

Page 1 of 195

TES	T REPO	RT 🔇	
Product Trade mark Model/Type reference Serial Model	: Single mod : Richmat : HJ8258 : /	le Bluetooth(5.0) Modul	e
Report Number FCC ID Date of Issue	: EED32O80 : 2AJJGHJ8 : May 05, 20	258	
Test Standards ⊠ 47 CFR Part 15 Subpart C	C	ResultPASS	G

Prepared for: **Qingdao Richmat Intelligence Technology Inc** NO. 78 Kongquehe 4th Road Qingdao Clothing Industry park Jimo, Qingdao, Shandong Province 266000, China

Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385 mark, che Compiled by: Reviewed by: Mark Chen Tom Chen won Ma

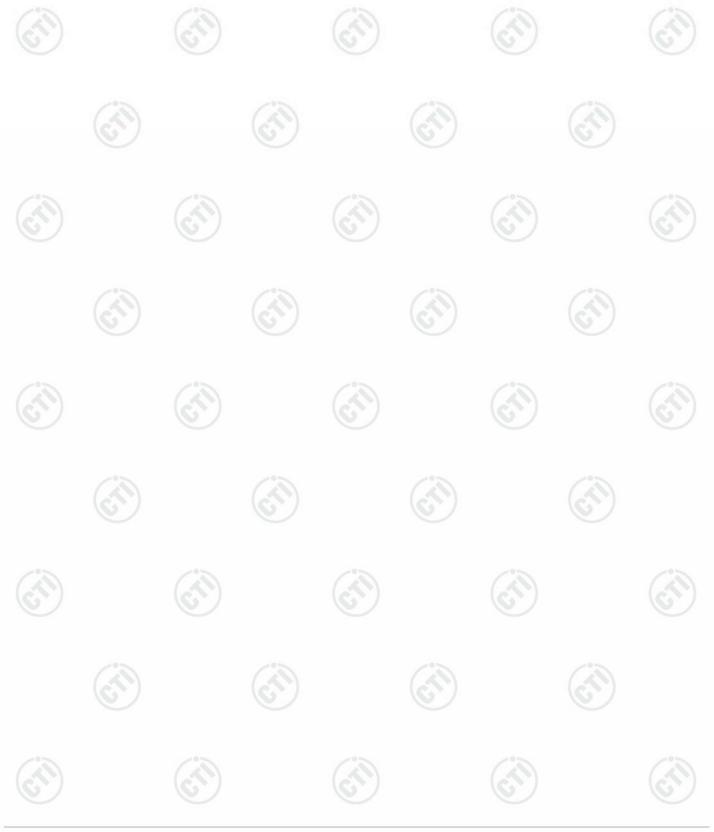
Date

May 05, 2022

Check No.:1043230322

Aaron Ma

Report Seal



Report No. : EED32O804093

Page 2 of 195

	Modification Record							
No.	Last Report No.	Modification Description						
1	EED32O804093	First report						

Page 3 of 195

TABLE OF CONTENTS

1. Test Summary	4
2. Test Requirement	
2.1. Test Environment 2.2. Test Condition	5 5
3. General Information	5
 3.1. Client Information	
4. Equipment List	8
5. Radio Technical Requirements Specification	
5.1. Reference Documents for Testing 5.2. Test Results List	
Appendix A): Restricted bands around fundamental frequency (Radiated)	
Appendix B): Radiated Spurious Emissions	76
PHOTOGRAPHS OF TEST SETUP	
PHOTOGRAPHS OF EUT Constructional Details	142

Report No. : EED32O804093

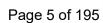
1. Test Summary

Test item	Test Requirement	Test method	Result PASS
Antenna Requirement*	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	
AC Power Line Conducted Emission*	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	N/A
Maximum conducted output power*	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
DTS Bandwidth [*]	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Maximum Power Spectral Density*	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions [*]	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions [*]	- ANSI U63 10-2013	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

1. The product is supplied by DC power.

2. Test according to ANSI C63.4-2014 & ANSI C63.10-2013.


 Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.
 "* " Detailed test results, please reference reported EED32M00310701

Remark:The product:Handset,model No.:HJH55 Ble,HJH37 Ble,HJH129 Ble,HJH129B Ble HJH13D Ble, HJSR03 Ble,HJSR05 Ble,HJH163 Ble.

They use the same Bluetooth module, but their circuit design, layout, component usage, internal wiring and External decoration are different.

Report No. : EED32O804093

2. Test Requirement

2.1. Test Environment

Operating Environment:						
Radiated Spurious Emi	ssions:					
Temperature:	22~25.0 °C	-0-	10m			
Humidity:	50~55 % RH	(\mathcal{A})				
Atmospheric Pressure:	1010mbar	(U)	(e)			

2.2. Test Condition

Test channel:

Test Mode	Tu/Du	RF Channel			
restiviode	Tx/Rx	Low(L)	Middle(M)	High(H)	
GFSK		Channel 1	Channel 20	Channel 40	
	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmittin data rate.	g mode with all kine	d of modulation and	all kind of	

3. General Information

3.1. Client Information

Applicant:	Qingdao Richmat Intelligence Technology Inc	
Address of Applicant:	NO. 78 Kongquehe 4th Road Qingdao Clothing Industry park Qingdao, Shandong Province 266000, China	Jimo,
Manufacturer:	Qingdao Richmat Intelligence Technology Inc	
Address of Manufacturer:	NO. 78 Kongquehe 4th Road Qingdao Clothing Industry park Qingdao, Shandong Province 266000, China	Jimo,
Factory:	Qingdao Richmat Intelligence Technology Inc	C.
Address of Factory:	NO. 78 Kongquehe 4th Road Qingdao Clothing Industry park Qingdao, Shandong Province 266000, China	Jimo,

3.2. General Description of EUT

Product Name:	Single mode Bluetooth(5.0) Module	9	67)	
Model No.(EUT)*:	HJ8258			
Trade Mark:	Richmat			
EUT Supports Radios application:	Bluetooth V5.0 BLE			
Power Supply:	DC 3.3V			(U)
Sample Received Date:	Apr. 21, 2022			
Sample Tested Date:	Apr. 21, 2022 to Apr. 28, 2022			

3.3. Product Specification subjective to this standard

2402MHz~2480MHz	(67)	
BLE 5.0	\bigcirc	
GFSK		
40		
Portable production	<">>	100
EMI_Tool (manufacturer declare)		
PCB Antenna		0
	BLE 5.0 GFSK 40 Portable production EMI_Tool (manufacturer declare)	BLE 5.0 GFSK 40 Portable production EMI_Tool (manufacturer declare)

CTI华测检测

Report No. : EED32O804093

· · · · · · · · · · · · · · · · · · ·		
Antenna Gain:	5.3dBi	
Test Voltage:	DC 3.3V	

-							
Operation	Frequency ea	ch of chann	100		6		
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz
		1.0.1		1 S. C. A. T.			

3.4. Tested System Details

Product	Manufacturer	Model No.
Handset	Richmat	Model Name.:HJH55 Ble,HJH37 Ble,HJH129 Ble,HJH129B Ble HJH13D Ble,HJSR03 Ble,HJSR05 Ble,HJH163 Ble

3.5. Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	DELL	Latitude 3490	FCC&CE	СТІ

3.6. Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 3368385

No tests were sub-contracted.

FCC Designation No.: CN1164

- Report No. : EED32O804093
- 3.7. Deviation from Standards

None.

- 3.8. Abnormalities from Standard Conditions None.
- 3.9. Other Information Requested by the Customer
 - None.

3.10. Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
		0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
3	Dedicted Sourieus emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

4. Equipment List

-								
	3M Semi-an	echoic Chamber (2)	- Radiated distu	rbance Test				
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date			
3M Chamber & Accessory Equipment	трк	SAC-3		05/24/2019	05/23/2022			
Receiver	R&S	ESCI7	100938-003	10/14/2021	10/13/2022			
TRILOG Broadband Antenna	adband schwarzbeck		9163-618	05/23/2019	05/22/2022			
Multi device Controller	maturo	NCD/070/10711112	~		~ ~			
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024			
Microwave Preamplifier	Agilent	8449B	3008A02425	06/23/2021	06/22/2022			

Preamplifier

CTI华测检测

Report No. : EED32O804093

(N)

Page 9 of 195

3M full-anechoic Chamber											
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)						
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	6	9						
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023						
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023						
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023						
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024						
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024						
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024						
Preamplifier	EMCI	EMC184055SE	980597	05-20-2021	05-19-2022						
Preamplifier EMCI Preamplifier JS Tonscend		EMC001330	980563	04-15-2021 04-13-2022	04-14-2022						
		980380	EMC051845SE	12-24-2021	12-23-2022						
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022						
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021 02-21-2022	04-15-2022 02-20-2023						
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024						
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	@	/						
Cable line	Times	SFT205-NMSM-2.50M	394812-0002								
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	<u></u>	-63						
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	<u> </u>	6						
Cable line	Times	EMC104-NMNM-1000	SN160710								
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	(2	- ()						
Cable line	Times	SFT205-NMNM-1.50M	381964-0001								
Cable line	Times	SFT205-NMSM-7.00M	394815-0001								
Cable line	Times	HF160-KMKM-3.00M	393493-0001	<u></u>	(2						

Page 10 of 195

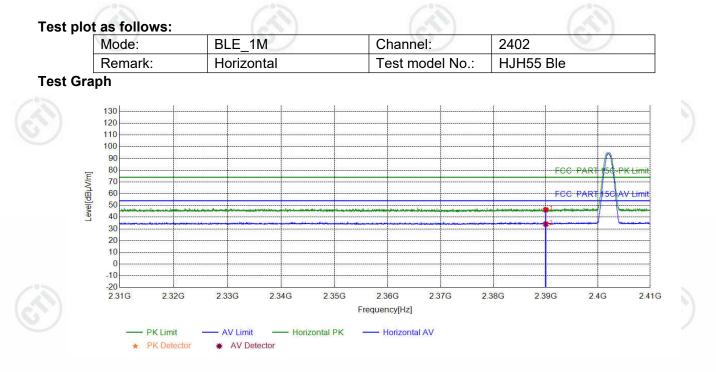
5. Radio Technical Requirements Specification

5.1. Reference Documents for Testing

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

5.2. Test Results List

Test requirement	Test method	Test item	Verdict	Note	
Part15C Section 15.205/15.209	ANSI C63.10 Section 6.10.5	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix A)	
Part15C Section 15.205/15.209	ANSI C63.10 Section 6.4,6.5,6.6	Radiated Spurious Emissions	PASS	Appendix B)	


Appendix A): Restricted bands around fundamental frequency (Radiated)

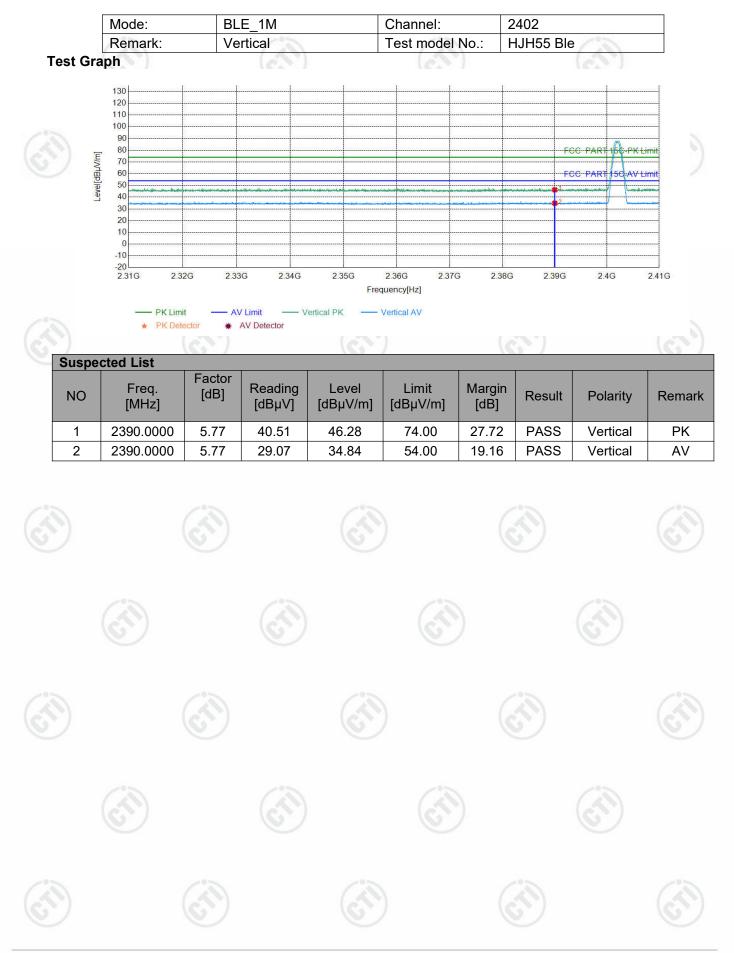
Dessiver Setup					~	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-pea	
	2°5	Peak	1MHz	3MHz	Peak	10
	Above 1GHz	Peak	1MHz	1/T	Average	
					, wordge	6
Test Procedure:	 Below 1GHz test proces a. The EUT was placed ground at a 3 meters degrees to determine b. The EUT was set 3 m which was mounted of c. The antenna height is ground to determine horizontal and vertica measurement. d. For each suspected of then the antenna was rotatable was turned reading. e. The test-receiver sys Bandwidth with Maxin f. Place a marker at the frequency to show compared to the sho	I on the top of a semi-anechoic c e the position of neters away from on the top of a v s varied from on the maximum va al polarizations c emission, the EU s tuned to heigh from 0 degrees tem was set to 1 mum Hold Mode e end of the rest	rotating tal amber. Th the highes m the interf variable-hei he meter to alue of the of the anter JT was arr ts from 1 n to 360 dec Peak Deter a. ricted banc	e table was t radiation. ference-rec ight antenn four meter field streng nna are sel anged to it neter to 4 r grees to fin ct Function d closest to	s rotated 36 beiving anten a tower. rs above the gth. Both t to make th s worst case neters and t d the maxim and Specif o the transm	0 nna, e e and the num ied
	restricted bands. Sav and modulation for lo Above 1GHz test proce a. Different between ab Chamber to fully Ane meter(Above 18GHz b. Test the EUT in the lo c. The radiation measur Transmitting mode, a d. Repeat above proces	west and higher dure as below: ove is the test s choic Chamber the distance is owest channel , rements are per and found the X	st channel ite, change change fo 1 meter ar the Highes formed in 2 axis positio	e from Sem rm table 0. nd table is st channel X, Y, Z axis pning whicl	ni- Anechoic 8 meter to 1 1.5 meter). s positioning h it is worse	; 1.5 g for case.
I localde		No.	1			
Limit:						
	Frequency	Limit (dBµV	/m @3m)		nark	
	Frequency 30MHz-88MHz	Limit (dBµV 40.0			nark eak Value	
			0	Quasi-pe		
	30MHz-88MHz	40.0	0 5	Quasi-pe Quasi-pe	eak Value eak Value	
	30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	40.0 43.0 46.0	0 5 0	Quasi-pe Quasi-pe Quasi-pe	eak Value eak Value eak Value	
	30MHz-88MHz 88MHz-216MHz	40.0	0 5 0 0	Quasi-pe Quasi-pe Quasi-pe Quasi-pe	eak Value eak Value	

CTI华测检测

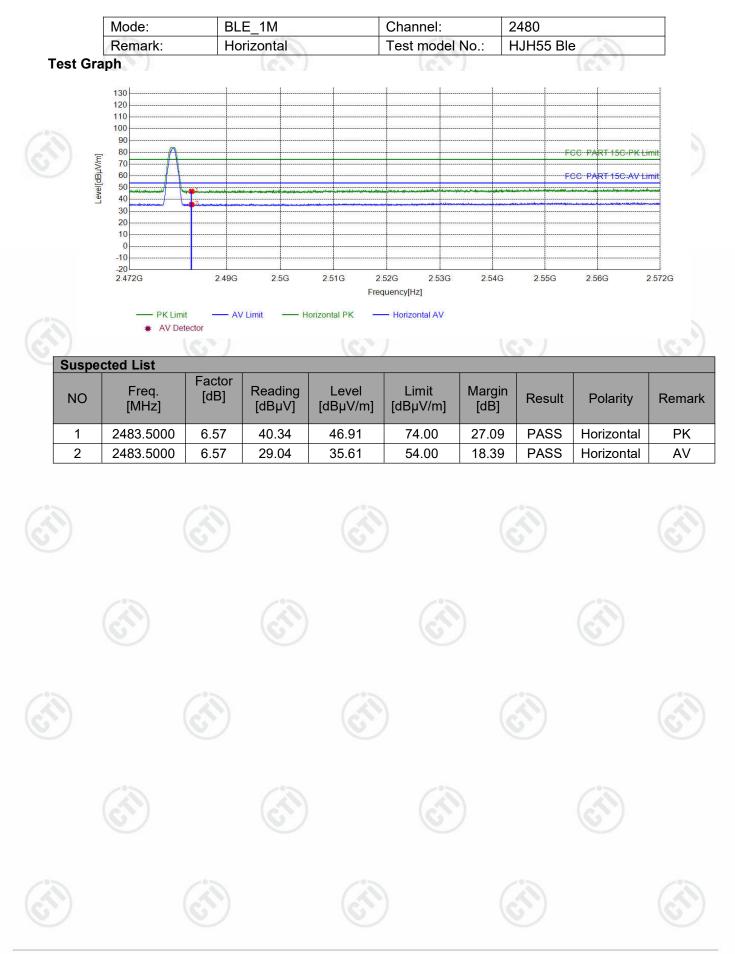
Report No. : EED32O804093

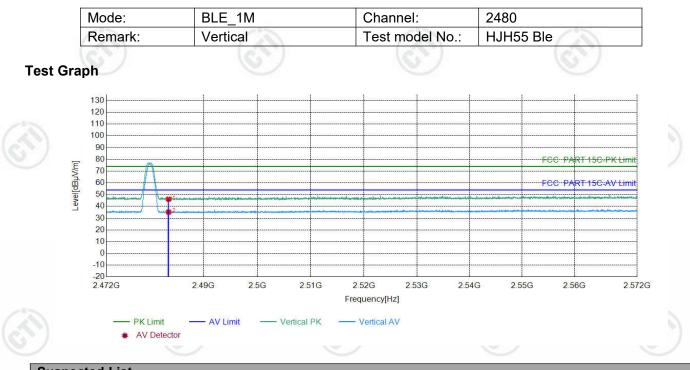
Page 12 of 195 During the test, the Restricted bands from above 1G was performed in all modes, only the worst case of GFSK 1M,2M was recorded in the report.

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	40.52	46.29	74.00	27.71	PASS	Horizontal	PK
2	2390.0000	5.77	28.38	34.15	54.00	19.85	PASS	Horizontal	AV

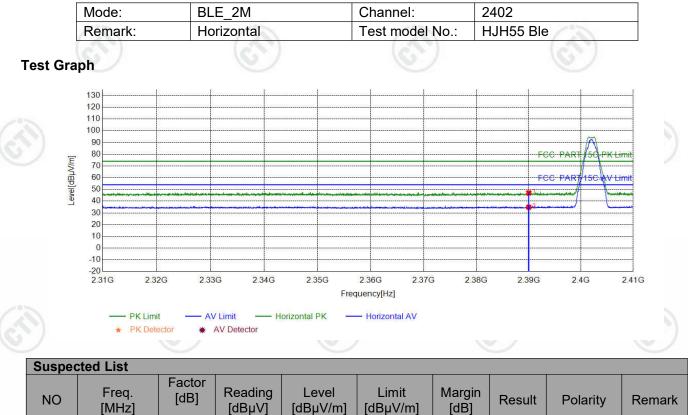


Page 13 of 195

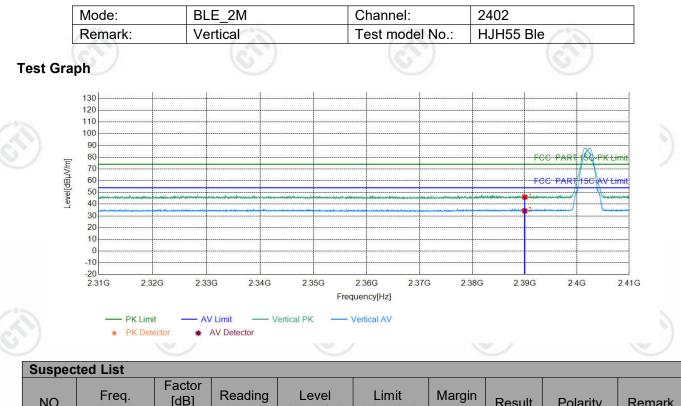



Page 14 of 195

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2483.5000	6.57	39.58	46.15	74.00	27.85	PASS	Vertical	PK		
2	2483.5000	6.57	28.60	35.17	54.00	18.83	PASS	Vertical	AV		

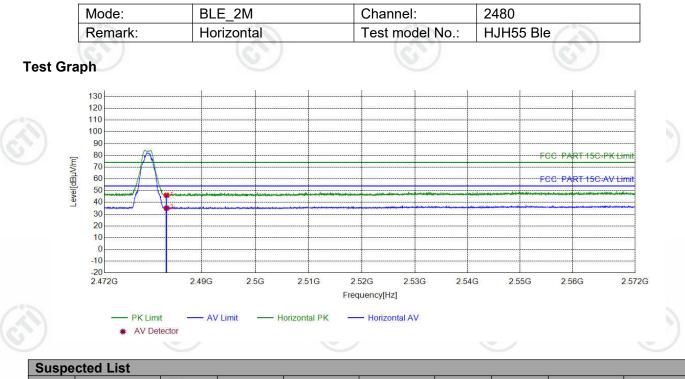


	NO	Freq. [MHz]	[dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.0000	5.77	41.31	47.08	74.00	26.92	PASS	Horizontal	PK
[2	2390.0000	5.77	29.09	34.86	54.00	19.14	PASS	Horizontal	AV



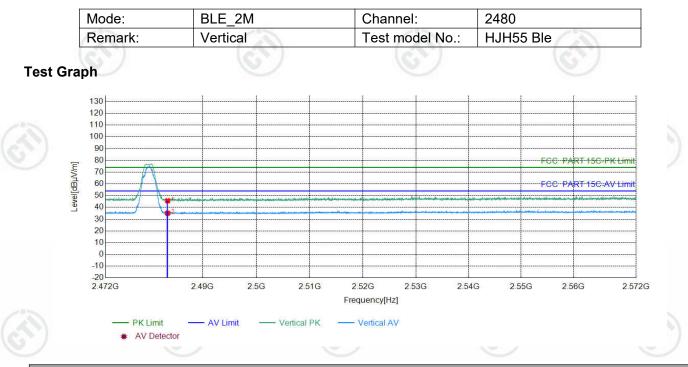
Page 17 of 195

NO	Freq. [MHz]	[dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	40.25	46.02	74.00	27.98	PASS	Vertical	PK
2	2390.0000	5.77	28.53	34.30	54.00	19.70	PASS	Vertical	AV



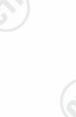
Page 18 of 195

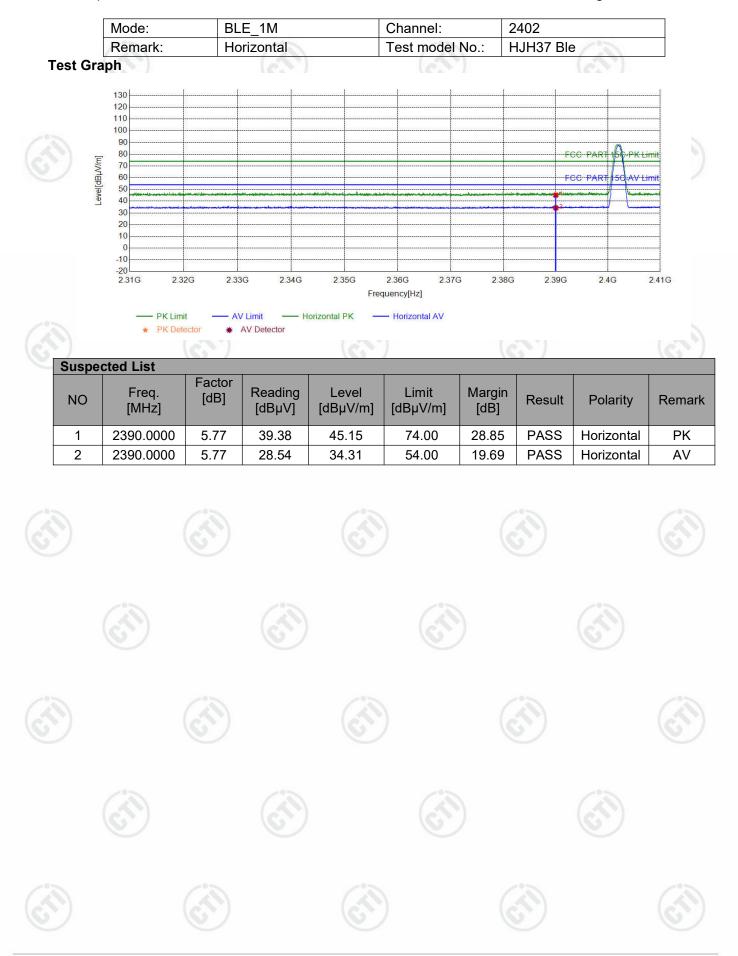
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	39.50	46.07	74.00	27.93	PASS	Horizontal	PK
2	2483.5000	6.57	28.53	35.10	54.00	18.90	PASS	Horizontal	AV



Page 19 of 195

Susp	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	2483.5000	6.57	39.06	45.63	74.00	28.37	PASS	Vertical	PK			
2	2483.5000	6.57	28.50	35.07	54.00	18.93	PASS	Vertical	AV			

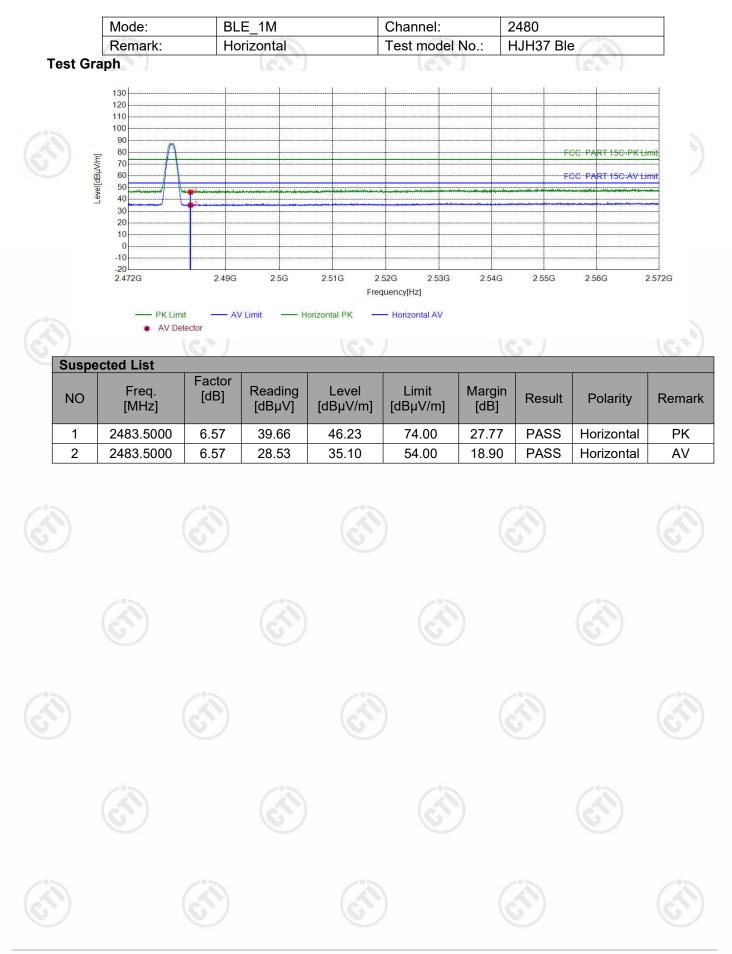


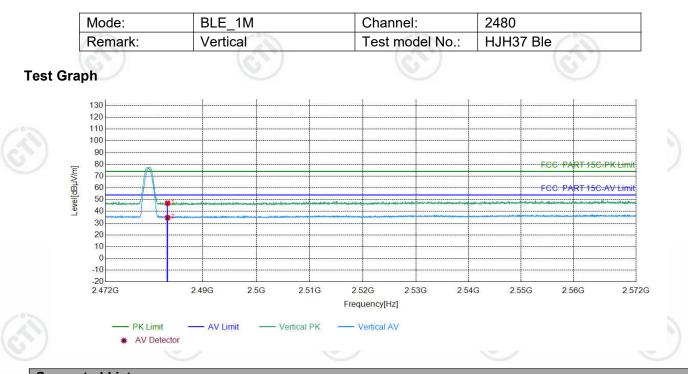


Page 20 of 195



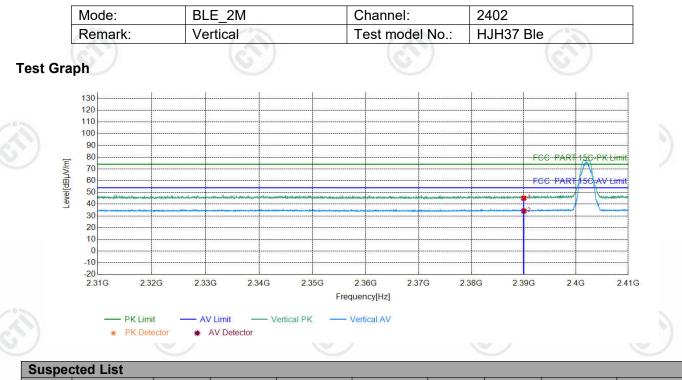
Page 21 of 195



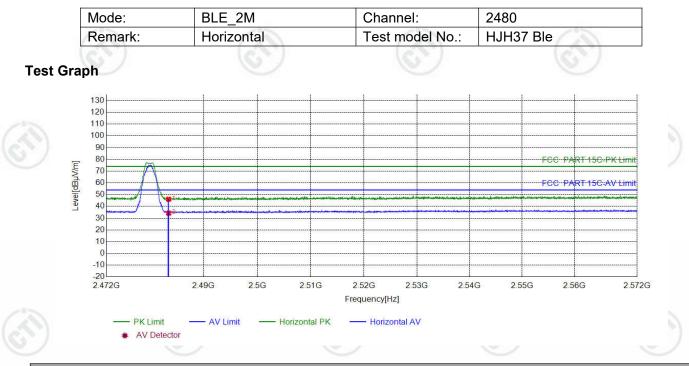

Page 22 of 195

Suspec	ted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	40.46	47.03	74.00	26.97	PASS	Vertical	PK
2	2483.5000	6.57	28.08	34.65	54.00	19.35	PASS	Vertical	AV

Page 24 of 195

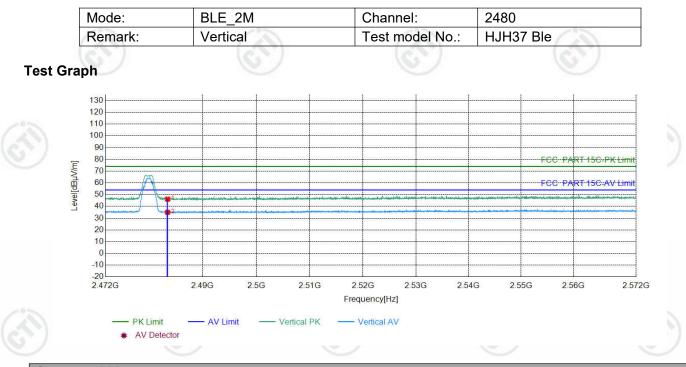


NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	39.31	45.08	74.00	28.92	PASS	Vertical	PK
2	2390.0000	5.77	28.45	34.22	54.00	19.78	PASS	Vertical	AV



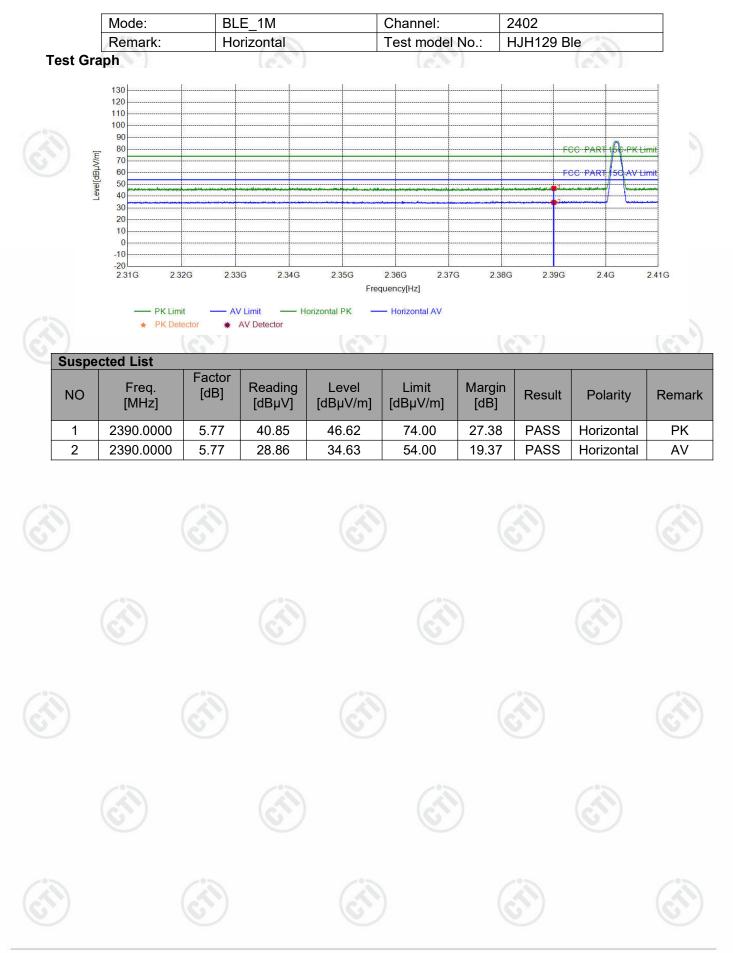
Page 26 of 195

Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2483.5000	6.57	39.55	46.12	74.00	27.88	PASS	Horizontal	PK		
2	2483.5000	6.57	27.68	34.25	54.00	19.75	PASS	Horizontal	AV		



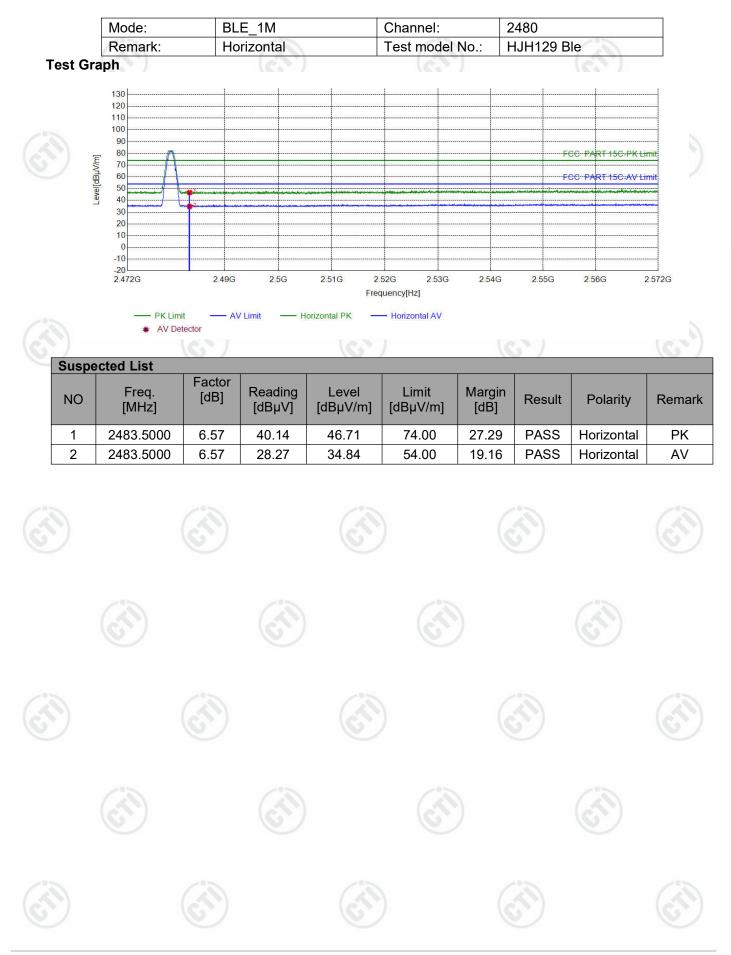
Page 27 of 195

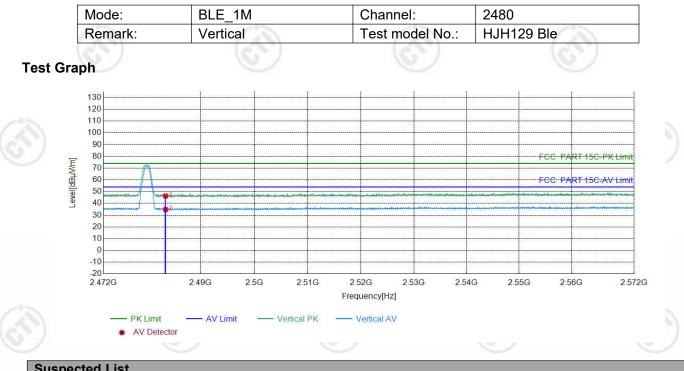
Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2483.5000	6.57	39.58	46.15	74.00	27.85	PASS	Vertical	PK		
2	2483.5000	6.57	28.42	34.99	54.00	19.01	PASS	Vertical	AV		



Page 28 of 195

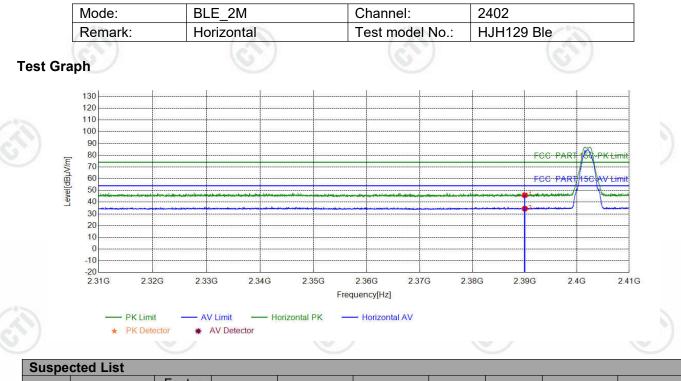
Page 29 of 195



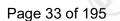

Page 30 of 195

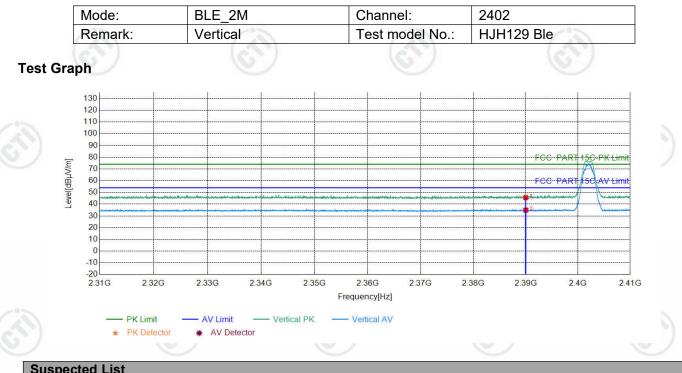
Page 31 of 195

Susper									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	39.78	46.35	74.00	27.65	PASS	Vertical	PK
2	2483.5000	6.57	28.18	34.75	54.00	19.25	PASS	Vertical	AV

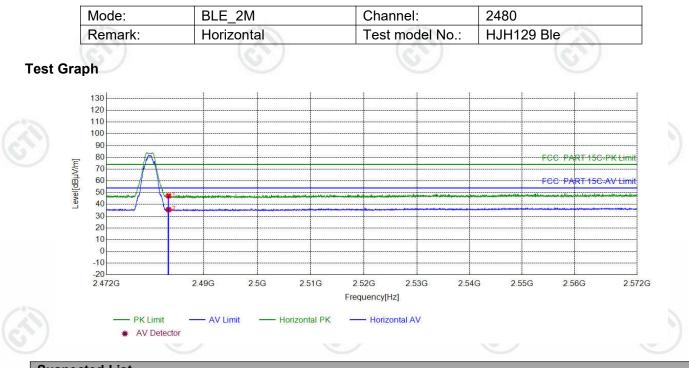


NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	40.16	45.93	74.00	28.07	PASS	Horizontal	PK
2	2390.0000	5.77	28.69	34.46	54.00	19.54	PASS	Horizontal	AV



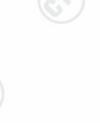


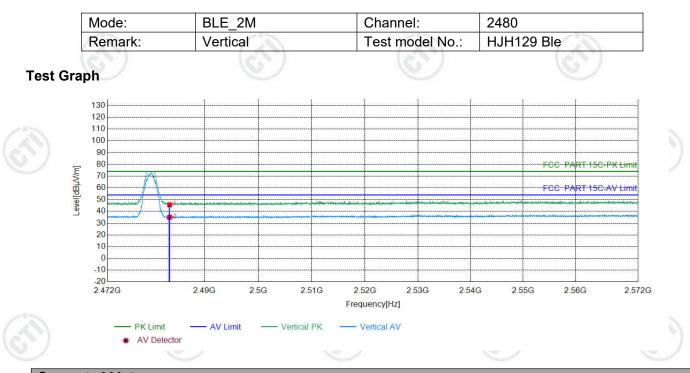
ousp									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	39.84	45.61	74.00	28.39	PASS	Vertical	PK
2	2390.0000	5.77	29.17	34.94	54.00	19.06	PASS	Vertical	AV



Page 34 of 195

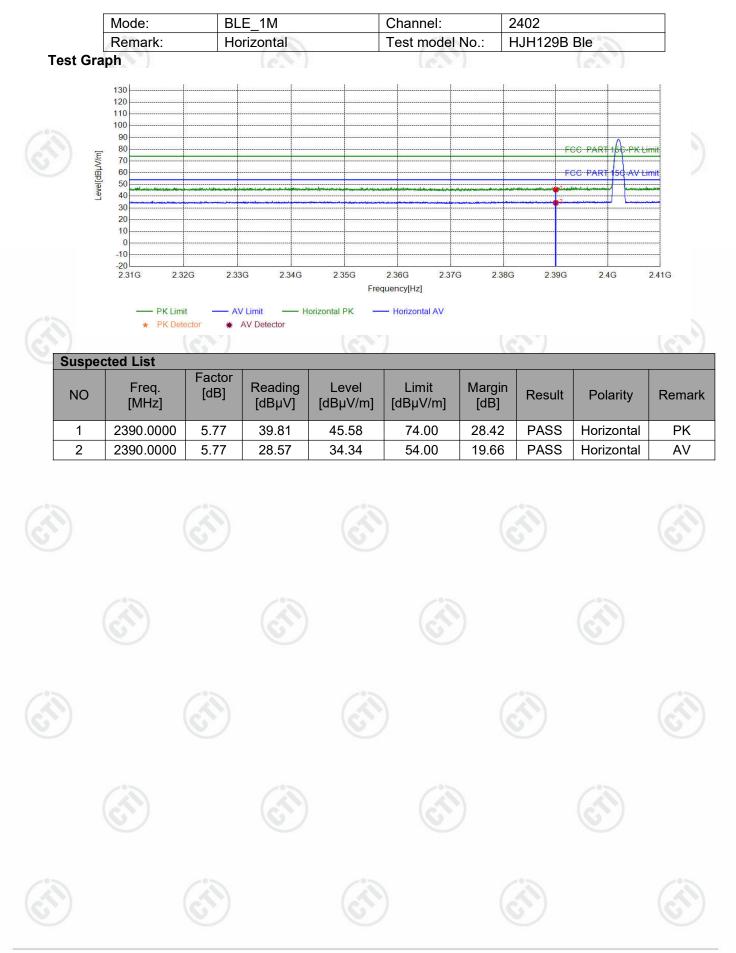
Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	40.70	47.27	74.00	26.73	PASS	Horizontal	PK
2	2483.5000	6.57	28.99	35.56	54.00	18.44	PASS	Horizontal	AV





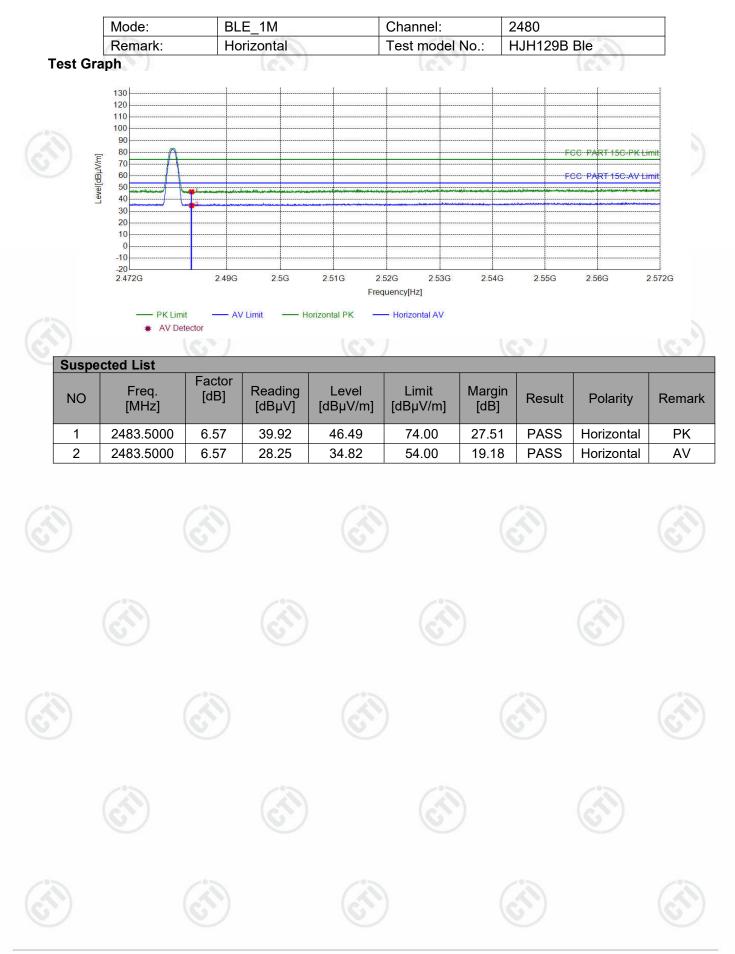
Page 35 of 195

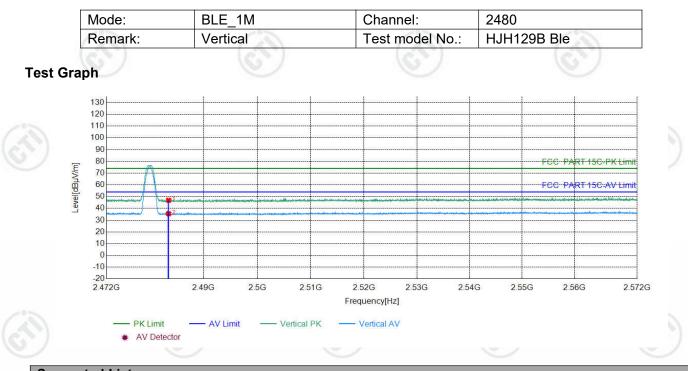
Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	39.11	45.68	74.00	28.32	PASS	Vertical	PK
2	2483.5000	6.57	28.48	35.05	54.00	18.95	PASS	Vertical	AV



Page 36 of 195

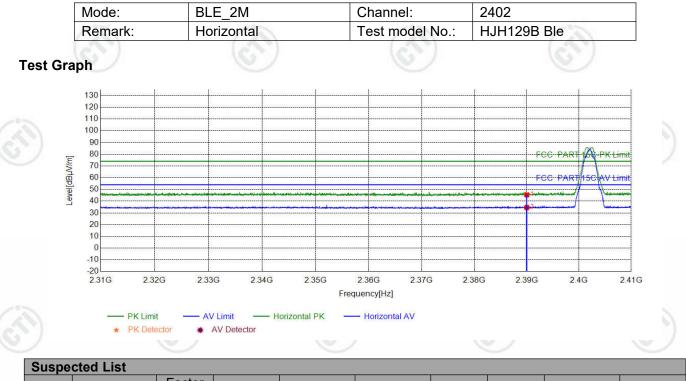
Page 37 of 195



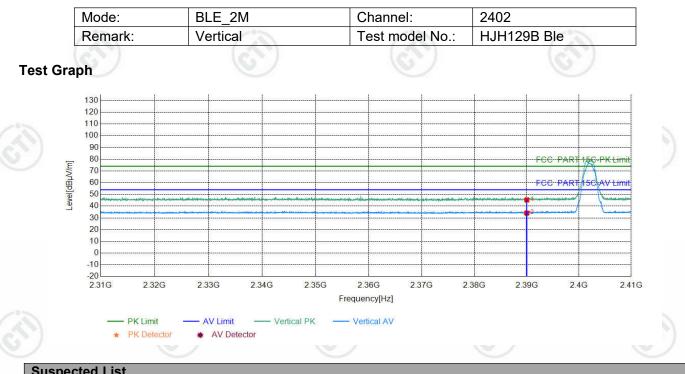

Page 38 of 195

Page 39 of 195

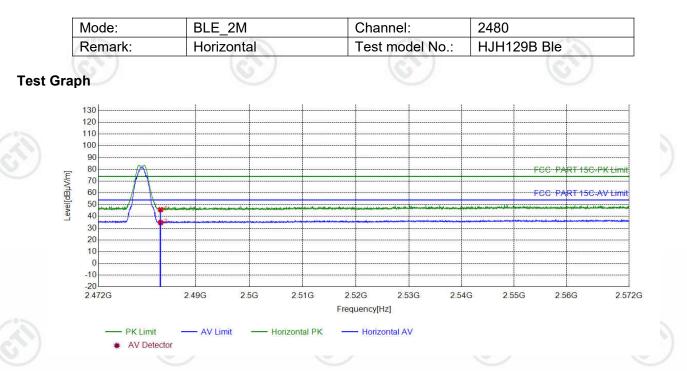
Suspec	ted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	40.35	46.92	74.00	27.08	PASS	Vertical	PK
2	2483.5000	6.57	28.90	35.47	54.00	18.53	PASS	Vertical	AV



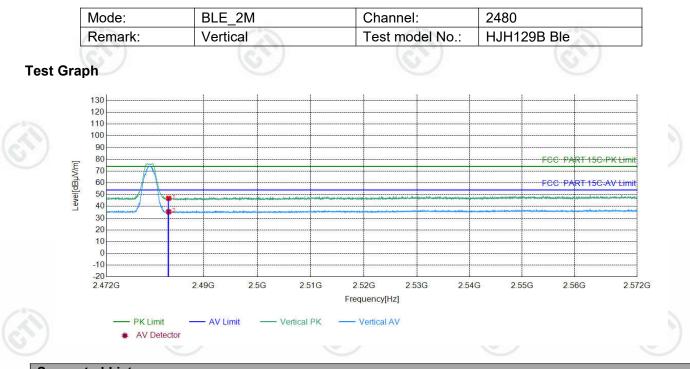
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	39.61	45.38	74.00	28.62	PASS	Horizontal	PK
2	2390.0000	5.77	28.83	34.60	54.00	19.40	PASS	Horizontal	AV



U	uspe									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.0000	5.77	39.60	45.37	74.00	28.63	PASS	Vertical	PK
	2	2390.0000	5.77	28.36	34.13	54.00	19.87	PASS	Vertical	AV

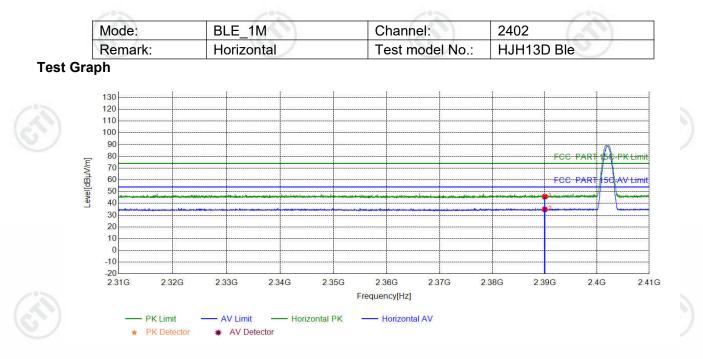


Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2483.5000	6.57	39.18	45.75	74.00	28.25	PASS	Horizontal	PK		
2	2483.5000	6.57	28.18	34.75	54.00	19.25	PASS	Horizontal	AV		



Page 43 of 195

Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	40.35	46.92	74.00	27.08	PASS	Vertical	PK
2	2483.5000	6.57	28.87	35.44	54.00	18.56	PASS	Vertical	AV



Page 44 of 195

Suspe	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	2390.0000	5.77	39.97	45.74	74.00	28.26	PASS	Horizontal	PK			
2	2390.0000	5.77	29.14	34.91	54.00	19.09	PASS	Horizontal	AV			



Page 45 of 195

