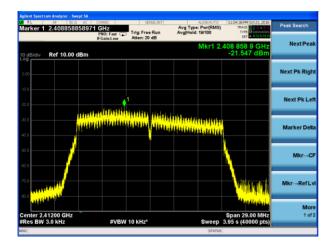
(802.11g) PSD plot on channel 11

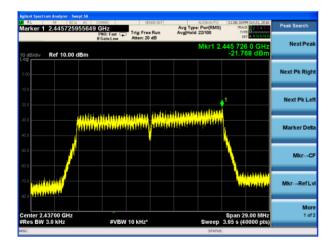


(802.11b) PSD plot on channel 11

Test plot

(802.11g) PSD plot on channel 1


(802.11g) PSD plot on channel 6



Test plot


(802.11n20) PSD plot on channel 1

(802.11n20) PSD plot on channel 6

(802.11n20) PSD plot on channel 11

7.8 Emission in non-Restricted Band

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 DTS 01 Meas. Guidance v03r05

The DTS rules specify that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions:7

a) If the maximum peak conducted output power procedure was used to demonstrate compliance as described in 9.1, then the peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 20 dBc).

b) If maximum conducted (average) output power was used to demonstrate compliance as described in 9.2, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 30 dBc).
c) In either case, attenuation to levels below the 15.209 general radiated emissions limits is not required.8 The following procedures shall be used to demonstrate compliance to these limits. Note that these procedures can be used in either an antenna-port conducted or radiated test set-up. Radiated tests must conform to the test site requirements and utilize maximization procedures defined herein.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Reference level measurement

Establish a reference level by using the following procedure:

a) Set instrument center frequency to DTS channel center frequency.

b) Set the span to \geq 1.5 times the DTS bandwidth.

c) Set the RBW = 100 kHz.

d) Set the VBW \geq 3 x RBW.

e) Detector = peak.

f) Sweep time = auto couple.

 \hat{g}) Trace mode = max hold.

h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

a) Set the center frequency and span to encompass frequency range to be measured.

b) Set the RBW = 100 kHz.

c) Set the VBW \ge 3 x RBW.

d) Detector = peak.

e) Sweep time = auto couple.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in 11.1 a) or 11.1 b). Report the three highest emissions relative to the limit.

7.8.4 Test Results

EUT:	Smart WiFi socket	Model No.:	SWA1
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	TX 802.11b/g/n20M	Test By:	Susan Su

Test plot For (802.11b)

(802.11b) Emission not in Restricted Band plot on channel 1 Reference Level (802.11b) Emission not in Restricted Band plot on channel 11 Reference Level

Aug Type: Log-Pwr AvgHold: 20/100

> 1 25.669 G 53.617 dE

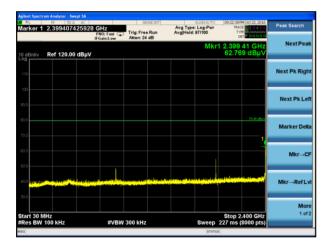
Stop 26.50 GHz 2.29 s (8000 pts) Next Pk Righ

Next Pk Le

Marker De

Mkr_C

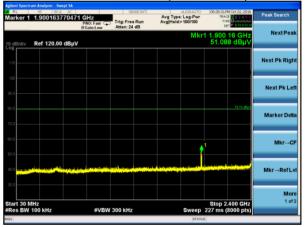
Mkr→RefLy


More 1 of 2

Ref 120.00 dBuV

.50 GHz W 100 k

Configuration IEEE 802.11b / CH 1 / 30MHz~2400MHz (down 30dBc)



Configuration IEEE 802.11b / CH 1 / 2500MHz~26500MHz (down 30dBc)

Configuration IEEE 802.11b / CH 11 / 30MHz~2400MHz (down 30dBc)

#VBW 300 kH;

Configuration IEEE 802.11b / CH 11 / 2500MHz~26500MHz (down 30dBc)

Test plot For (802.11g)

ker 1 25.782910363796 GHz

Ref 120.00 dBµV

(802.11g) Emission not in Restricted Band plot on channel 1 Reference Level (802.11g) Emission not in Restricted Band plot on channel 11 Reference Level

Trig: Free Run

#VBW 300 kHz

Avg Type: Log-Pwr AvgHold: 5(100

NextPe

Next Pk Rig

Next Pk Let

Marker De

Mkr→RefL

Stop 26.50 GH ep 2.29 s (8000 pts Mkr→C

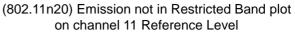
Mor 1 of

Configuration IEEE 802.11g / CH 1 / 30MHz~2400MHz (down 30dBc)

Configuration IEEE 802.11g / CH 1 / 2500MHz~26500MHz (down 30dBc)

Configuration IEEE 802.11g / CH 11 / 30MHz~2400MHz (down 30dBc)

Configuration IEEE 802.11g / CH 11 / 2500MHz~26500MHz (down 30dBc)



Test plot For (802.11n20)

ker 1 26.208963620453 GHz

Ref 120.00 dBµV

(802.11n20) Emission not in Restricted Band plot on channel 1 Reference Level

Trig: Free Run Atten: 24 dB Avg Type: Log-Pwr AvglHold: 19/100

Next Pk Rig

Next Pk Let

Marker De

Mkr→RefL

Stop 26.50 GH 2.29 s (8000 pts Mkr→C

Mor 1 of

Configuration IEEE 802.11n20 / CH 1 / 30MHz~2400MHz (down 30dBc)

Narker 1	8F 50 ♀ 2.39970371	AC 2964 GHz PN0: Fast IFGain:Low	Trig: Free Run Atten: 24 dB	Aug Type: Log-Pwr Avg[Hold: 75/100	09:39:48 PM Oct 22, 2016 TRACE 1 2 3 4 5 6 TYPE MUMANANA DET PINNINN	Peak Search
10 dB/div	Ref 120.00 c	IBμV		Mkr	1 2.399 70 GHz 52.092 dBµV	Next Pea
110						Next Pk Rig
100 90.0						Next Pk Le
70.0					70.03 48µ/s	Marker De
50.0					<u> </u>	Mkr→C
40.0	di di setta di se			grains file site ball, generated		Mkr→RefL
30.0						Mo 1 of
Start 30 I #Res BW	VIHZ 100 kHz	#VBV	300 kHz	Sweep	Stop 2.400 GHz 227 ms (8000 pts)	

Configuration IEEE 802.11n20 / CH 1 / 2500MHz~26500MHz (down 30dBc)

Configuration IEEE 802.11n20 / CH 11 / 30MHz~2400MHz (down 30dBc)

#VBW 300 kHz

Configuration IEEE 802.11n20 / CH 11 / 2500MHz~26500MHz (down 30dBc)

7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

The EUT antenna is permanent attached (pcb)antenna. It comply with the standard requirement.