

Report No. : EED32M00310701 Page 1 of 51

TEST REPORT

Product : Single mode Bluetooth(5.0) Module

Trade mark : Richmat

Model/Type reference : HJ8258

Serial Number : N/A

Report Number : EED32M00310701

FCC ID : 2AJJGHJ8258

Date of Issue : Oct. 21, 2020

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

Qingdao Richmat Intelligence Technology Inc NO. 78 Kongquehe 4th Road Qingdao Clothing Industry park Jimo, Qingdao, Shandong Province 266000, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Report Seal

Sunlight Sun

Reviewed by:

Jok Yang

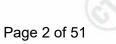
Sunlight Sun

Date:

Oct. 21, 2020

Sam Chuang

Check No.:3915579196



2 Version

Version No.	Date	(c	Description	(1)
00	Oct. 21, 2020		Original	
9				
		(35)		

3 Test Summary

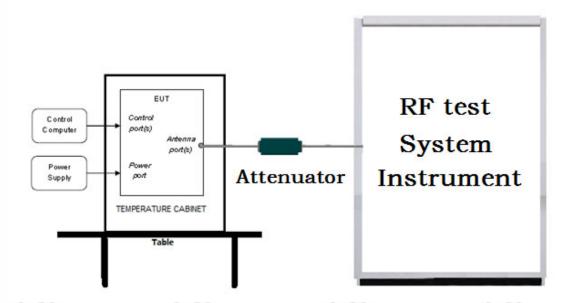
o rest outilitially	200		
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	N/A
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Page 4 of 51

	Content		
1 C	OVER PAGE		••••••
2 VE	ERSION		<u> </u>
3 TE	EST SUMMARY	•••••	
4 C	ONTENT		
5 TE	EST REQUIREMENT		
5	5.1 TEST SETUP		
6 G	ENERAL INFORMATION		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
6 6 6 6	3.1 CLIENT INFORMATION		9
	QUIPMENT LIST		
	ADIO TECHNICAL REQUIREMENTS SPECIFICATION		
	Appendix A): 6dB Occupied Bandwidth	y (Radiated)	
PHO	OTOGRAPHS OF TEST SETUP		48
PHO	OTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS		50



Page 5 of 51

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

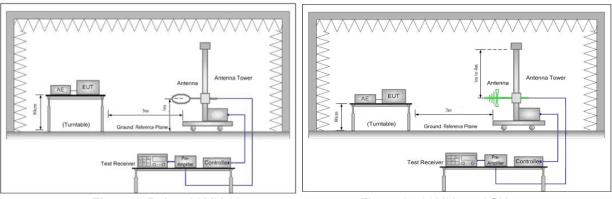


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

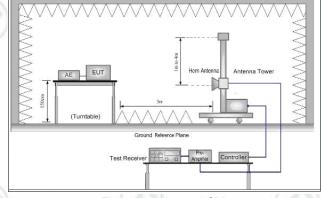
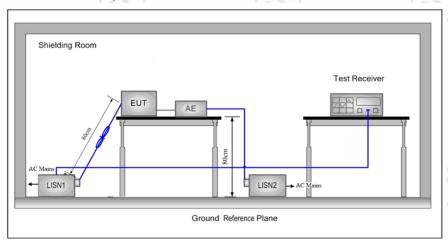



Figure 3. Above 1GHz

Page 6 of 51

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

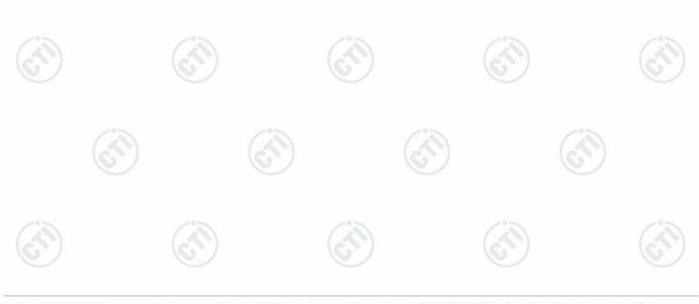
5.2 Test Environment

Operating Environment:		(6)
Temperature:	24.0 °C	
Humidity:	54 % RH	
Atmospheric Pressure:	1010mbar	1

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
Test Mode	TX/KX	Low(L)	Middle(M)	High(H)	
05014	0.400.441 0.400.441	Channel 0	Channel 19	Channel 39	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmitting mod rate.	e with all kind of m	odulation and a	all kind of data	


6 General Information

6.1 Client Information

Applicant:	Qingdao Richmat Intelligence Technology Inc
Address of Applicant:	NO. 78 Kongquehe 4th Road Qingdao Clothing Industry park Jimo, Qingdao, Shandong Province 266000, China
Manufacturer:	Qingdao Richmat Intelligence Technology Inc
Address of Manufacturer:	NO. 78 Kongquehe 4th Road Qingdao Clothing Industry park Jimo, Qingdao, Shandong Province 266000, China
Factory:	Qingdao Richmat Intelligence Technology Inc
Address of Factory:	NO. 78 Kongquehe 4th Road Qingdao Clothing Industry park Jimo, Qingdao, Shandong Province 266000, China

6.2 General Description of EUT

Product Name:	Single mode Bluetooth(5.0) Module			
Model No.(EUT):	HJ8258			
Trade mark:	Richmat	(3)		(2)
Power Supply:	DC 3.3V	(0,0)		(0,)
Operation Frequency:	2402MHz~2480MHz			
Bluetooth Version:	5.0 (BLE)			
Modulation Technique:	DSSS		(3)	
Modulation Type:	GFSK		(67)	
Number of Channel:	40			
Test Power Grade:	Default			
Test Software of EUT:	EMI_TEST_v1.5	13		100
Antenna Type and Gain:	Type:PCB Antenna	(85)		(6.77)
	Gain:3dBi			
Test Voltage:	DC 3.3V			
Sample Received Date:	Oct. 12, 2020		20%	
Sample tested Date:	Oct. 12, 2020 to Oct. 16, 2020		(41)	

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Page 9 of 51

6.3 Description of Support Units

The EUT has been tested independently

6.4 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.5 Abnormalities from Standard Conditions

None.

6.6 Other Information Requested by the Customer

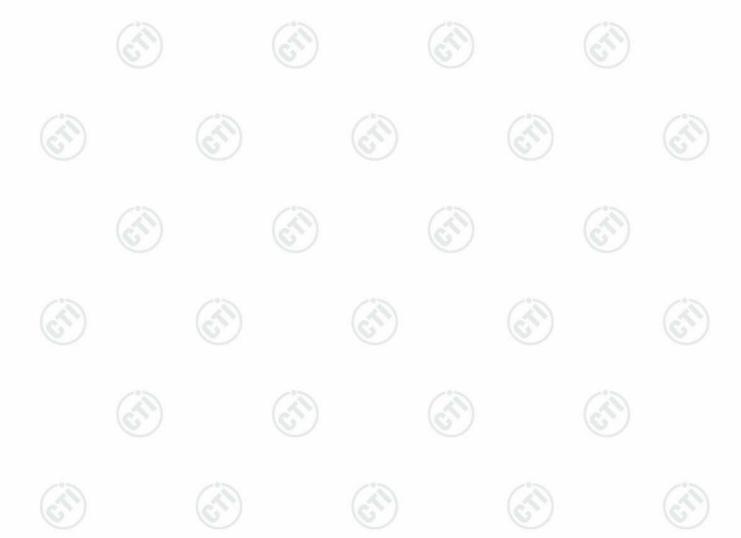
None.

6.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
2	Dadiated Country and a section to at	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

7 Equipment List

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-29-2020	06-28-2021
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		(A)	- 6
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d			
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3			

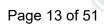


Page 11 of 51

	3M S	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020	05-15-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020
Multi device Controller	maturo	NCD/070/107 11112	(4.2)		(CL)
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A	378	
Cable line	Fulai(3M)	SF106	5216/6A	(- <u></u> ())	//
Cable line	Fulai(3M)	SF106	5217/6A	(G-)	

Page 12 of 51

		3M full-anechoic		0-1 1-1-	0-1-0
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		(3)
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		6.7
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		
Cable line	Times	EMC104-NMNM- 1000	SN160710	(a)	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		215
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		(e/s)
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		



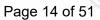
8 Radio Technical Requirements Specification

Reference documents for testing:

	No.	Identity	Document Title
	1	FCC Part15C	Subpart C-Intentional Radiators
7	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

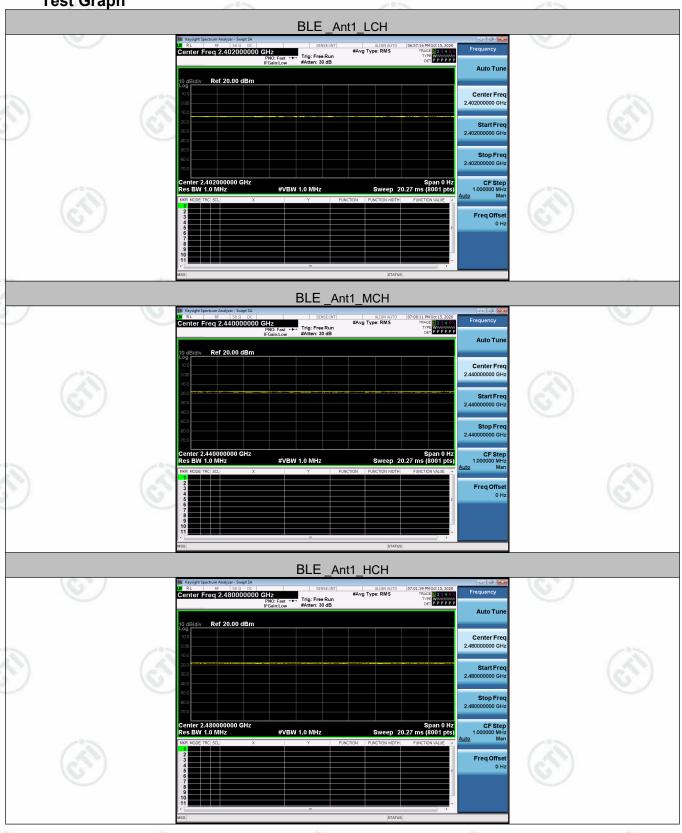
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	N/A
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix H)



Duty Cycle

Result Table

	Mode	Channel	Duty Cycle [%]	Limit	Verdict
	BLE	LCH	100		PASS
-1	BLE	MCH	100	/S	PASS
ď	BLE	НСН	100	(65)	PASS



Page 15 of 51

Page 16 of 51

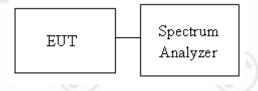
Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth:

	0
Limit	Shall be at least 500kHz


Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

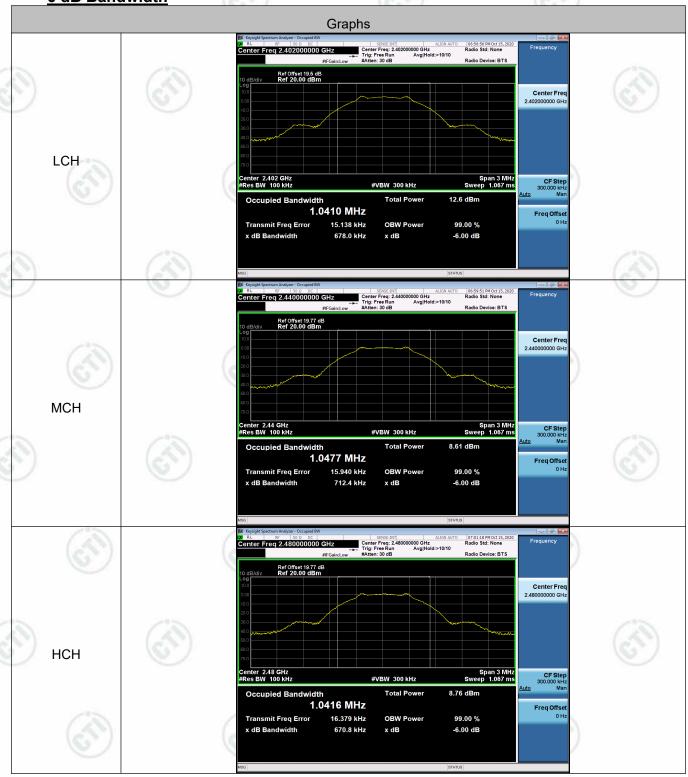
Test method Refer as KDB 558074 D01, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth.
- 4. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.6780	1.0317	PASS
BLE	MCH	0.7124	1.0341	PASS
BLE	HCH	0.6708	1.0299	PASS



Page 18 of 51

Test Graphs 6 dB Bandwidth



Page 19 of 51

Page 20 of 51

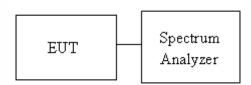
Appendix B): Conducted Peak Output Power

Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


)	(0,)		0
Limit		☐ Antenna with DG greater than 6 dBi [Limit = 30 – (DG – 6)]	i
		☐ Point-to-point operation	

Test Procedure

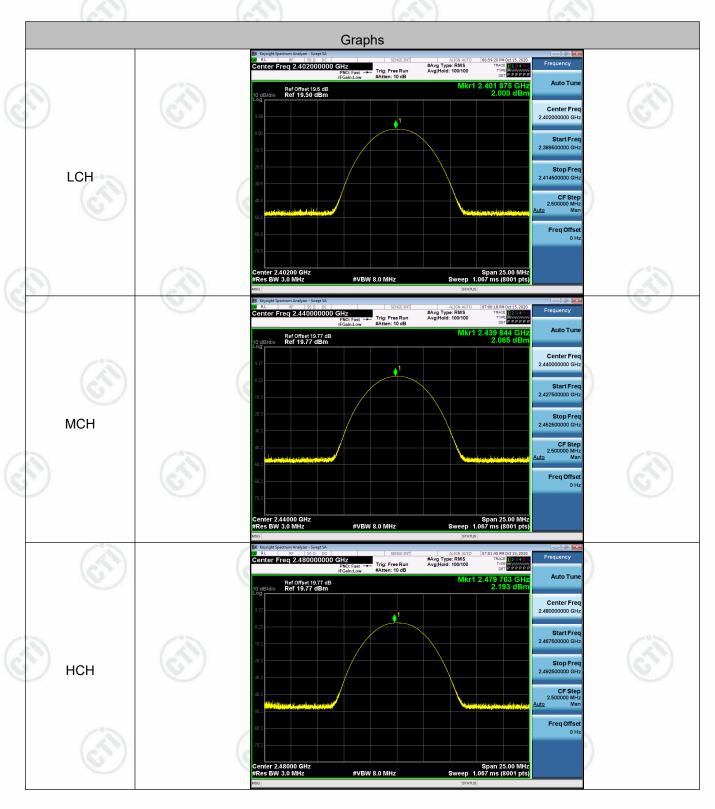
Test method Refer as KDB 558074 D01, section 9.1.2.

- 1. The EUT RF output connected to spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Set the RBW≥DTS bandwidth.
 - b) Set VBW ≥ [3×RBW].
 - c) Set span ≥[3×RBW].
 - d) Sweep time = auto couple.
 - e) Detector = peak.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use peak marker function to determine the peak amplitude level
- 4. Measure and record the result in the test report.

Test Setup

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	2	PASS
BLE	MCH	2.065	PASS
BLE	НСН	2.193	PASS



Page 22 of 51

Test Graphs

Page 23 of 51

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

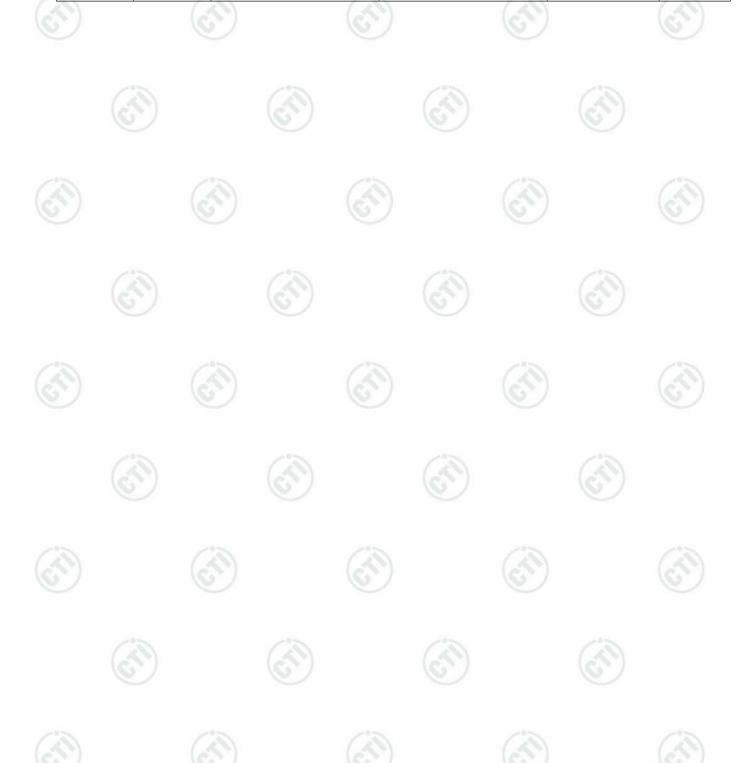
Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

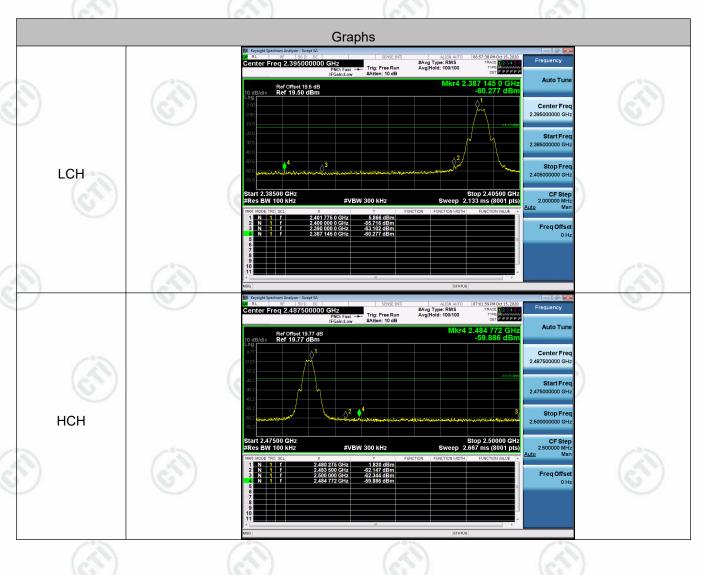
- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup



Page 24 of 51

Result Table


- 11000111	4.0.10			Clark Control	
Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	5.866	-60.277	-14.13	PASS
BLE	НСН	1.820	-59.886	-18.18	PASS

Page 25 of 51

Test Graphs

Page 26 of 51

Appendix D): RF Conducted Spurious Emissions <u>Test Limit</u>

According to §15.247(d) and RSS-247 section 5.5

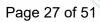
In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.


Test Setup

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	5.494	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	1.464	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	1.875	<limit< td=""><td>PASS</td></limit<>	PASS

Page 28 of 51



Page 30 of 51

Page 31 of 51

Appendix E): Power Spectral Density

Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Limit 6	 ✓ Antenna not exceed 6 dBi : 8dBm ☐ Antenna with DG greater than 6 dBi [Limit = 8 - (DG - 6)] ☐ Point-to-point operation :
	i onti-to-point operation .

Test Procedure

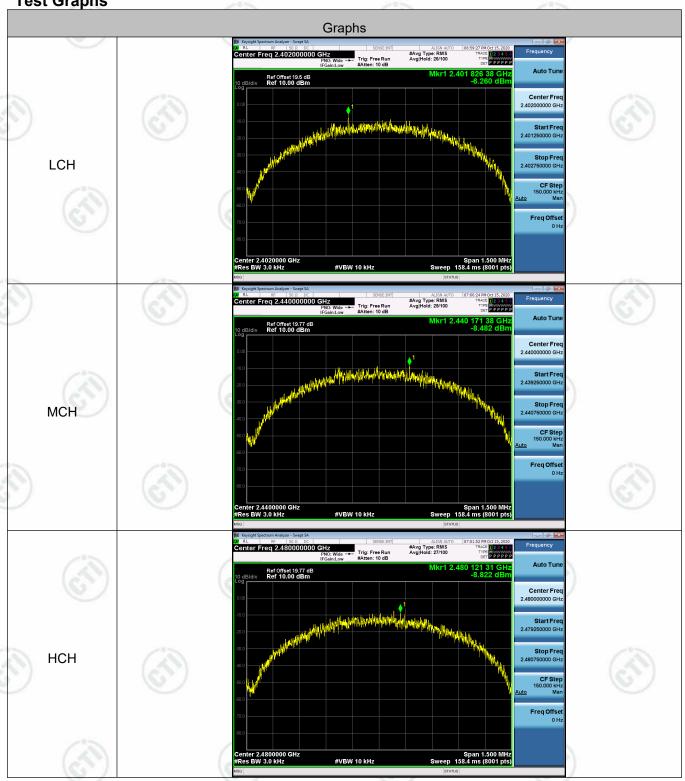
Test method Refer as KDB 558074 D01, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- Mark the maximum level.
 Measure and record the result of power spectral density. in the test report.

Test Setup

Result Table

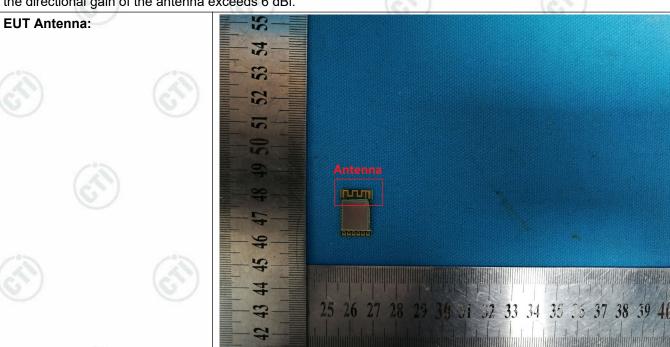
Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-6.260	PASS
BLE	MCH	-8.482	PASS
BLE	HCH	-8.822	PASS



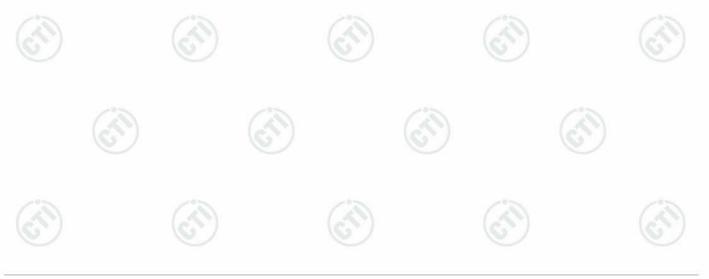
Page 33 of 51

Test Graphs

Page 34 of 51


Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

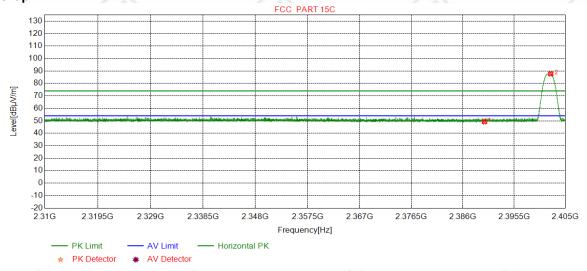
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3dBi.

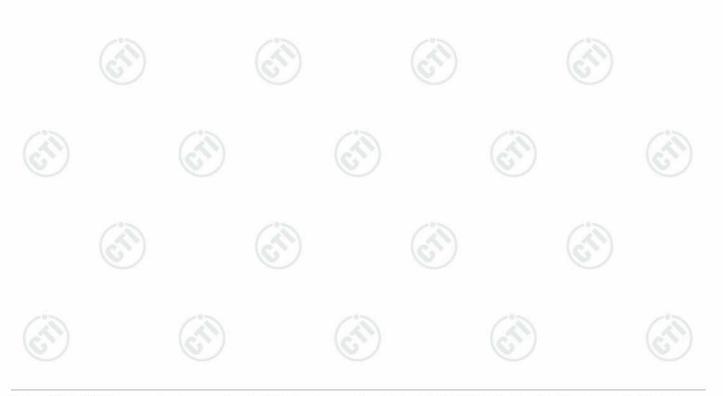
Page 35 of 51

Appendix G): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test procedu	re as below:	(6)		1	9
	Test method Refer as KDB a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 me was mounted on the totoo. c. The antenna height is a determine the maximum polarizations of the antenna was tuned was turned from 0 degrees.	558074 D01, Son the top of a rothoic camber. The highest raters away from p of a variable-framed from one m value of the fienna are set to heights from the to heights from	tating table the table wa adiation. the interfer- neight anter meter to fo eld strength make the no was arran 1 meter to rees to find	e 0.8 meter is rotated 3 ence-recei nna tower. ur meters n. Both hor neasurement ged to its v 4 meters a the maxin	iving antennal above the grantal and vent. worst case along the rotate and the rotate and many reading.	to i, which ound to rertical ad there able
	e. The test-receiver syste Bandwidth with Maximu f. Place a marker at the e frequency to show com bands. Save the spectr for lowest and highest of	m was set to Pe um Hold Mode. end of the restric pliance. Also m um analyzer plo channel	cted band c easure any	losest to the	ne transmit s in the restri	
	e. The test-receiver syste Bandwidth with Maximum f. Place a marker at the end frequency to show come bands. Save the spectre for lowest and highest of the second of the system of the	m was set to Perum Hold Mode. and of the restrict pliance. Also mum analyzer place thannel are as below: are is the test site ber change form 1 meter and table west channel, are perford found the X ax are perford.	cted band of leasure any ot. Repeat f e, change fr in table 0.8 le is 1.5 med the Highest rmed in X, kis positioni	closest to the commission seemi- for each position of the commission of the commissi	ne transmit s in the restri ower and mod Anechoic Ch .5 meter(Abo oositioning for	dulatior namber ove
_imit:	e. The test-receiver syste Bandwidth with Maximum f. Place a marker at the end frequency to show come bands. Save the spectre for lowest and highest of the second of the system of the	m was set to Perum Hold Mode. and of the restrict pliance. Also mum analyzer place thannel are as below: we is the test site ber change form 1 meter and table west channel, ments are perford found the X ax res until all frequents.	eted band of easure any ot. Repeat f e, change fr in table 0.8 le is 1.5 me the Highest rmed in X, kis positioni uencies me	closest to the community emissions for each posterior of the community of	Anechoic Ch .5 meter(Abo positioning for t is worse cases complete.	dulation namber ove
_imit:	e. The test-receiver syste Bandwidth with Maximum f. Place a marker at the end frequency to show come bands. Save the spectre for lowest and highest of the system of the	m was set to Perum Hold Mode. and of the restrict opliance. Also mum analyzer plochannel are as below: we is the test site ber change form 1 meter and table west channel are performents are	eted band of easure any ot. Repeat f e, change fr n table 0.8 le is 1.5 me the Highest rmed in X, kis positioni uencies me	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i	ne transmit s in the restriction Anechoic Ch .5 meter(Abo cositioning for it is worse car as complete.	dulation namber ove
Limit:	e. The test-receiver syste Bandwidth with Maximum f. Place a marker at the end frequency to show come bands. Save the spectre for lowest and highest of the system of lowest and highest of the system	m was set to Perum Hold Mode. and of the restrict pliance. Also mum analyzer place thannel are as below: we is the test site ber change form 1 meter and table west channel, ments are perford found the X axives until all frequency. Limit (dBµV, 40.6)	cted band of easure any ot. Repeat f e, change fr in table 0.8 le is 1.5 med the Highest rmed in X, kis positioni uencies med /m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ng which i easured wa	Anechoic Ch .5 meter(Abo positioning for t is worse cases complete. mark eak Value	dulatio namber ove
Limit:	e. The test-receiver syste Bandwidth with Maximum f. Place a marker at the end frequency to show come bands. Save the spectre for lowest and highest of the system of the	m was set to Perum Hold Mode. In the restrict of the restrict option. Also many an analyzer plot of the test site of the test	eted band of easure any ot. Repeat for table 0.8 le is 1.5 meter the Highest rmed in X, kis positioni uencies med/m @3m)	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa Rei Quasi-pe	Anechoic Characteristics and modern and mark eak Value eak Value	dulatio namber ove
Limit:	e. The test-receiver syste Bandwidth with Maximum f. Place a marker at the end frequency to show come bands. Save the spectre for lowest and highest of lo	m was set to Perum Hold Mode. and of the restrict opliance. Also mum analyzer plothannel we as below: The as below: The test site of the test	cted band of easure any ot. Repeat for table 0.8 le is 1.5 met the Highest rmed in X, kis positioni uencies med/m @3m)	com Semi- meter to 1 ter). c channel Y, Z axis p ng which i easured wa Rei Quasi-pe Quasi-pe	Anechoic Ch.5 meter(Aboositioning for tis worse cases complete. mark eak Value eak Value	dulatio namber ove
Limit:	e. The test-receiver syste Bandwidth with Maximum f. Place a marker at the end frequency to show come bands. Save the spectre for lowest and highest of the system of the	m was set to Perum Hold Mode. and of the restrict opliance. Also mum analyzer plothannel are as below: we is the test site of the same of	eted band of easure any ot. Repeat for table 0.8 le is 1.5 met the Highest rmed in X, kis positioni uencies med media (m @3m)	losest to the commission each post- com Semi- meter to 1 ter). channel Y, Z axis pag which it easured was red Quasi-pag Quasi-	Anechoic Ch.5 meter(Aboositioning for tis worse cases complete. mark eak Value eak Value eak Value	dulatio namber ove
Limit:	e. The test-receiver syste Bandwidth with Maximum f. Place a marker at the end frequency to show come bands. Save the spectre for lowest and highest of lo	m was set to Perum Hold Mode. and of the restrict opliance. Also mum analyzer plothannel we as below: The as below: The test site of the test	eted band of easure any ot. Repeat for table 0.8 le is 1.5 meter the Highest rmed in X, kis positioni uencies meter (m @3m)	com Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe Average	Anechoic Ch.5 meter(Aboositioning for tis worse cases complete. mark eak Value eak Value	dulation namber ove



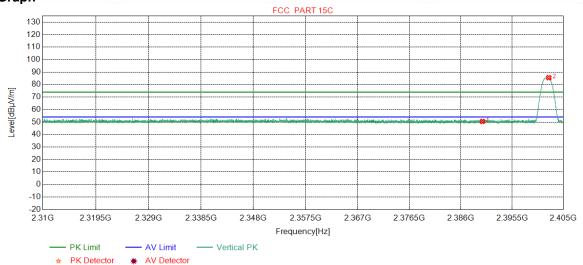
Page 36 of 51

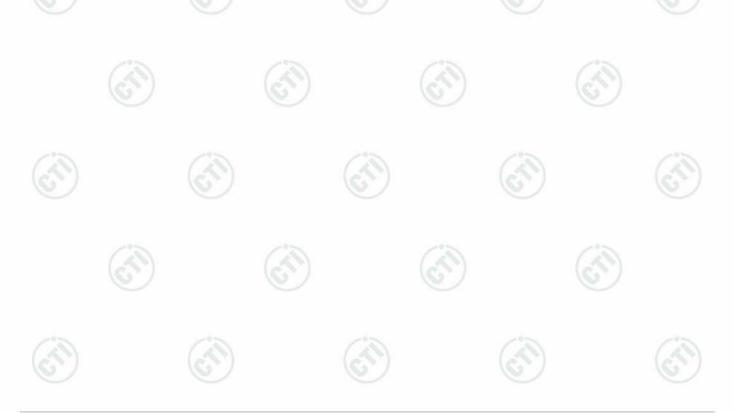

Test plot as follows:

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	46.77	49.27	74.00	24.73	Pass	Horizontal
2	2402.2892	32.26	13.31	-43.12	85.21	87.66	74.00	-13.66	Pass	Horizontal

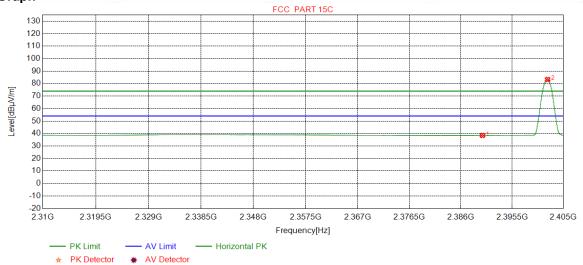


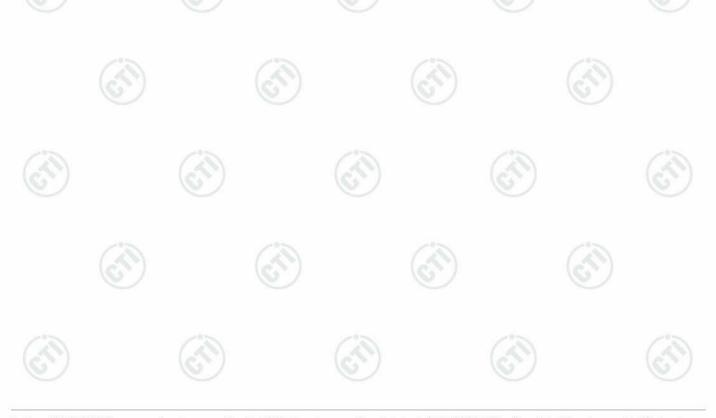

Page 37 of 51

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.98	50.48	74.00	23.52	Pass	Vertical
2	2402.2955	32.26	13.31	-43.12	83.05	85.50	74.00	-11.50	Pass	Vertical

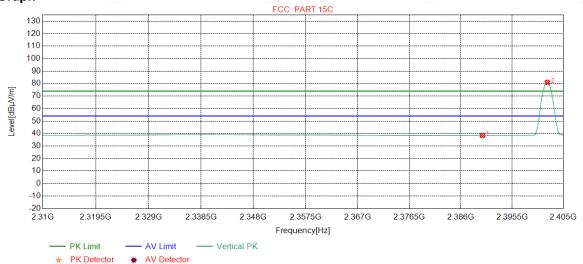


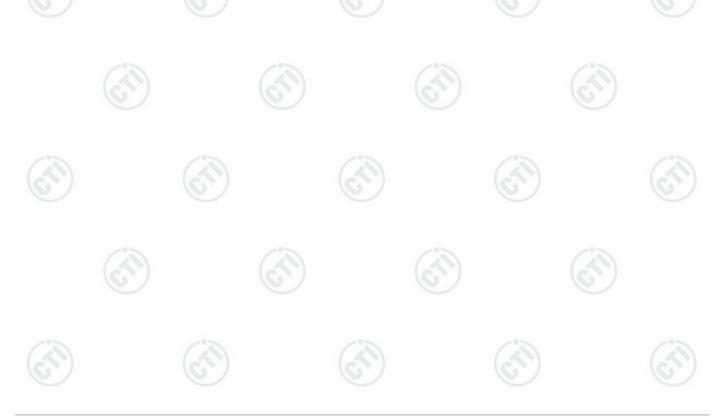

Page 38 of 51

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

1	10	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-43.12	35.97	38.47	54.00	15.53	Pass	Horizontal
	2	2402.0801	32.26	13.31	-43.12	80.81	83.26	54.00	-29.26	Pass	Horizontal

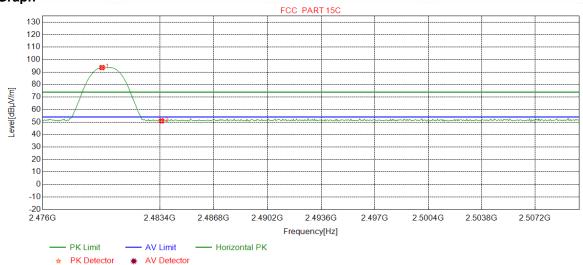


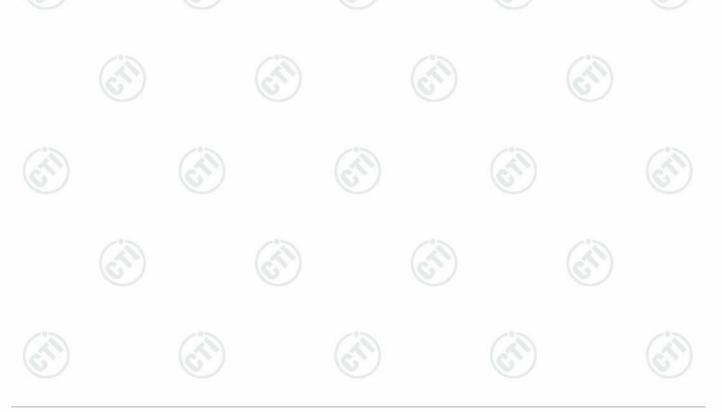

Page 39 of 51

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.01	38.51	54.00	15.49	Pass	Vertical
2	2402.0358	32.26	13.31	-43.12	78.53	80.98	54.00	-26.98	Pass	Vertical

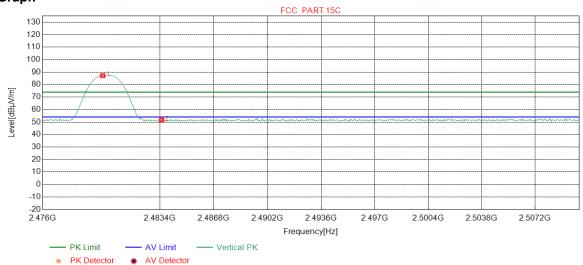


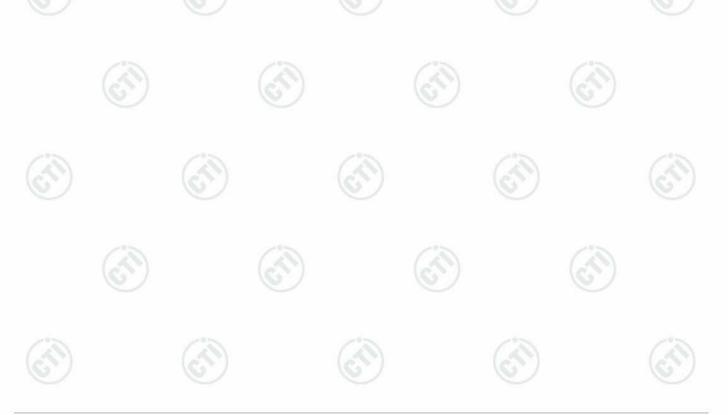

Page 40 of 51

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7447	32.37	13.39	-43.10	90.94	93.60	74.00	-19.60	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	48.27	50.92	74.00	23.08	Pass	Horizontal

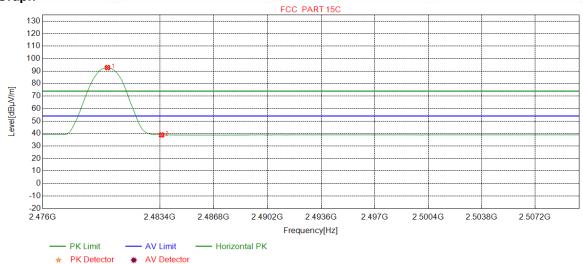


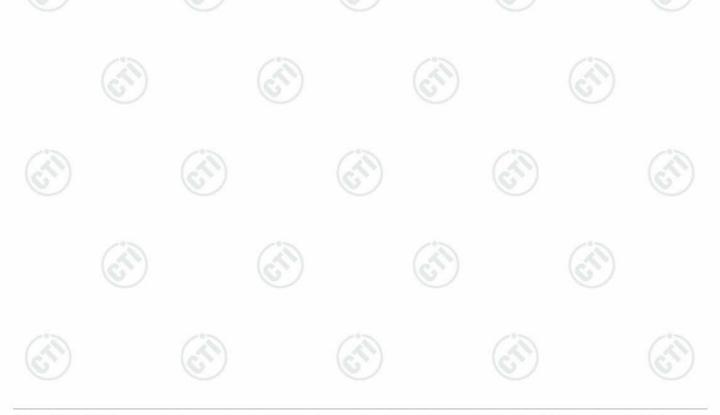

Page 41 of 51

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

ı	VO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2479.7872	32.37	13.39	-43.10	84.51	87.17	74.00	-13.17	Pass	Vertical
	2	2483.5000	32.38	13.38	-43.11	48.93	51.58	74.00	22.42	Pass	Vertical

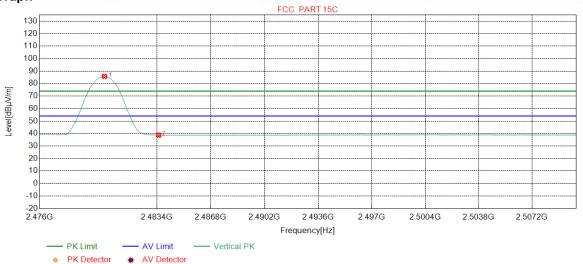



Page 42 of 51

Mode:	BLE GFSK Transmitting	Channel:	2480	
Remark:	AV			

Test Graph

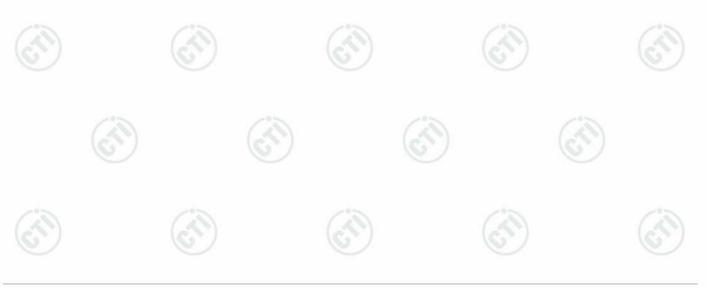
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0851	32.37	13.39	-43.10	90.13	92.79	54.00	-38.79	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.19	38.84	54.00	15.16	Pass	Horizontal



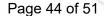
Page 43 of 51

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0851	32.37	13.39	-43.10	83.08	85.74	54.00	-31.74	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.07	38.72	54.00	15.28	Pass	Vertical

Note


1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix H) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
A	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	100
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	(0)
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(671)	Above 4CU-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

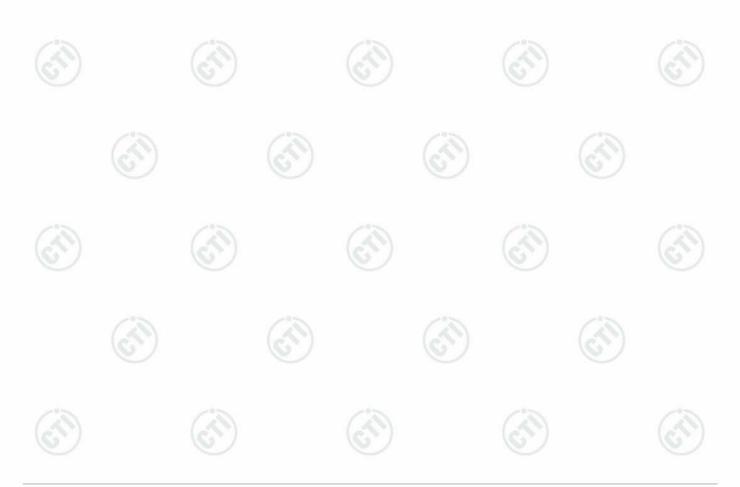
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

			٠	
1	- 1	m	ď	۲.
L	_!		ш	ι.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	(49)	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(0.7)	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Radiated Spurious Emissions test Data:

During the test, the Radiated Spurious Emissions from 30MHz to 1GHz was performed in all modes with all channels, GFSK, Channel 2441MHz was selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Radiated Emission below 1GHz

Mode	e:		BLE G	SK Trans	smitting			Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	43.5814	12.94	0.74	-31.59	42.71	24.80	40.00	15.20	Pass	Н	PK
2	135.5466	7.42	1.36	-32.00	44.66	21.44	43.50	22.06	Pass	Н	PK
3	224.0194	11.52	1.78	-31.93	47.43	28.80	46.00	17.20	Pass	Н	PK
4	296.5827	13.13	2.05	-31.56	39.98	23.60	46.00	22.40	Pass	Н	PK
5	600.0290	19.00	2.96	-31.50	41.96	32.42	46.00	13.58	Pass	Н	PK
6	844.9785	21.44	3.50	-31.82	41.52	34.64	46.00	11.36	Pass	Н	PK
7	42.9023	12.82	0.74	-31.54	41.20	23.22	40.00	16.78	Pass	V	PK
8	150.0010	7.55	1.45	-32.01	44.15	21.14	43.50	22.36	Pass	V	PK
9	224.0194	11.52	1.78	-31.93	42.47	23.84	46.00	22.16	Pass	V	PK
10	304.0524	13.29	2.07	-31.60	40.99	24.75	46.00	21.25	Pass	V	PK
11	600.0290	19.00	2.96	-31.50	42.13	32.59	46.00	13.41	Pass	V	PK
12	844.9785	21.44	3.50	-31.82	40.26	33.38	46.00	12.62	Pass	V	PK

www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com Hotline: 400-6788-333

Transmitter Emission above 1GHz

Mode	:		BLE GFSK Transmitting							2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1798.6799	30.37	3.32	-42.71	53.71	44.69	74.00	29.31	Pass	Н	PK
2	3011.0007	33.20	4.91	-43.10	49.63	44.64	74.00	29.36	Pass	Н	PK
3	4804.0000	34.50	4.55	-42.80	52.35	48.60	74.00	25.40	Pass	Н	PK
4	7205.2804	36.31	5.82	-42.17	54.76	54.72	74.00	19.28	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	48.44	50.61	74.00	23.39	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.90	46.86	51.87	74.00	22.13	Pass	Н	PK
7	7205.7804	36.31	5.82	-42.16	47.11	47.08	54.00	6.92	Pass	Н	AV
8	3057.0038	33.22	4.81	-43.09	50.35	45.29	74.00	28.71	Pass	V	PK
9	3912.0608	33.73	4.34	-43.02	49.54	44.59	74.00	29.41	Pass	V	PK
10	4804.0000	34.50	4.55	-42.80	50.66	46.91	74.00	27.09	Pass	V	PK
11	7205.2804	36.31	5.82	-42.17	55.08	55.04	74.00	18.96	Pass	V	PK
12	9608.0000	37.64	6.63	-42.10	51.41	53.58	74.00	20.42	Pass	V	PK
13	12010.0000	39.31	7.60	-41.90	48.15	53.16	74.00	20.84	Pass	V	PK
14	7205.7804	36.31	5.82	-42.16	47.90	47.87	54.00	6.13	Pass	V	AV

Mode	:		BLE GF	SK Transn	nitting			Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1944.4944	31.33	3.42	-43.06	50.44	42.13	74.00	31.87	Pass	Н	PK
2	3425.0283	33.37	4.49	-43.10	49.00	43.76	74.00	30.24	Pass	Н	PK
3	4880.0000	34.50	4.80	-42.80	50.15	46.65	74.00	27.35	Pass	Н	PK
4	7319.2880	36.42	5.85	-42.14	56.10	56.23	74.00	17.77	Pass	Н	PK
5	9760.0000	37.70	6.73	-42.10	49.36	51.69	74.00	22.31	Pass	Н	PK
6	12200.0000	39.42	7.67	-41.90	46.75	51.94	74.00	22.06	Pass	Н	PK
7	7319.7880	36.42	5.85	-42.14	49.34	49.47	54.00	4.53	Pass	Н	AV
8	1993.2993	31.66	3.46	-43.18	55.37	47.31	74.00	26.69	Pass	V	PK
9	3035.0023	33.21	4.86	-43.10	49.99	44.96	74.00	29.04	Pass	V	PK
10	4880.0000	34.50	4.80	-42.80	48.64	45.14	74.00	28.86	Pass	V	PK
11	7319.2880	36.42	5.85	-42.14	57.50	57.63	74.00	16.37	Pass	V	PK
12	9760.0000	37.70	6.73	-42.10	50.58	52.91	74.00	21.09	Pass	V	PK
13	12200.0000	39.42	7.67	-41.90	47.56	52.75	74.00	21.25	Pass	V	PK
14	7319.7880	36.42	5.85	-42.14	51.09	51.22	54.00	2.78	Pass	V	AV

Mode	:		BLE GF	SK Transm	nitting			Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1799.8800	30.38	3.32	-42.71	57.80	48.79	74.00	25.21	Pass	Н	PK
2	1995.8996	31.67	3.47	-43.19	56.04	47.99	74.00	26.01	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	50.06	46.58	74.00	27.42	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	57.81	58.09	74.00	15.91	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	47.99	50.45	74.00	23.55	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.90	48.96	54.46	74.00	19.54	Pass	Н	PK
7	7440.0700	36.54	5.85	-42.11	52.22	52.50	54.00	1.50	Pass	Н	AV
8	1993.4994	31.66	3.46	-43.18	57.91	49.85	74.00	24.15	Pass	V	PK
9	2964.5965	33.14	4.44	-43.09	50.43	44.92	74.00	29.08	Pass	V	PK
10	4960.0000	34.50	4.82	-42.80	50.38	46.90	74.00	27.10	Pass	V	PK
11	7441.2961	36.54	5.85	-42.11	61.14	61.42	74.00	12.58	Pass	V	PK
12	9920.0000	37.77	6.79	-42.10	48.67	51.13	74.00	22.87	Pass	V	PK
13	12400.0000	39.54	7.86	-41.90	47.92	53.42	74.00	20.58	Pass	V	PK
14	7440.7961	36.54	5.85	-42.11	50.20	50.48	54.00	3.52	Pass	V	AV

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

