

RADIO TEST REPORT FCC ID: 2AJK8-LWE3

Product:	Wifi lamp	
Trade Name:	N/A	
Model No.:	LWE3	
Serial Model:	LWE1, LWE2 , LWE4, LWE5	
Report No.:	NTEK-2016NT08228387F	
Issue Date:	20 Oct. 2016	

Prepared for

Shenzhen Lingan Intelligent Technology Co.,Ltd Baiwang R&D Bldg, Shahe West Road, Nanshan, Shenzhen 518055 P.R.China

Prepared by

NTEK TESTING TECHNOLOGY CO., LTD. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen, 518126 P.R. China Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

1				
2		IMARY OF TEST RESULTS		
3	FAC	CILITIES AND ACCREDITATIONS	5	
	3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5 5	
4	GEN	NERAL DESCRIPTION OF EUT	7	
5	DES	SCRIPTION OF TEST MODES	8	
6	SET	UP OF EQUIPMENT UNDER TEST	.10	
	6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	. 11 . 12	
7	TES	T REQUIREMENTS	.14	
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION 6DB BANDWIDTH	.17 .26 .29 .32 .34 .36 .39	

1 TEST RESULT CERTIFICATION

Applicant's name:	Shenzhen Lingan Intelligent Technology Co.,Ltd		
Address:	Baiwang R&D Bldg, Shahe West Road, Nanshan, Shenzhen 518055 P.R.China		
Manufacture's Name:	henzhen Lingan Intelligent Technology Co.,Ltd		
Address:	Baiwang R&D Bldg, Shahe West Road, Nanshan, Shenzhen 518055 P.R.China		
Product description			
Product name:	Wifi lamp		
Model and/or type reference:	LWE3		
Serial Model:	LWE1, LWE2, LWE4, LWE5		

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J:2016	
FCC 47 CFR Part 15, Subpart C:2016	
KDB 174176 D01 Line Conducted FAQ v01r01	Complied
ANSI C63.10-2013	
FCC KDB 558074 D01 DTS Meas Guidance v03r05	

This device described above has been tested by NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of NTEK Testing Technology Co., Ltd., this document may be altered or revised by NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	: 22 Aug. 2016 ~ 20 Oct. 2016	
Testing Engineer	: (Lake Xie)	
Technical Manager	: Jusion chen (Jason Chen) Sam. Chain	
Authorized Signatory	: (Sam Chen)	

Page 4 of 42

	FCC Part15 (15.247), Subpart	С	
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.247 (a)(2)	6dB Bandwidth	PASS	
15.247 (b)	Maximum Output Power	PASS	
15.247 (c)	Radiated Spurious Emission	PASS	
15.247 (d)	Power Spectral Density	PASS	
15.205	Emission in non-restricted Band	PASS	
15.203	Antenna Requirement PASS		

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	۱
EMC Lab.	

Site Description	
EMC Lab.	: Accredited by CNAS, 2014.09.04 The certificate is valid until 2017.09.03
	The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
	The Certificate Registration Number is L5516.
	Accredited by Industry Canada, August 29, 2012
	The Certificate Registration Number is 9270A-1.
	Accredited by FCC, September 06, 2013
	The Certificate Registration Number is 238937.
Name of Firm Site Location	 NTEK Testing Technology Co., Ltd 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty	
1	Conducted Emission Test	±1.38dB	
2	RF power, conducted	±0.16dB	
3	Spurious emissions, conducted	±0.21dB	
4	All emissions, radiated(<1G)	±4.68dB	
5	All emissions, radiated(>1G)	±4.89dB	
6	Temperature	±0.5°C	
7	Humidity	±2%	

Page 6 of 42

Report No.:NTEK-2016NT08228387F

Revision History				
Report No.	Version	Description	Issued Date	
NTEK-2016NT08228387F	Rev.01	Initial issue of report	Oct 20, 2016	

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment Wifi lamp		
Trade Name	N/A	
FCC ID	2AJK8-LWE3	
Model No.	LWE3	
Serial Model	LWE1, LWE2, LWE4, LWE5	
Model Difference	All the model are the same circuit and RF module, except the model No	
Operating Frequency 2412-2462MHz for 802.11b/g		
Modulation	DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g;	
Number of Channels	11 channels for 802.11b/g;	
Antenna	PCB /1dBi	
Power supply	DC supply:	
	AC supply: AC 100V~240V, 9W, 50/60Hz	
HW Version	LWE3_V1.0	
SW Version	V1.0	

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The Y-plane results were found as the worst case and were shown in this report.

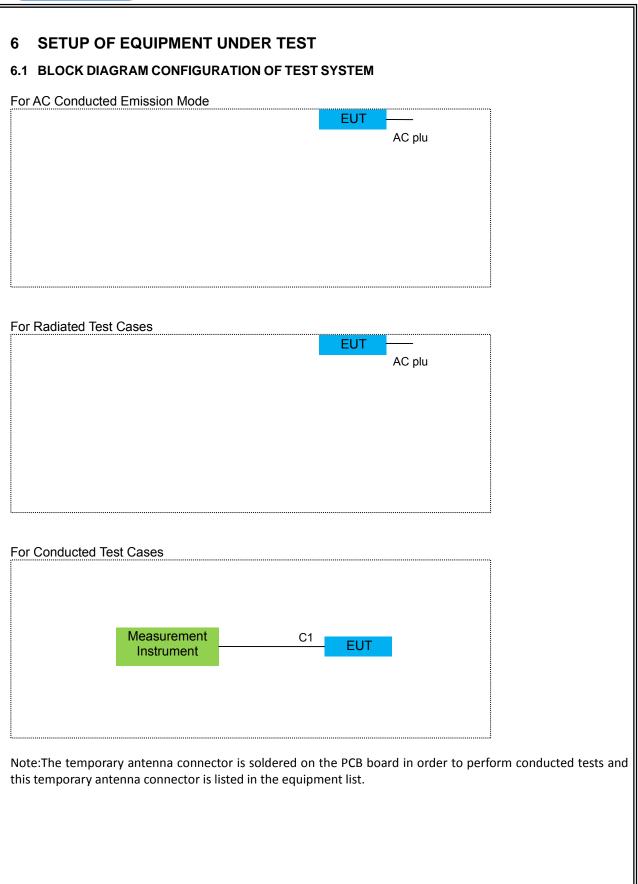
Frequency and Channel list for 802.11b/g:

Channel	Frequency(MHz)
1	2412
2	2417
5	2432
6	2437
10	2457
11	2462

Note: fc=2412MHz+k×5MHz k=0 to 10

The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode. The EUT is use PC test software NCAuth to set 802.11b/g CH1/ CH6/ CH11 to continuously transmitting.

802.11b: default AV output power is 8.0dBm, 802.11g: default AV output power is 8.8dBm.


Page 9 of 42

est Mode:	1	-		I
Test Items	Mode	Data Rate	Channel	Ant
AC Power Line Conducted Emissions	Normal Link	-	-	-
Maximum Conducted Output	11b/CCK	1 Mbps	1/6/11	1
Power	11g/BPSK	6 Mbps	1/6/11	1
Power Spectral Density	11b/CCK	1 Mbps	1/6/11	1
Tower opectial Density	11g/BPSK	6 Mbps	1/6/11	1
		-		
6dB Spectrum Bandwidth	11b/CCK	1 Mbps	1/6/11	1
	11g/BPSK	6 Mbps	1/6/11	1
Radiated Emissions Below				
1GHz	11b/CCK	1 Mbps	1/6/11	1
	11g/BPSK	6 Mbps	1/6/11	1
Radiated Emissions Above				
1GHz	11b/CCK	1 Mbps	1/6/11	1
	11g/BPSK	6 Mbps	1/6/11	1
Band Edge Emissions	11b/CCK	1 Mbps	1/6/11	1
	11g/BPSK	6 Mbps	1/6/11	1

Note: AC power line Conducted Emission was tested for rates (802.11b: 1 Mbps; 802.11g: 6 Mbps) were used for all test. and find the test result is 802.11g low channel is worst.

Note: For radiated test cases, the worst mode data rate was reported only, was tested for rates (802.11b: 1 Mbps; 802.11g: 6 Mbps) were used for all test. and find the test result is 802.11g low channel is worst. and no other significantly frequencies found in conducted spurious emission.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Note
E-1	Wifi lamp	N/A	LWE3	2AJK8-LWE3	EUT

Item	Cable Type	Shielded Type	Ferrite Core	Length	Note
C-1	RF Cable	NO	NO	0.5m	

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

Report No.:NTEK-2016NT08228387F

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Agilent	E4407B	MY45108040	2016.07.06	2017.07.05	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2016.07.06	2017.07.05	1 year
3	EMI Test Receiver	Agilent	N9038A	MY53227146	2016.06.06	2017.06.05	1 year
4	Test Receiver	R&S	ESPI	101318	2016.06.06	2017.06.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2016.07.06	2017.07.05	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2016.06.06	2017.06.05	1 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2016.07.06	2017.07.05	1 year
8	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2016.07.06	2017.07.05	1 year
9	Amplifier	EM	EM-30180	060538	2015.12.22	2016.12.21	1 year
10	Amplifier	MITEQ	TTA1840-35- HG	177156	2016.06.06	2017.06.05	1 year
11	Loop Antenna	ARA	PLA-1030/B	1029	2016.06.06	2017.06.05	1 year
12	Power Meter	DARE	RPR3006W	100696	2016.07.06	2017.07.05	1 year
13	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2016.07.06	2017.07.05	1 year
14	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2016.07.06	2017.07.05	1 year
15	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2016.06.06	2017.06.05	1 year
16	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2016.06.06	2017.06.05	1 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

Page 13 of 42 Report No.:NTEK-2016NT08228387F

0	Conduction Test equipment							
	ltem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
	1	Test Receiver	R&S	ESCI	101160	2016.06.06	2017.06.05	1 year
	2	LISN	R&S	ENV216	101313	2016.08.24	2017.08.23	1 year
	3	LISN	EMCO	3816/2	00042990	2016.08.24	2017.08.23	1 year
	4	50Ω Coaxial Switch	Anritsu	MP59B	6200264417	2016.06.07	2017.06.06	1 year
	5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2016.06.08	2017.06.07	1 year
	6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2016.06.08	2017.06.07	1 year
	7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2016.06.08	2017.06.07	1 year

Note: Each piece of equipment is scheduled for calibration once a year.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

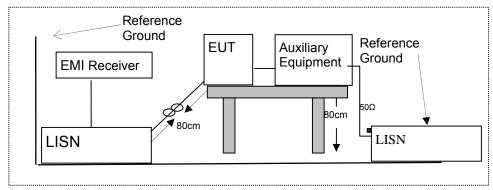
7.1.1 Applicable Standard

According to FCC Part 15.207(a) and KDB 174176 D01 Line Conducted FAQ v01r01

7.1.2 Conformance Limit

Fraguanay (MHz)	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

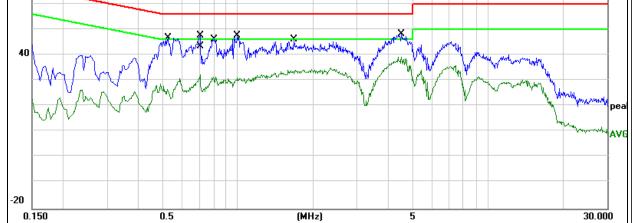
7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

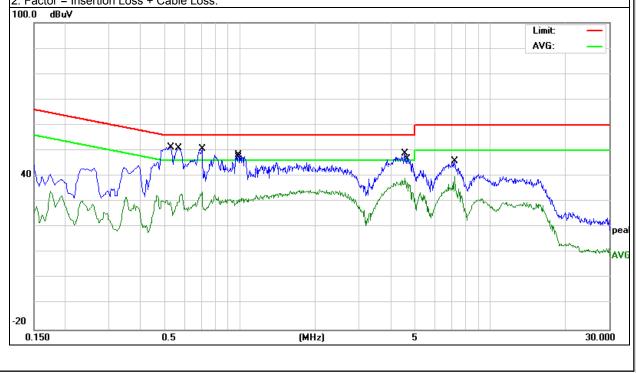
7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.


- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Page 15 of 42

7.1.6 Test Results


EUT: Wifi lamp			Mo	del Name. :	el Name. : LWE3	
emperature:	26 ℃		Rel	Relative Humidity: 56%		
Pressure:	1010hPa		Pha	ase :	L	
Test Voltage :	AC120V/6	60Hz	Tes	t Mode:	Normal Link	
Frequency	Reading Level	Correct Factor	Measure-mer	nt Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.5260	37.06	9.81	46.87	56.00	-9.13	QP
0.5264	16.23	9.81	26.04	46.00	-19.96	AVG
0.7059	37.78	9.79	47.57	56.00	-8.43	QP
0.7139	16.92	9.79	26.71	46.00	-19.29	AVG
0.8020	36.41	9.81	46.22	56.00	-9.78	QP
0.8100	19.59	9.82	29.41	46.00	-16.59	AVG
0.9979	37.77	9.87	47.64	56.00	-8.36	QP
1.0020	19.98	9.87	29.85	46.00	-16.15	AVG
1.6779	36.46	9.80	46.26	56.00	-9.74	QP
1.6899	23.73	9.80	33.53	46.00	-12.47	AVG
4.5058	38.30	9.82	48.12	56.00	-7.88	QP
4.5298	27.28	9.82	37.10	46.00	-8.90	AVG
	re Quasi-Peak an tion Loss + Cable		S.			Limit: —

Page 16 of 42

EUT:	Wifi lamp		Mo	odel Name. :	LWE3	LWE3	
Temperature:	26 ℃		Re	elative Humidity:	56%		
Pressure:	1010hPa		Ph	nase :	Ν		
Test Voltage :	AC120V/60	Hz	Те	st Mode:	Normal Link		
Frequency	Reading Level	Correct Factor	Measure-me	ent Limits	Margin	Remark	
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark	
0.5299	41.52	9.83	51.35	56.00	-4.65	QP	
0.5340	16.99	9.83	26.82	46.00	-19.18	AVG	
0.5700	41.02	9.83	50.85	56.00	-5.15	QP	
0.5740	21.73	9.83	31.56	46.00	-14.44	AVG	
0.6980	22.72	9.82	32.54	46.00	-13.46	AVG	
0.7060	40.74	9.82	50.56	56.00	-5.44	QP	
0.9860	38.38	9.89	48.27	56.00	-7.73	QP	
0.9980	20.06	9.89	29.95	46.00	-16.05	AVG	
4.5779	39.19	9.79	48.98	56.00	-7.02	QP	
4.6419	25.51	9.79	35.30	46.00	-10.70	AVG	
7.2299	36.03	9.82	45.85	60.00	-14.15	QP	
7.2299	29.94	9.82	39.76	50.00	-10.24	AVG	
Remark: 1. All readings are Quasi-Peak and Average values. 2. Factor = Insertion Loss + Cable Loss. 100.0 dBuV							

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	MHz	GHz		
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46		
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75		
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5		
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
6.26775-6.26825	123-138	2200-2300	14.47-14.5		
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4		
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
12.57675-12.57725	322-335.4	3600-4400	(2)		
13.36-13.41					

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	2400/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

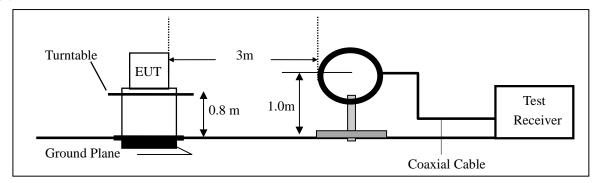
Frequency(MHz)	Class B (dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

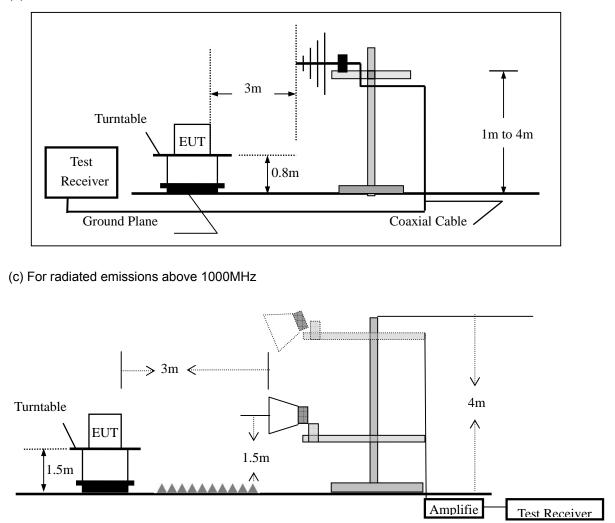
2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments


The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz and frequencies above 1GHz,
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

Page 20 of 42

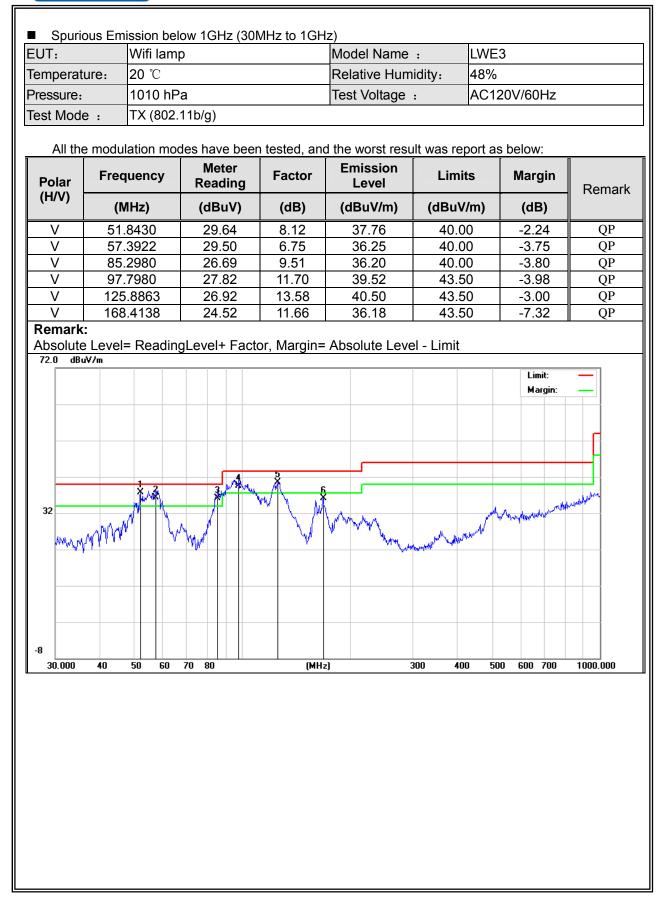
During the radiated emission test, the Spectrum Analyzer was set with the following configurations:									
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth						
30 to 1000	QP	120 kHz	300 kHz						
Al	Peak	1 MHz	1 MHz						
Above 1000	Average	1 MHz	10 Hz						

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

Spurious Er	nission below 30MHz (9KHz to 30MHz)		
EUT:	Wifi lamp	Model No.:	LWE3
Temperature:		Relative Humidity:	48%
Test Mode:	TX (802.11b/g)	Test By:	Lake Xie

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Emission Level(dBuV/m) Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV


Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor

Page 21 of 42

Report No.:NTEK-2016NT08228387F

Page 22 of 42

(H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Remark
Н	30.9618	4.54	19.37	23.91	40.00	-16.09	QP
Н	55.0274	12.10	7.09	19.19	40.00	-20.81	QP
Н	87.7248	13.68	10.10	23.78	40.00	-16.22	QP
Н	96.0986	13.20	11.56	24.76	43.50	-18.74	QP
Н	126.3285	7.65	13.55	21.20	43.50	-22.30	QP
H Remark	191.0738	11.99	10.48	22.47	43.50	-21.03	QP
72.0 dBu	uV7m					Limit: Margin:	
32						W Marrie Marriage and the	at Alet Marally
						Amente Martinger	
		3 4	5	6		L. Karal	
MAY	ANN X.	M	Areas Markey Harden and	. with weather that	where the way was		
	Marcin MM Mr.	/ ~	V. M. L. W. W. WARRAN	Mar Anaphanese			
	Manuna Stan	Whyperty					
8							
30.000	40 50 60	70 80	(MH	lz)	300 400	500 600 700	1000.000
			ę				1000.000

Page 23 of 42

Spuriou	is Emiss	sion Above	1GHz (1GHz	z to 27GH	z)				
EUT:		Wifi lamp			Model No.: LWE3				
Femperatur	erature: 20 °C				Relative Hu	imidity:	48%		
Fest Mode:		TX (802.1	lb/g)		Test By:		Lake Xie		
Il the modu	ulation n	nodes hav	e been tested	, and the	worst result	was repo	ort as below:		
Frequenc y	Read Level		Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment
(MHz)	(dBµV	') (dB)	dB/m	(dB)	(dBµV/m)				
					Hz)(802.11b)			-	
4824.96	56.15		35.59	44.30	52.65	74.00	-21.35	Pk	Vertical
4824.96	43.94	-	35.59	44.30	40.44	54.00	-13.56	AV	Vertical
7236.26	53.19		36.27	44.60	51.34	74.00	-22.66	Pk	Vertical
7236.26	42.06		36.27	44.60	40.21	54.00	-13.79	AV	Vertical
4824.12	51.71		35.55	44.30	48.17	74.00	-25.83	Pk	Horizonta
4824.12	42.11	-	35.55	44.30	38.57	54.00	-15.43	AV	Horizonta
7236.53	52.15		36.27	44.52	50.38	74.00	-23.62	Pk AV	Horizonta
7236.53	41.20	6.48	36.27	44.52	39.43	54.00	-14.57	Horizonta	
					Hz)(802.11b)				
4874.21	54.90		35.66	44.20	51.57	74.00	-22.43	Pk	Vertical
4874.21	43.68	-	35.66	44.20	40.35	54.00	-13.65	AV	Vertical
7311.01	54.72		36.50	44.43	53.89	74.00	-20.11	Pk	Vertical
7311.01	42.19		36.50	44.43	41.36	54.00	-12.64	AV	Vertical
4874.22	52.34		35.66	44.20	49.01	74.00	-24.99	Pk	Horizonta
4874.22	41.47		35.66	44.20	38.14	54.00	-15.86	AV	Horizonta
7311.07	52.49		36.50	44.43	51.66	74.00	-22.34	Pk	Horizonta
7311.07	42.52	7.10	36.50	44.43	41.69	54.00	-12.31	AV	Horizonta
ļ				· ·	Hz)(802.11b)				
4924.57	56.97	-	35.52	44.21	53.49	74.00	-20.51	Pk	Vertical
4924.57	43.27		35.52	44.21	39.79	54.00	-14.21	AV	Vertical
7386.21	51.39		36.53	44.60	50.42	74.00	-23.58	Pk	Vertical
7386.21	42.42		36.53	44.60	41.45	54.00	-12.55	AV	Vertical
4924.02	54.29		35.52	44.21	50.81	74.00	-23.19	Pk	Horizonta
4924.02	40.52		35.52	44.21	37.04	54.00	-16.96	AV	Horizonta
7386.82	50.19	-	36.53	44.60	49.22	74.00	-24.78	Pk	Horizonta
7386.82	43.81	7.10	36.53	44.60	42.84	54.00	-11.16	AV	Horizonta

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

(2) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(4)"802.11b" mode is the worst mode. When PK value is lower than the Average value limit, average didn't record.

Page 24 of 42

Report No.:NTEK-2016NT08228387F

Frequenc	Meter	Cable	Antenna	Preamp	Emission	Limits	Margin	Detector	
У	Reading	Loss	Factor	Factor	Level	Linits	Margin	Detector	Commen
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
				802	.11b				
2310.00	50.40	2.97	27.80	43.80	37.37	74	-36.63	Pk	Horizonta
2310.00	41.28	2.97	27.80	43.80	28.25	54	-25.75	AV	Horizonta
2310.00	52.38	2.97	27.80	43.80	39.35	74	-34.65	Pk	Vertical
2310.00	42.23	2.97	27.80	43.80	29.20	54	-24.80	AV	Vertical
2390.00	52.69	3.14	27.21	43.80	39.24	74	-34.76	Pk	Vertical
2390.00	41.01	3.14	27.21	43.80	27.56	54	-26.44	AV	Vertical
2390.00	53.84	3.14	27.21	43.80	40.39	74	-33.61	Pk	Horizonta
2390.00	40.47	3.14	27.21	43.80	27.02	54	-26.98	AV	Horizonta
2483.50	51.79	3.58	27.70	44.00	39.07	74	-34.93	Pk	Vertical
2483.50	40.80	3.58	27.70	44.00	28.08	54	-25.92	AV	Vertical
2483.50	51.80	3.58	27.70	44.00	39.08	74	-34.92	Pk	Horizonta
2483.50	43.67	3.58	27.70	44.00	30.95	54	-23.05	AV	Horizonta
				802	.11g				
2310.00	53.93	2.97	27.80	43.80	40.90	74	-33.10	Pk	Horizonta
2310.00	40.86	2.97	27.80	43.80	27.83	54	-26.17	AV	Horizonta
2310.00	51.64	2.97	27.80	43.80	38.61	74	-35.39	Pk	Vertical
2310.00	42.53	2.97	27.80	43.80	29.50	54	-24.50	AV	Vertical
2390.00	51.80	3.14	27.21	43.80	38.35	74	-35.65	Pk	Vertical
2390.00	44.66	3.14	27.21	43.80	31.21	54	-22.79	AV	Vertical
2390.00	50.56	3.14	27.21	43.80	37.11	74	-36.89	Pk	Horizonta
2390.00	44.28	3.14	27.21	43.80	30.83	54	-23.17	AV	Horizonta
2483.50	52.30	3.58	27.70	44.00	39.58	74	-34.42	Pk	Vertical
2483.50	40.14	3.58	27.70	44.00	27.42	54	-26.58	AV	Vertical
2483.50	50.18	3.58	27.70	44.00	37.46	74	-36.54	Pk	Horizonta
2483.50	44.48	3.58	27.70	44.00	31.76	54	-22.24	AV	Horizonta

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

Page 25 of 42

Spurious Emission in Restricted Bands 3260MMHz- 18000MHz

All the modulation modes have been tested, the worst result was report as below:

Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
3260	60.39	4.04	29.57	44.70	49.30	74	-24.70	Pk	Vertical
3260	54.48	4.04	29.57	44.70	43.39	54	-10.61	AV	Vertical
3260	60.31	4.04	29.57	44.70	49.22	74	-24.78	Pk	Horizontal
3260	56.90	4.04	29.57	44.70	45.81	54	-8.19	AV	Horizontal
3332	60.13	4.26	29.87	44.40	49.86	74	-24.14	Pk	Vertical
3332	53.10	4.26	29.87	44.40	42.83	54	-11.17	AV	Vertical
3332	62.33	4.26	29.87	44.40	52.06	74	-21.94	Pk	Horizontal
3332	53.32	4.26	29.87	44.40	43.05	54	-10.95	AV	Horizontal
17789	58.02	10.99	43.95	43.50	69.46	74	-4.54	Pk	Vertical
17789	40.32	10.99	43.95	43.50	51.76	54	-2.24	AV	Vertical
17957	58.36	11.81	43.69	44.60	69.26	74	-4.74	Pk	Horizontal
17957	40.21	11.81	43.69	44.60	51.11	54	-2.89	AV	Horizontal

802.11b" mode is the worst mode. When PK value is lower than the Average value limit, average didn't record.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 DTS 01 Meas. Guidance v03r05

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

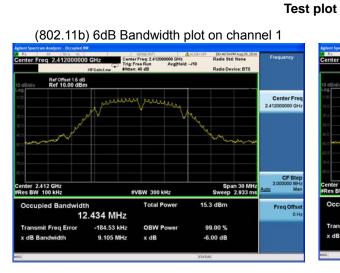
7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

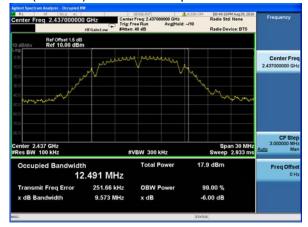
7.3.5 Test Procedure

The testing follows KDB 558074 DTS 01 Meas. Guidance v03r05 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW = 100KHz VBW \ge 3*RBW Sweep = auto Detector function = peak Trace = max hold

Page 27 of 42


7.3.6 Test Results

EUT:	Wifi lamp	Model No.:	LWE3
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	TX 802.11b/g	Test By:	Lake Xie


Mode	Channel	Frequency	6dB bandwidth	Limit	Result	
moue	Chunner	(MHz)	(MHz)	(kHz)	Itesuit	
	Low	2412	9.105	500	Pass	
802.11b	Middle	2437	9.573	500	Pass	
	High	2462	10.13	500	Pass	
	Low	2412	15.13	500	Pass	
802.11g	Middle	2437	15.71	500	Pass	
	High	2462	16.49	500	Pass	

Report No.:NTEK-2016NT08228387F

(802.11b) 6dB Bandwidth plot on channel 6

(802.11g) 6dB Bandwidth plot on channel 1 Radio Std: None enter Freq 2.412000000 GHz Center Freq: 2.412000000 GHz Trig: Free Run Avg[Hold: -J10 Ref Offset 1.5 di Ref 10.00 dB Averag Max Ho enter 2.412 GHz Res BW 100 kHz Span 30 M Sweep 2.933 r #VBW 300 kHz Occupied Band Total P 11.0 dBm De 16.261 MHz -22.533 kHz 99.00 % **Transmit Freq Error OBW Power** x dB Band 15.13 MHz x dB -6.00 dB

(802.11g) 6dB Bandwidth plot on channel 6

(802.11g) 6dB Bandwidth plot on channel 11

7.4 20DB BANDWIDTH

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 DTS 01 Meas. Guidance v03r05

7.4.2 Conformance Limit

N/A

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

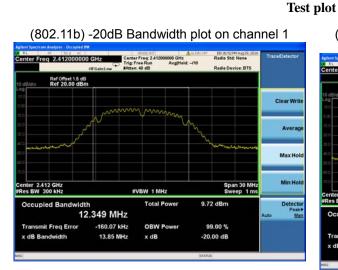
Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

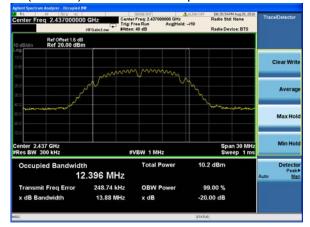
The testing follows KDB 558074 DTS 01 Meas. Guidance v03r05 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW = 300KHz VBW \ge 3*RBW Sweep = auto Detector function = peak

Trace = max hold

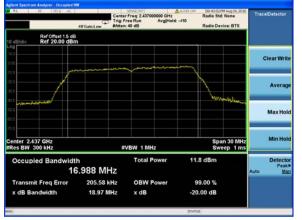
Page 30 of 42


7.4.6 Test Results

	r		
EUT:	Wifi lamp	Model No.:	LWE3
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	TX 802.11b/g	Test By:	Lake Xie


Mode	Channel	Frequency	-20dB bandwidth	Result	
wide	(MHz)		(MHz)	Kesuit	
	Low	2412	13.85	Pass	
802.11b	Middle	2437	13.88	Pass	
	High	2462	15.28	Pass	
	Low	2412	18.68	Pass	
802.11g	Middle	2437	18.97	Pass	
	High	2462	19.56	Pass	

Report No.:NTEK-2016NT08228387F


(802.11b) -20dB Bandwidth plot on channel 6

(802.11g) -20dB Bandwidth plot on channel 1

(802.11g) -20dB Bandwidth plot on channel 6

(802.11g) -20dB Bandwidth plot on channel 11

7.5 DUTY CYCLE

7.5.1 Applicable Standard

According to KDB 558074 DTS 01 Meas. Guidance v03r05

7.5.2 Conformance Limit

No limit requirement.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074 DTS 01 Meas. Guidance v03r05

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if T \leq 6.25 microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total} and Duty Cycle Factor=10*log(1/Duty Cycle)

Page 33 of 42

7.5.6 Test Results

EUT:	Wifi lamp	Model No.:	LWE3
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	TX 802.11b/g	Test By:	Lake Xie

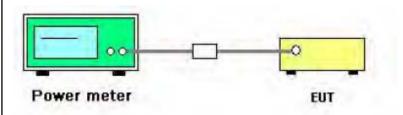
_	Test Results							
	Mode	Data rate	Channel	T _{on}	T _{total}	Duty Cycle %	Duty Cycle Factor (dB)	1/T Minimum VBW (kHz)
	802.11b	1Mbps	6	1.376ms	1.376ms	100	0.00	0.16
	802.11g	6Mbps	6	2.213ms	2.213ms	100	0.00	0.16

7.6 MAXIMUM OUTPUT POWER

7.6.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 DTS 01 Meas. Guidance v03r05

7.6.2 Conformance Limit


The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6 dBi.

7.6.3 Measuring Instruments

The following table is the setting of the power meter.

Power Meter Parameter	Setting
Detector	Average

7.6.4 Test Setup

7.6.5 Test Procedure

- 1. Test procedures refer KDB 558074 D01 v03r05 section 9.2.3.2 Measurement using a power meter (PM).
- 2. Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since this measurement is made only during the ON time of the transmitter, no duty cycle correction is required.

7.6.6 EUT opration during Test

The EUT was programmed to be in continuously transmitting mode.

Page 35 of 42

7.6.7 Test Results

EUT:	Wifi lamp	Model No.:	LWE3
Temperature:		Relative Humidity:	48%
Test Mode:	TX 802.11b/g	Test By:	Lake Xie

Mode	Channel	Frequency (MHz)	Conducted Output Power (dBm)	Limit (dBm)	Result
	Low	2412	7.17	30.00	Pass
802.11b	Middle	2437	8.20	30.00	Pass
	High	2462	7.52	30.00	Pass
	Low	2412	8.80	30.00	Pass
802.11g	Middle	2437	8.53	30.00	Pass
	High	2462	7.44	30.00	Pass

7.7 POWER SPECTRAL DENSITY

7.7.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 DTS 01 Meas. Guidance v03r05

7.7.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows Measurement Procedure 10.3 Method AVGPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05

This procedure may be used when the maximum (average) conducted output power was used to demonstrate compliance to the output power limit. This is the baseline method for determining the maximum (average) conducted PSD level. If the instrument has an RMS power averaging detector, it must be used; otherwise, use the sample detector. The EUT must be configured to transmit continuously (duty cycle \geq 98%); otherwise sweep triggering/signal gating must be implemented to ensure that measurements are made only when the EUT is transmitting at its maximum power control level (no transmitter off time is to be considered).

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

a) Set instrument center frequency to DTS channel center frequency.

b) Set span to at least 1.5 times the OBW.

c) Set RBW to: 3 kHz \leq RBW \leq 100 kHz. .

d) Set VBW ≥3 x RBW.

e) Detector = power averaging (RMS) or sample detector (when RMS not available).

f) Ensure that the number of measurement points in the sweep $\ge 2 \times \text{span/RBW}$.

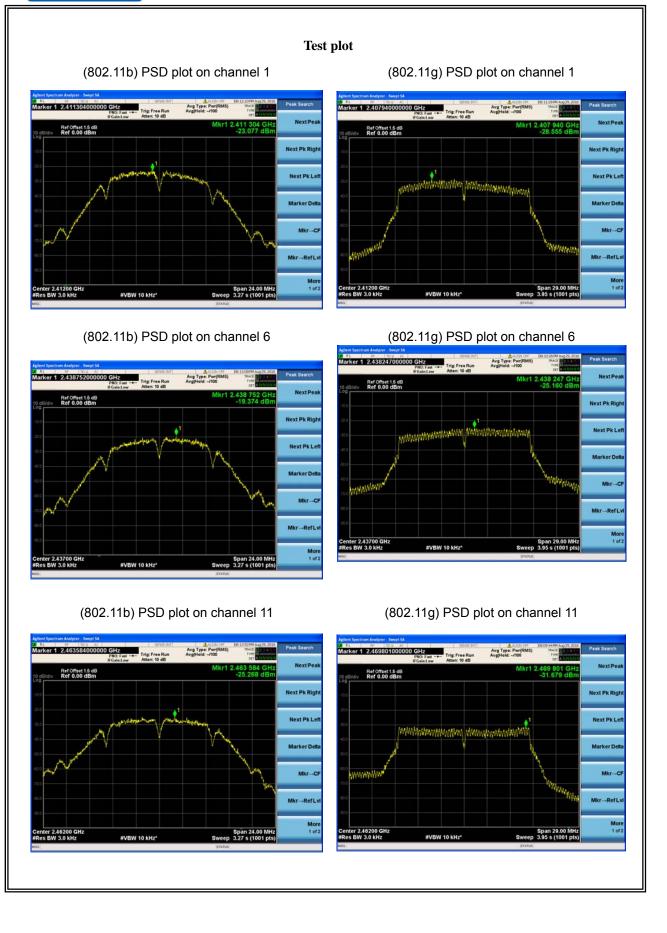
g) Sweep time = auto couple.

h) Employ trace averaging (RMS) mode over a minimum of 100 traces.

i) Use the peak marker function to determine the maximum amplitude level.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducin

Page 37 of 42


7.7.6 Test Results

EUT:	Wifi lamp	Model No.:	LWE3
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	TX 802.11b/g	Test By:	Lake Xie

Mode	Channel	Frequency (MHz)	Power Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
	Low	2412	-23.08	8.00	Pass
802.11b	Middle	2437	-19.37	8.00	Pass
	High	2462	-25.27	8.00	Pass
	Low	2412	-28.56	8.00	Pass
802.11g	Middle	2437	-25.16	8.00	Pass
	High	2462	-31.68	8.00	Pass

Report No.:NTEK-2016NT08228387F

7.8 Emission in non-Restricted Band

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 DTS 01 Meas. Guidance v03r05

The DTS rules specify that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions:7

a) If the maximum peak conducted output power procedure was used to demonstrate compliance as described in 9.1, then the peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 20 dBc).

b) If maximum conducted (average) output power was used to demonstrate compliance as described in 9.2, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 30 dBc).
c) In either case, attenuation to levels below the 15.209 general radiated emissions limits is not required.8 The following procedures shall be used to demonstrate compliance to these limits. Note that these procedures can be used in either an antenna-port conducted or radiated test set-up. Radiated tests must conform to the test site requirements and utilize maximization procedures defined herein.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Reference level measurement

Establish a reference level by using the following procedure:

a) Set instrument center frequency to DTS channel center frequency.

b) Set the span to \geq 1.5 times the DTS bandwidth.

c) Set the RBW = 100 kHz.

d) Set the VBW \geq 3 x RBW.

e) Detector = peak.

f) Sweep time = auto couple.

g) Trace mode = max hold.

h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

a) Set the center frequency and span to encompass frequency range to be measured.

b) Set the RBW = 100 kHz.

c) Set the VBW \ge 3 x RBW.

d) Detector = peak.

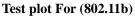
e) Sweep time = auto couple.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in 11.1 a) or 11.1 b). Report the three highest emissions relative to the limit.



Page 40 of 42

7.8.4 Test Results

EUT:	Wifi lamp	Model No.:	LWE3
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	TX 802.11b/g	Test By:	Lake Xie

(802.11b) Emission not in Restricted Band plot on channel 1 Reference Level (802.11b) Emission not in Restricted Band plot on channel 11 Reference Level

Test plot For (802.11g)

(802.11g) Emission not in Restricted Band plot on channel 1 Reference Level (802.11g) Emission not in Restricted Band plot on channel 11 Reference Level

tart Freq 2.31	0000000 GHz PNO: Fast IF Gain:Low	Trig: Free Run Atten: 40 dB	Avg Type: Per(RMS) Avg(Held: -/100	TRACE R 2 4 6 TYPE R Storestore DET A DET STORE	Frequency
	set 1.5 dB 0.00 dBm		Mkr1	2.410 68 GHz -9.730 dBm	Auto Tune
30 0 10 0 10 0				.1	Center Freq 2.370000000 GHz
10.0 10.0 10.0			, j	- fring	Start Freq 2.310000000 GHz
41.1) 63.0 63.0		1	warne ward	20.73 dBe	Stop Freq 2.430000000 GHz
tart 2.31000 GH Res BW 100 kH		BW 300 kHz*	Sweep 14	top 2.43000 GHz 4.9 ms (1001 pts)	CF Step 12.000000 MHz
ALP MODE THE SEL	× 2.410 68 GHz 2.400 00 GHz	-9.730 dBm -49.523 dBm	FUNCTION FUNCTION WOTH	FUNCTION VALUE	Auto Man
	2.000.00 374	HD/AC SDH			Freq Offset 0 Hz

7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

The EUT antenna is permanent attached (pcb)antenna. It comply with the standard requirement.

END OF REPORT