

BD Technologies

Conduit SMARTCAP FCC 15.247:2016 Bluetooth Radio

Report # BDTE0001.1

R TESTING NVLAP Lab Code: 200676-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Last Date of Test: July 26, 2016 BD Technologies Model: Conduit SMARTCAP

Radio Equipment Testing

Standards

Specification	Method
FCC 15.247:2016	ANSI C63.10:2013 KDB 558074 D01 v03r05 (DTS)

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required for a battery powered EUT.
6.5, 6.6, 11.12.1, 11.13.2	Spurious Radiated Emissions	Yes	Pass	
11.6	Duty Cycle	Yes	Pass	
11.8.2	Occupied Bandwidth	Yes	Pass	
11.9.2.2.4	Output Power	Yes	Pass	
11.10.2	Power Spectral Density	Yes	Pass	
11.11	Band Edge Compliance	Yes	Pass	
11.11	Spurious Conducted Emissions	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Victor Ratinoff, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Description		Date	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission – Validated by the European Commission as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/accreditations/</u> http://gsi.nist.gov/global/docs/cabs/designations.html

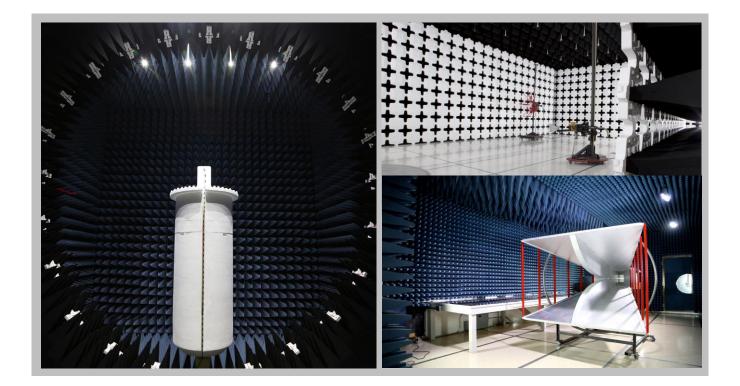
MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.


Test	+ MU	<u>- MU</u>
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

FACILITIES

California Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214	Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600	
		NV	LAP			
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0	
	Innovation, Science and Economic Development Canada					
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1	
		BS	MI			
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R	
	VCCI					
A-0029	A-0109	N/A	A-0108	A-0201	A-0110	
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	N/A	US0017	US0191	US0157	

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	BD Technologies
Address:	21 Davis Drive
City, State, Zip:	Research Triangle Park, NC 27709
Test Requested By:	Michael Yarger
Model:	Conduit SMARTCAP
First Date of Test:	July 26, 2016
Last Date of Test:	July 26, 2016
Receipt Date of Samples:	July 26, 2016
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

EUT is a Bluetooth Low Energy radio cap that goes on a insulin injector pen. It is meant to connect and log when the cap was removed and the pen used.

Testing Objective:

To demonstrate compliance of the Bluetooth Low Energy radio to FCC 15.247 requirements.

CONFIGURATIONS

Configuration BDTE0001-2

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Conduit SMARTCAP - Direct Connect	BD Technologies	8D013	38

Peripherals in test setup boundary					
Description Manufacturer Model/Part Number Serial Number					
Laptop	Hewlett Packard	EliteBook 8460p	CNU20722GQ		
Laptop Power Supply	Hewlett Packard	PPP012D-S	WCNXF0AAR5G0A2		

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
USB Cable	Yes	1.2m	No	Conduit SMARTCAP (Board)	Laptop	
DC Cable	Yes	1.4m	Yes	Laptop	Laptop Power Supply	
AC Cable	No	1.6m	No	Laptop Power Supply	AC Mains	

Configuration BDTE0001-3

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Conduit SMARTCAP - Low Channel	BD Technologies	8D013	35

Configuration BDTE0001-4

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Conduit SMARTCAP - Mid Channel	BD Technologies	8D013	36

Configuration BDTE0001-5

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Conduit SMARTCAP - High Channel	BD Technologies	8D013	37

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
		Spurious	Tested as	No EMI suppression	EUT remained at
1	7/26/2016	Radiated	delivered to	devices were added or	Northwest EMC
		Emissions	Test Station.	modified during this test.	following the test.
			Tested as	No EMI suppression	EUT remained at
2	7/26/2016	Duty Cycle	delivered to	devices were added or	Northwest EMC
			Test Station.	modified during this test.	following the test.
		Occupied	Tested as	No EMI suppression	EUT remained at
3	7/26/2016	Bandwidth	delivered to	devices were added or	Northwest EMC
		Danuwiuti	Test Station.	modified during this test.	following the test.
			Tested as	No EMI suppression	EUT remained at
4	7/26/2016	Output Power	delivered to	devices were added or	Northwest EMC
			Test Station.	modified during this test.	following the test.
		Power Spectral	Tested as	No EMI suppression	EUT remained at
5	7/26/2016	Density	delivered to	devices were added or	Northwest EMC
		Density	Test Station.	modified during this test.	following the test.
		Band Edge	Tested as	No EMI suppression	EUT remained at
6	7/26/2016	Compliance	delivered to	devices were added or	Northwest EMC
		Compliance	Test Station.	modified during this test.	following the test.
		Spurious	Tested as	No EMI suppression	Scheduled testing
7	7/26/2016	Conducted	delivered to	devices were added or	was completed.
		Emissions	Test Station.	modified during this test.	was completed.

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at Low Ch 0 - 2402 MHz, Mid Ch 20 - 2440 MHz, & High Ch 39 - 2480 MHz

POWER SETTINGS INVESTIGATED

Battery

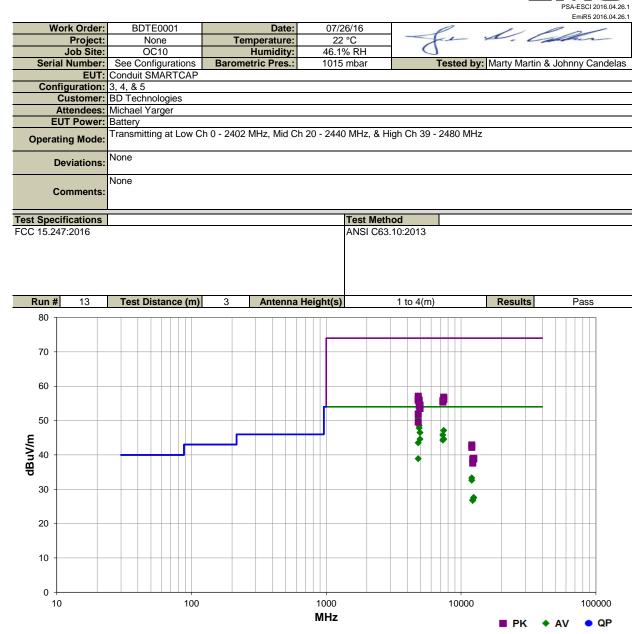
CONFIGURATIONS INVESTIGATED

BDTE0001 - 3	
BDTE0001 - 4	
BDTE0001 - 5	

FREQUENCY RANGE INVESTIGATED

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

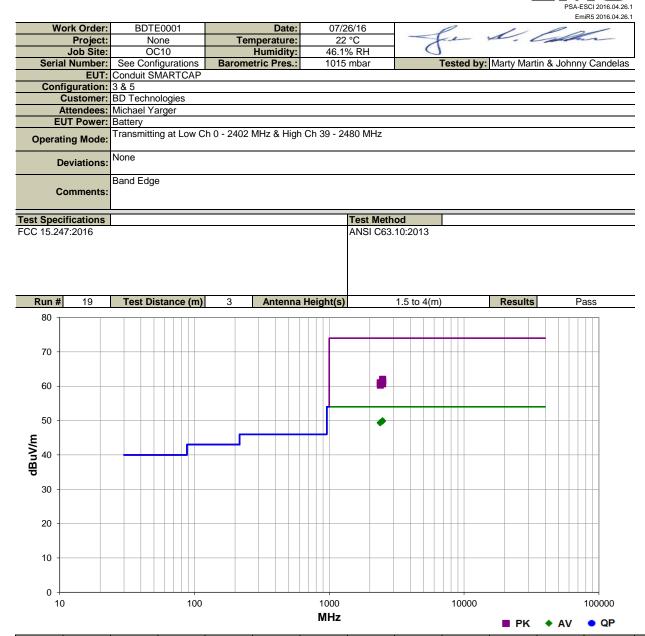

TEST EQUIPMENT

			10		1
Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator	Coaxicom	66702 3910AF-20	TKI	3/3/2016	12 mo
Cable	Northwest EMC	8-18GHz RE Cables	000	8/26/2015	12 mo
Cable	Northwest EMC	18-26GHz RE Cables	OCK	1/6/2016	12 mo
Cable	Northwest EMC	1-8GHz RE Cables	OCJ	8/26/2015	12 mo
Cable	Northwest EMC	10kHz-1GHz RE Cables	OCH	3/3/2016	12 mo
Cable	ESM Cable Corp.	KMKM-72	OC1	1/6/2016	12 mo
Filter - Low Pass	Micro-Tronics	LPM50004	LFC	11/3/2015	12 mo
Filter - High Pass	Micro-Tronics	HPM50111	HFM	2/9/2016	12 mo
Antenna - Biconilog	EMCO	3142B	AXK	10/6/2014	24 mo
Amplifier - Pre-Amplifier	Miteq	AM-1064-9079	AOO	3/3/2016	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AOI	1/6/2016	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AOF	8/31/2015	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AOE	8/31/2015	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-4D-010120-30-10P-1	AOP	8/26/2015	12 mo
Antenna - Standard Gain	ETS Lindgren	3160-08	AHT	NCR	0 mo
Antenna - Standard Gain	ETS Lindgren	3160-07	AHR	NCR	0 mo
Antenna - Standard Gain	ETS Lindgren	3160-09	AHN	NCR	0 mo
Antenna - Double Ridge	EMCO	3115	AHB	3/21/2016	24 mo
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFJ	2/9/2016	12 mo

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization. A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

SPURIOUS RADIATED EMISSIONS



Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
4803.985	42.2	10.4	1.5	232.0	3.0	0.0	Horz	AV	0.0	52.6	54.0	-1.4	EUT Y axis, Low ch
4804.010	40.9	10.4	1.5	261.0	3.0	0.0	Vert	AV	0.0	51.3	54.0	-2.7	EUT Z axis, Low ch
4803.930	40.5	10.4	4.0	159.0	3.0	0.0	Vert	AV	0.0	50.9	54.0	-3.1	EUT X axis, Low ch
4803.935	40.4	10.4	1.5	243.0	3.0	0.0	Horz	AV	0.0	50.8	54.0	-3.2	EUT X axis, Low ch
4883.880	37.9	10.6	1.5	234.0	3.0	0.0	Horz	AV	0.0	48.5	54.0	-5.5	EUT Y axis, Mid ch
4883.975	37.2	10.6	1.5	267.0	3.0	0.0	Vert	AV	0.0	47.8	54.0	-6.2	EUT Z axis, Mid ch
7439.805	30.7	16.4	1.5	157.0	3.0	0.0	Vert	AV	0.0	47.1	54.0	-6.9	EUT Z axis, High ch
4959.985	35.7	10.8	1.5	243.0	3.0	0.0	Horz	AV	0.0	46.5	54.0	-7.5	EUT Y axis, High ch
7326.070	29.6	16.2	1.5	168.0	3.0	0.0	Vert	AV	0.0	45.8	54.0	-8.2	EUT Z axis, Mid ch
4959.990	33.8	10.8	1.5	235.0	3.0	0.0	Vert	AV	0.0	44.6	54.0	-9.4	EUT Z axis, High ch
7439.845	28.2	16.4	1.5	224.0	3.0	0.0	Horz	AV	0.0	44.6	54.0	-9.4	EUT Y axis, High ch
7325.760	28.1	16.2	1.5	76.0	3.0	0.0	Horz	AV	0.0	44.3	54.0	-9.7	EUT Y axis, Mid ch
4803.925	33.1	10.4	1.5	339.0	3.0	0.0	Vert	AV	0.0	43.5	54.0	-10.5	EUT Y axis, Low ch
4804.055	28.5	10.4	1.5	176.0	3.0	0.0	Horz	AV	0.0	38.9	54.0	-15.1	EUT Z axis, Low ch
4804.110	46.7	10.4	1.5	232.0	3.0	0.0	Horz	PK	0.0	57.1	74.0	-16.9	EUT Y axis, Low ch
7440.990	40.4	16.4	1.5	157.0	3.0	0.0	Vert	PK	0.0	56.8	74.0	-17.2	EUT Z axis, High ch
4803.505	46.0	10.4	1.5	243.0	3.0	0.0	Horz	PK	0.0	56.4	74.0	-17.6	EUT X axis, Low ch
4804.255	45.8	10.4	1.5	261.0	3.0	0.0	Vert	PK	0.0	56.2	74.0	-17.8	EUT Z axis, Low ch

NORTHWEST

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
7440.015	39.7	16.4	1.5	224.0	3.0	0.0	Horz	PK	0.0	56.1	74.0	-17.9	EUT Y axis, High ch
4804.145	45.5	10.4	4.0	159.0	3.0	0.0	Vert	PK	0.0	55.9	74.0	-18.1	EUT X axis, Low ch
4883.595	45.3	10.6	1.5	234.0	3.0	0.0	Horz	PK	0.0	55.9	74.0	-18.1	EUT Y axis, Mid ch
7326.280	39.6	16.2	1.5	168.0	3.0	0.0	Vert	PK	0.0	55.8	74.0	-18.2	EUT Z axis, Mid ch
7325.490	39.2	16.2	1.5	76.0	3.0	0.0	Horz	PK	0.0	55.4	74.0	-18.6	EUT Y axis, Mid ch
4960.175	43.7	10.8	1.5	243.0	3.0	0.0	Horz	PK	0.0	54.5	74.0	-19.5	EUT Y axis, High ch
4883.785	43.7	10.6	1.5	267.0	3.0	0.0	Vert	PK	0.0	54.3	74.0	-19.7	EUT Z axis, Mid ch
4959.445	42.7	10.8	1.5	235.0	3.0	0.0	Vert	PK	0.0	53.5	74.0	-20.5	EUT Z axis, High ch
12010.280	41.6	-8.3	1.5	202.0	3.0	0.0	Horz	AV	0.0	33.3	54.0	-20.7	EUT Y axis, Low ch
12010.220	40.9	-8.3	1.5	322.0	3.0	0.0	Vert	AV	0.0	32.6	54.0	-21.4	EUT Z axis, Low ch
4804.355	41.5	10.4	1.5	339.0	3.0	0.0	Vert	PK	0.0	51.9	74.0	-22.1	EUT Y axis, Low ch
4804.475	39.2	10.4	1.5	176.0	3.0	0.0	Horz	PK	0.0	49.6	74.0	-24.4	EUT Z axis, Low ch
12399.400	35.3	-7.7	1.5	308.0	3.0	0.0	Vert	AV	0.0	27.6	54.0	-26.4	EUT Z axis, High ch
12398.510	35.2	-7.7	1.5	287.0	3.0	0.0	Horz	AV	0.0	27.5	54.0	-26.5	EUT Y axis, High ch
12207.590	34.9	-8.0	1.5	229.0	3.0	0.0	Vert	AV	0.0	26.9	54.0	-27.1	EUT Z axis, Mid ch
12209.860	34.7	-8.0	1.8	350.0	3.0	0.0	Horz	AV	0.0	26.7	54.0	-27.3	EUT Y axis, Mid ch
12010.260	51.2	-8.3	1.5	202.0	3.0	0.0	Horz	PK	0.0	42.9	74.0	-31.1	EUT Y axis, Low ch
12010.290	50.5	-8.3	1.5	322.0	3.0	0.0	Vert	PK	0.0	42.2	74.0	-31.8	EUT Z axis, Low ch
12399.300	46.7	-7.7	1.5	308.0	3.0	0.0	Vert	PK	0.0	39.0	74.0	-35.0	EUT Z axis, High ch
12208.030	46.8	-8.0	1.5	229.0	3.0	0.0	Vert	PK	0.0	38.8	74.0	-35.2	EUT Z axis, Mid ch
12398.820	46.5	-7.7	1.5	287.0	3.0	0.0	Horz	PK	0.0	38.8	74.0	-35.2	EUT Y axis, High ch
12210.190	45.6	-8.0	1.8	350.0	3.0	0.0	Horz	PK	0.0	37.6	74.0	-36.4	EUT Y axis, Mid ch

SPURIOUS RADIATED EMISSIONS

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2483.807	28.1	1.8	1.5	255.0	3.0	20.0	Vert	AV	0.0	49.9	54.0	-4.1	EUT Z axis, High ch
2483.540	28.1	1.8	1.5	346.0	3.0	20.0	Horz	AV	0.0	49.9	54.0	-4.1	EUT Y axis, High ch
2485.023	28.1	1.8	1.5	219.0	3.0	20.0	Vert	AV	0.0	49.9	54.0	-4.1	EUT Y axis, High ch
2484.640	28.1	1.8	1.5	299.0	3.0	20.0	Horz	AV	0.0	49.9	54.0	-4.1	EUT X axis, High ch
2483.647	28.1	1.8	1.5	278.0	3.0	20.0	Vert	AV	0.0	49.9	54.0	-4.1	EUT X axis, High ch
2485.467	28.0	1.8	1.5	120.0	3.0	20.0	Horz	AV	0.0	49.8	54.0	-4.2	EUT Z axis, High ch
2388.020	28.1	1.3	1.5	53.0	3.0	20.0	Vert	AV	0.0	49.4	54.0	-4.6	EUT Z axis, Low ch
2388.380	28.0	1.3	2.0	224.0	3.0	20.0	Horz	AV	0.0	49.3	54.0	-4.7	EUT Y axis, Low ch
2485.287	40.2	1.8	1.5	346.0	3.0	20.0	Horz	PK	0.0	62.0	74.0	-12.0	EUT Y axis, High ch
2485.357	39.7	1.8	1.5	120.0	3.0	20.0	Horz	PK	0.0	61.5	74.0	-12.5	EUT Z axis, High ch
2483.553	39.5	1.8	1.5	219.0	3.0	20.0	Vert	PK	0.0	61.3	74.0	-12.7	EUT Y axis, High ch
2484.403	39.5	1.8	1.5	278.0	3.0	20.0	Vert	PK	0.0	61.3	74.0	-12.7	EUT X axis, High ch
2483.803	39.4	1.8	1.5	299.0	3.0	20.0	Horz	PK	0.0	61.2	74.0	-12.8	EUT X axis, High ch
2388.033	39.7	1.3	2.0	224.0	3.0	20.0	Horz	PK	0.0	61.0	74.0	-13.0	EUT Y axis, Low ch
2485.313	38.9	1.8	1.5	255.0	3.0	20.0	Vert	PK	0.0	60.7	74.0	-13.3	EUT Z axis, High ch
2389.860	39.0	1.3	1.5	53.0	3.0	20.0	Vert	PK	0.0	60.3	74.0	-13.7	EUT Z axis, Low ch

NORTHWEST

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

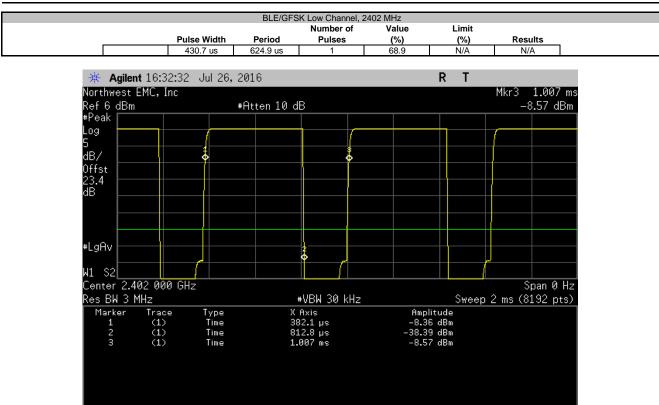
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	E8257D	TGU	2/5/2015	2/5/2018
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Block - DC	Aeroflex	INMET 8535	AMO	4/4/2016	4/4/2017
Attenuator	Fairview Microwave	SA18E-20	TKS	4/4/2016	4/4/2017
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFA	11/19/2015	11/19/2016

TEST DESCRIPTION

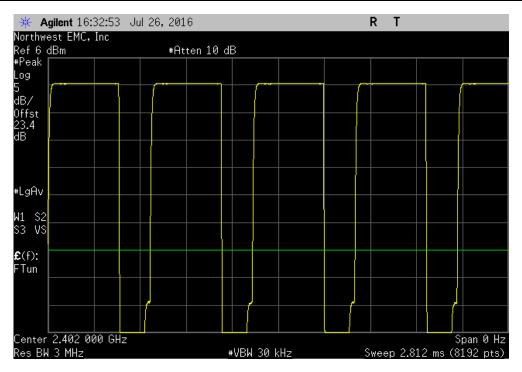
The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

There is no compliance requirement to be met by this test, so therefore no Pass / Fail criteria.

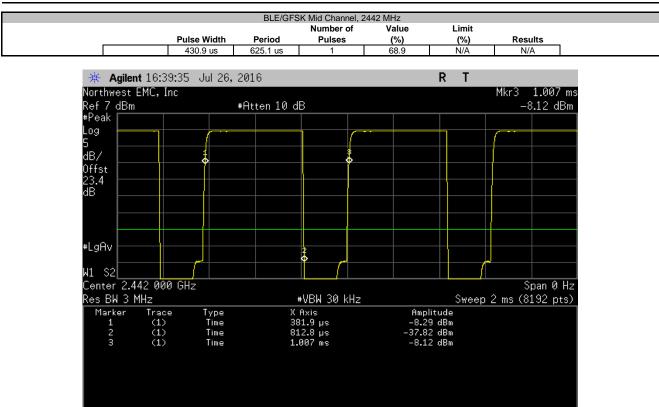
The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

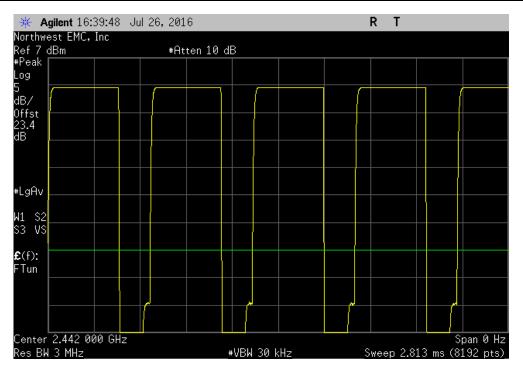

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

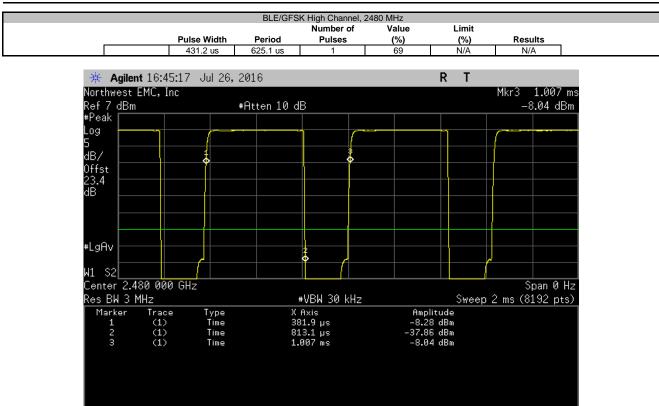
If the transmit duty cycle < 98 percent, burst gating may have been used during some of the other tests in this report to only take the measurement during the burst duration.



EUT: Co	onduit SMARTCAP						Work Order:	BDTE0001	
Serial Number: 38							Date:	07/26/16	
Customer: BD	D Technologies						Temperature:	23.8 °C	
Attendees: Mid	chael Yarger						Humidity:	46.7% RH	
Project: No	one						Barometric Pres.:	1013 mbar	
Tested by: Ma			Powe	er: 3.0VDC			Job Site:	OC13	
EST SPECIFICATION	IS			Test Method					
CC 15.247:2016				ANSI C63.10:2013					
OMMENTS									
	: DC Block + 20dB atten								
EVIATIONS FROM TE one onfiguration #			MA	6,+					
EVIATIONS FROM TE	EST STANDARD	Signature		6j+		Number of	Value	Limit	
EVIATIONS FROM TE	EST STANDARD			Oy + Pulse Width	Period	Number of Pulses	Value (%)	Limit (%)	Results
EVIATIONS FROM TE	EST STANDARD			,	Period 624.9 us				Results N/A
EVIATIONS FROM TE one onfiguration #	2 a), 2402 MHz			Pulse Width			(%)	(%)	
EVIATIONS FROM TE one onfiguration # LE/GFSK Low Channe LE/GFSK Low Channel	2 al, 2402 MHz sl, 2402 MHz sl, 2402 MHz			Pulse Width 430.7 us N/A 430.9 us	624.9 us N/A 625.1 us		(%) 68.9	(%) N/A N/A N/A	N/A N/A N/A
EVIATIONS FROM TE one onfiguration # LE/GFSK Low Channe LE/GFSK Mid Channel LE/GFSK Mid Channel	2 91, 2402 MHz 91, 2402 MHz 91, 2402 MHz 91, 2442 MHz 91, 2442 MHz			Pulse Width 430.7 us N/A	624.9 us N/A		(%) 68.9 N/A	(%) N/A N/A	N/A N/A
EVIATIONS FROM TE one onfiguration # LE/GFSK Low Channe LE/GFSK Low Channel LE/GFSK Mid Channel	2 est standard 2 el, 2402 MHz el, 2402 MHz el, 2402 MHz el, 2424 MHz el, 2424 MHz el, 2480 MHz			Pulse Width 430.7 us N/A 430.9 us	624.9 us N/A 625.1 us		(%) 68.9 N/A 68.9	(%) N/A N/A N/A	N/A N/A N/A




		BLE/GFS	K Low Channel, 2	2402 MHz		
			Number of	Value	Limit	
	 Pulse Width	Period	Pulses	(%)	(%)	Results
1	N/A	N/A	5	N/A	N/A	N/A



		BLE/GFS	K Mid Channel, 2	2442 MHz		
			Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
	N/A	N/A	5	N/A	N/A	N/A

BLE/GFSK High Channel, 2480 MHz								
			Number of	Value	Limit			
	Pulse Width	Period	Pulses	(%)	(%)	Results		
	N/A	N/A	5	N/A	N/A	N/A		

orthwest EMC,	Inc	-							
əf7 dBm Peak [#Hi	ten 10	dB					
)g									
3/					$\left(\right)$		\bigcap		<u> </u>
ifst 3.4 3									
.gAv									
L \$2									
3 VS									
(f): Tun									

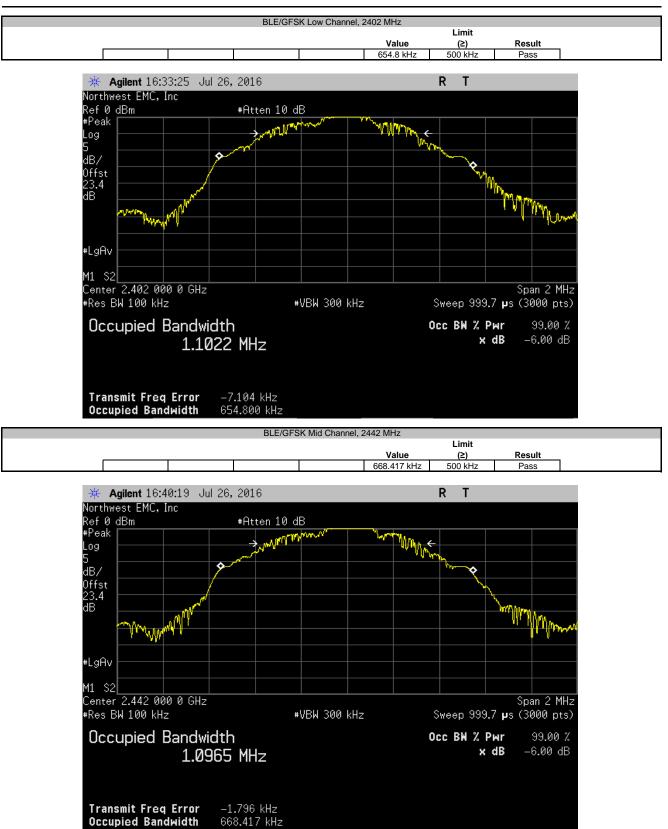
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	E8257D	TGU	2/5/2015	2/5/2018
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Block - DC	Aeroflex	INMET 8535	AMO	4/4/2016	4/4/2017
Attenuator	Fairview Microwave	SA18E-20	TKS	4/4/2016	4/4/2017
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFA	11/19/2015	11/19/2016

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was set to the channels and modes listed in the datasheet.


The 6dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The 99.0% occupied bandwidth was also measured at the same time which can be needed during Output Power depending on the applicable method.

EUT: Conduit SMARTCAP		Work Order:	BDTE0001	
Serial Number: 38		Date:	07/26/16	
Customer: BD Technologies		Temperature:	23.7 °C	
Attendees: Michael Yarger		Humidity:	46.3% RH	
Project: None		Barometric Pres.:	1013 mbar	
Tested by: Mark Baytan	Power: 3.0VDC	Job Site:	OC13	
TEST SPECIFICATIONS	Test Method			
FCC 15.247:2016	ANSI C63.10:2013			
COMMENTS				
Reference level offset: DC Block + 20dB attenuator + cable + patch cable	= 23.37 dB			
DEVIATIONS FROM TEST STANDARD				
None				
Configuration # 2 Signature	M+ G+-			
			Limit	
		Value	(≥)	Result
BLE/GFSK Low Channel, 2402 MHz		654.8 kHz	500 kHz	Pass
BLE/GFSK Mid Channel, 2442 MHz		668.417 kHz	500 kHz	Pass
BLE/GFSK High Channel, 2480 MHz		655.735 kHz	500 kHz	Pass

BLE/GFSK High Channel, 2480 MHz

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

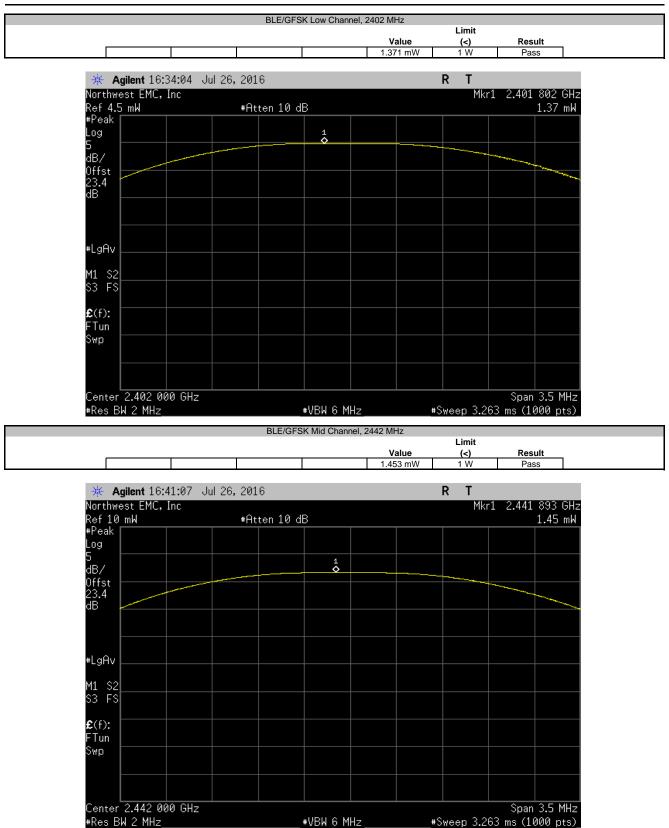
TEST EQUIPMENT

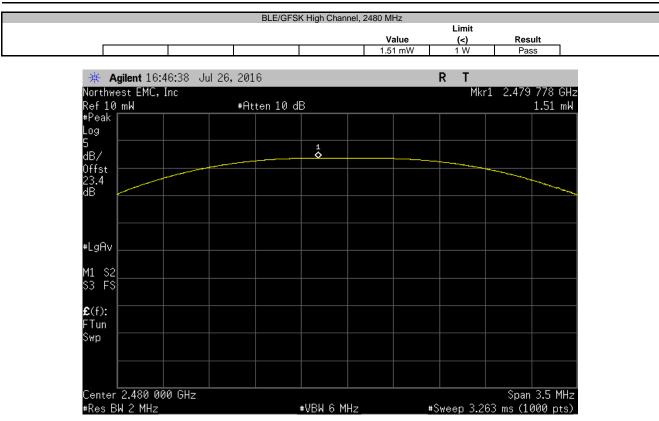
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	E8257D	TGU	2/5/2015	2/5/2018
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Block - DC	Aeroflex	INMET 8535	AMO	4/4/2016	4/4/2017
Attenuator	Fairview Microwave	SA18E-20	TKS	4/4/2016	4/4/2017
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFA	11/19/2015	11/19/2016

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Maximum Conducted Output Power. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.


The method found in ANSI C63.10:2013 Section 11.9.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.


EUT: Co	onduit SMARTCAP						Work Order:	BDTE0001	
Serial Number: 38								07/26/16	
) Technologies						Temperature		
Attendees: Mi								46.8% RH	
Project: No						Ba	ometric Pres.		
Tested by: Ma				Powe	r: 3.0VDC		Job Site		
EST SPECIFICATION	S				Test Method				
CC 15.247:2016					ANSI C63.10:2013				
					1				
	: DC Block + 20dB attenua	ator + cable + patch cable	e = 23.37 dE	8					
DEVIATIONS FROM TE		ttor + cable + patch cable	e = 23.37 dE	В					
eference level offset:		itor + cable + patch cable							
eference level offset: EVIATIONS FROM TE		ttor + cable + patch cable			5,+	 			
eference level offset: EVIATIONS FROM TE Ione	EST STANDARD				5,+			Limit	
eference level offset: EVIATIONS FROM TE one	EST STANDARD				S;+		Value	Limit (<)	Result
eference level offset: EVIATIONS FROM TE one onfiguration #	2				5,+		Value 1.371 mW		Result Pass
eference level offset: EVIATIONS FROM TE	2 a), 2402 MHz				S++			(<)	

Report No. BDTE0001.1

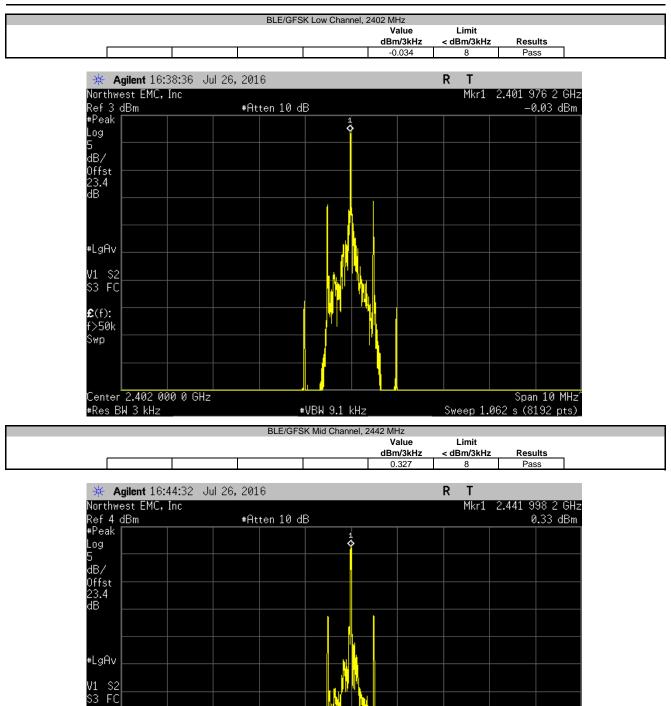
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFA	11/19/2015	11/19/2016
Attenuator	Fairview Microwave	SA18E-20	TKS	4/4/2016	4/4/2017
Block - DC	Aeroflex	INMET 8535	AMO	4/4/2016	4/4/2017
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Generator - Signal	Agilent	E8257D	TGU	2/5/2015	2/5/2018

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The maximum power spectral density measurements was measured using the channels and modes as called out on the following data sheets.


Per the procedure outlined in ANSI C63.10 the peak power spectral density was measured in a 3 kHz RBW.

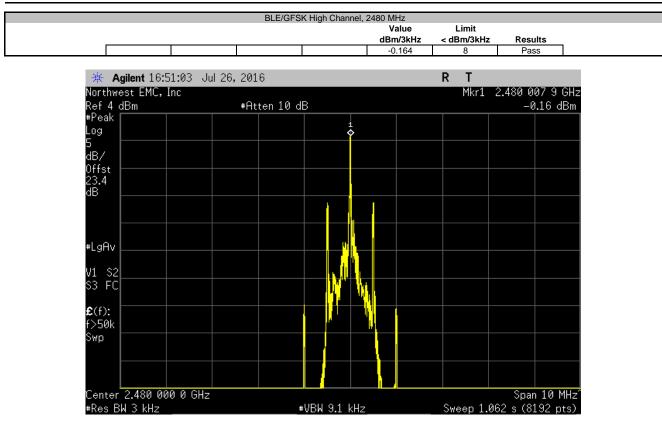
EUT: Conduit SMARTCAP		Work Order:		
Serial Number: 38		Date:	07/26/16	
Customer: BD Technologies		Temperature:	23.6 °C	
Attendees: Michael Yarger		Humidity:	45.5% RH	
Project: None		Barometric Pres.:	1013 mbar	
Tested by: Mark Baytan	Power: 3.0VDC	Job Site:	OC13	
TEST SPECIFICATIONS	Test Method			
FCC 15.247:2016	ANSI C63.10:2013			
COMMENTS				
Reference level offset: DC Block + 20dB attenuator + cable + patch cable = 23.37	dB			
DEVIATIONS FROM TEST STANDARD				
None				
Configuration # 2 Signature	14 Bit			
		Value dBm/3kHz	Limit < dBm/3kHz	Results
BLE/GFSK Low Channel, 2402 MHz		-0.034	8	Pass
BLE/GFSK Mid Channel, 2442 MHz		0.327	8	Pass
BLE/GFSK High Channel, 2480 MHz		-0.164	8	Pass

Report No. BDTE0001.1

#VBW 9.1 kHz

Report No. BDTE0001.1

€(f): f>50k Swp


Center 2.442 000 0 GHz

#Res BW 3 kHz

Span 10 MHz

Sweep 1.062 s (8192 pts)_

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

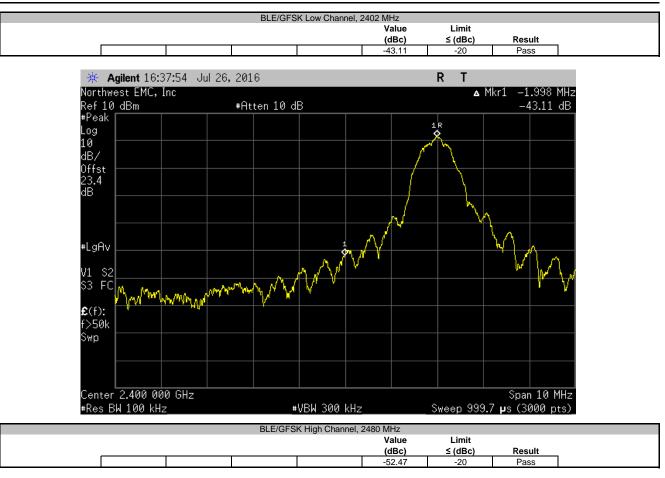
TEST EQUIPMENT

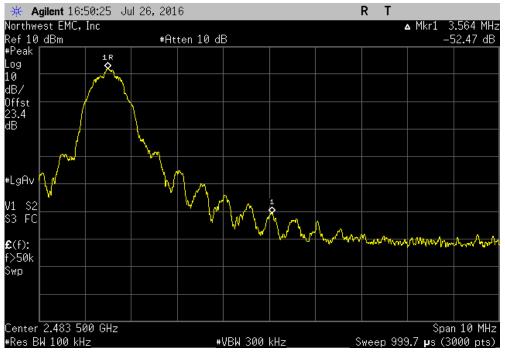
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFA	11/19/2015	11/19/2016
Attenuator	Fairview Microwave	SA18E-20	TKS	4/4/2016	4/4/2017
Block - DC	Aeroflex	INMET 8535	AMO	4/4/2016	4/4/2017
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Generator - Signal	Agilent	E8257D	TGU	2/5/2015	2/5/2018

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.


BAND EDGE COMPLIANCE



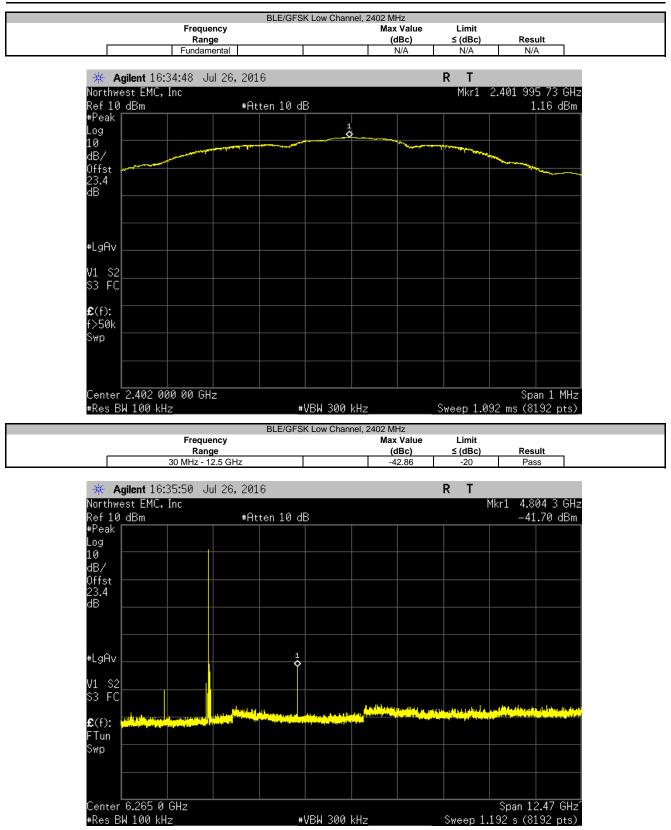
EUT: Conduit SMARTCAP		Work Order:	BDTE0001	
Serial Number: 38		Date:	07/26/16	
Customer: BD Technologies		Temperature:	23.6 °C	
Attendees: Michael Yarger		Humidity:	46.1% RH	
Project: None		Barometric Pres.:	1013 mbar	
Tested by: Mark Baytan	Power: 3.0VDC	Job Site:	OC13	
TEST SPECIFICATIONS	Test Method			
FCC 15.247:2016	ANSI C63.10:2013			
COMMENTS				
Reference level offset: DC Block + 20dB attenuator + cable + patch cable = 23.37 d	В			
DEVIATIONS FROM TEST STANDARD				
None				
Configuration # 2 Signature	1++ G+-			
		Value (dBc)	Limit ≤ (dBc)	Result
BLE/GFSK Low Channel, 2402 MHz		-43.11	-20	Pass
BLE/GFSK High Channel, 2480 MHz		-52.47	-20	Pass

BAND EDGE COMPLIANCE

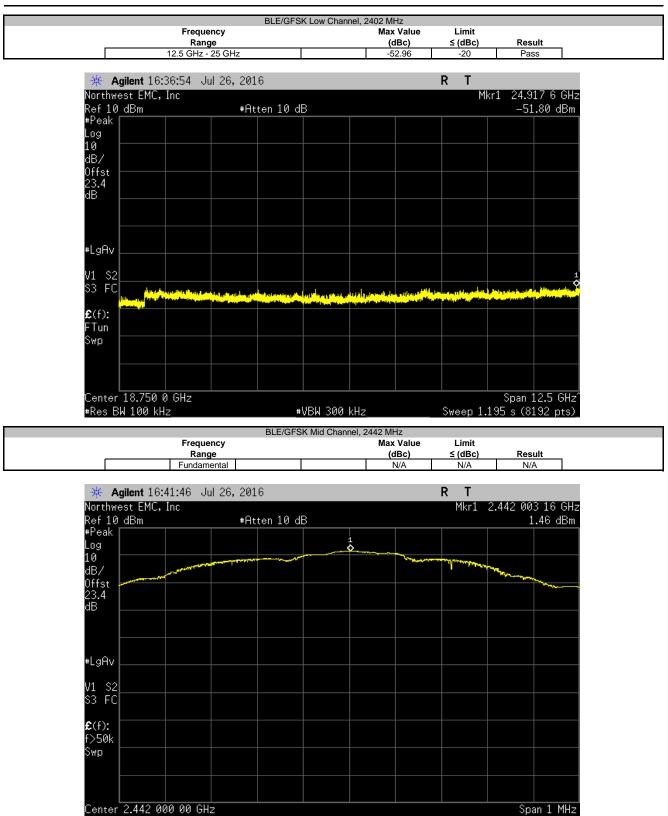
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

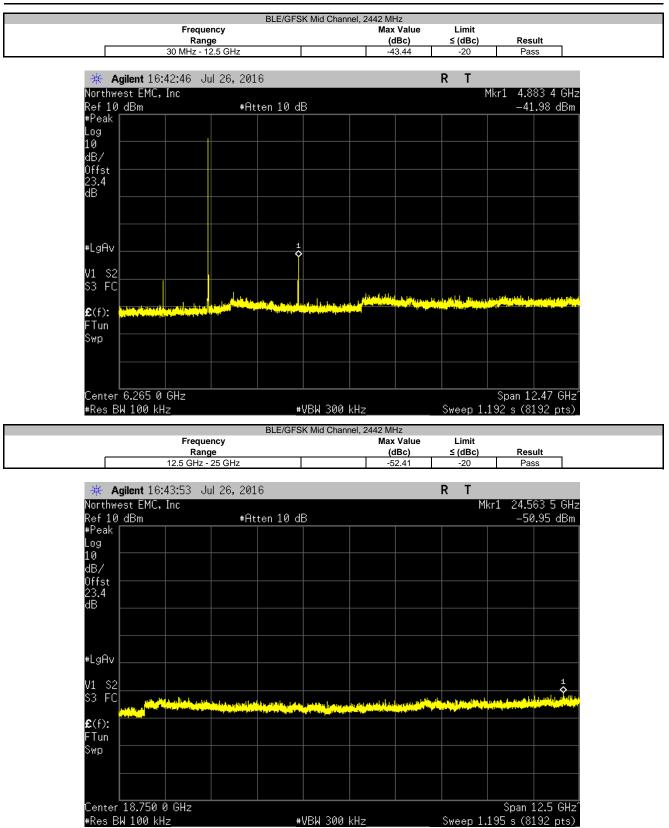
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	E8257D	TGU	2/5/2015	2/5/2018
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Block - DC	Aeroflex	INMET 8535	AMO	4/4/2016	4/4/2017
Attenuator	Fairview Microwave	SA18E-20	TKS	4/4/2016	4/4/2017
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFA	11/19/2015	11/19/2016


TEST DESCRIPTION

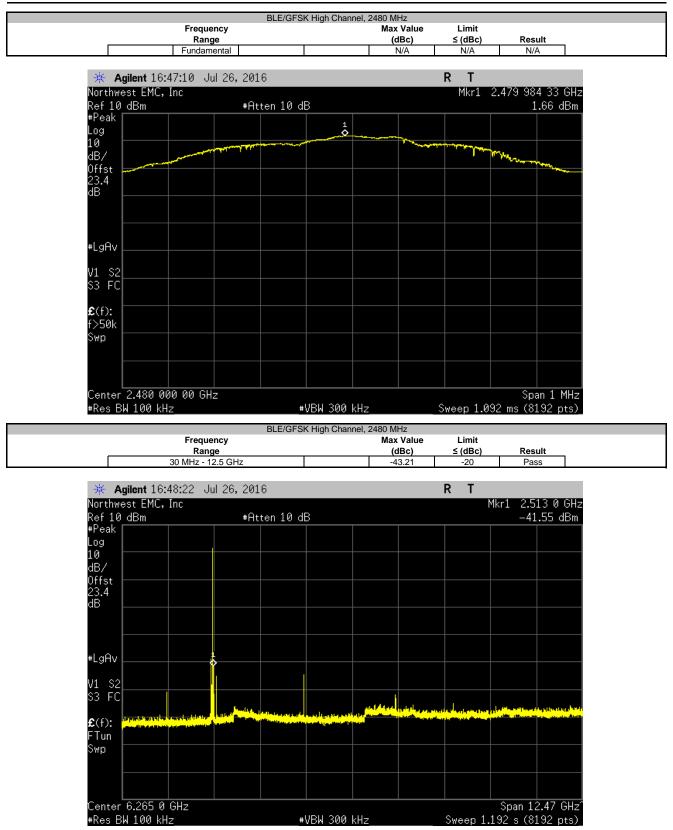
The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.



EUT: Co	onduit SMARTCAP			Work Order:	BDTE0001	
Serial Number: 38				Date:	07/26/16	
Customer: BD	D Technologies			Temperature:	23.6 °C	
Attendees: Mi	chael Yarger			Humidity:	45.5% RH	
Project: No	one			Barometric Pres.:	1013 mbar	
Tested by: Ma			Power: 3.0VDC	Job Site:	OC13	
EST SPECIFICATION	IS		Test Method			
CC 15.247:2016			ANSI C63.10:2013			
COMMENTS						
eference level offset:	: DC Block + 20dB attenuate	or + cable + patch cable = 23.3	7 dB			
EVIATIONS EPOM T						
DEVIATIONS FROM TE	EST STANDARD					
DEVIATIONS FROM TE	EST STANDARD					
lone			Mt BI			
	EST STANDARD	Signatura	14-4 Gyt-			
lone		Signature		Max Value	Limit	
lone		Signature	Frequency	Max Value (dBc)	Limit ≤ (dBc)	Result
None Configuration #	2	Signature			Limit ≤(dBc) N/A	Result N/A
lone	2 el, 2402 MHz	Signature	Frequency Range	(dBc)	≤ (dBc)	
None Configuration # BLE/GFSK Low Channe	2 al, 2402 MHz al, 2402 MHz	Signature	Frequency Range Fundamental	(dBc) N/A	≤ (dBc) N/A	N/A
None Configuration # BLE/GFSK Low Channe BLE/GFSK Low Channe	2 al, 2402 MHz al, 2402 MHz al, 2402 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz	(dBc) N/A -42.86	≤ (dBc) N/A -20	N/A Pass
None Configuration # BLE/GFSK Low Channe BLE/GFSK Low Channe BLE/GFSK Low Channe	2 bl, 2402 MHz bl, 2402 MHz bl, 2402 MHz bl, 2402 MHz bl, 2402 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	(dBc) N/A -42.86 -52.96	≤ (dBc) N/A -20 -20	N/A Pass Pass
Ione Configuration # BLE/GFSK Low Channe BLE/GFSK Low Channe BLE/GFSK Low Channe BLE/GFSK Mid Channe BLE/GFSK Mid Channe	2 al, 2402 MHz al, 2402 MHz al, 2402 MHz al, 2442 MHz al, 2442 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental	(dBc) N/A -42.86 -52.96 N/A	≤ (dBc) N/A -20 -20 N/A	N/A Pass Pass N/A
tone Configuration # BLE/GFSK Low Channe BLE/GFSK Low Channe BLE/GFSK Mid Channe BLE/GFSK Mid Channe BLE/GFSK Mid Channe	2 el, 2402 MHz el, 2402 MHz el, 2402 MHz el, 2402 MHz el, 2442 MHz el, 2442 MHz el, 2442 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz	(dBc) N/A -42.86 -52.96 N/A -43.44	≤ (dBc) N/A -20 -20 N/A -20	N/A Pass Pass N/A Pass
tone Configuration # BLE/GFSK Low Channe BLE/GFSK Low Channe BLE/GFSK Mid Channe	2 bl, 2402 MHz bl, 2402 MHz bl, 2402 MHz bl, 2402 MHz bl, 2402 MHz bl, 2442 MHz bl, 2442 MHz bl, 2442 MHz bl, 2442 MHz bl, 2442 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 25 GHz 12.5 GHz - 25 GHz 5 GHz - 25 GHz 12.5 GHz - 25 GHz 12.5 GHz - 25 GHz	(dBc) N/A -42.86 -52.96 N/A -43.44 -52.41	≤ (dBc) N/A -20 -20 N/A -20 -20 -20	N/A Pass Pass N/A Pass Pass



#VBW 300 kHz


Sweep 1.092 ms (8192 pts)

#Res BW 100 kHz

		SK High Char					
	uency			Value IBc)	Limit ≤ (dBc)	Res	
	n ge z - 25 GHz			2.84	-20	Pas	
12.0 011				2.04	20	100	55
🔆 Agilent 16:50:01	Jul 26, 2016				RT		
Northwest EMC, Inc					M	kr1 24.9	46 6 GHz
Ref 10 dBm	#Atten 10	dB				-51	.18 dBm
#Peak							
Log							
10							
dB/							
Offst 23.4 dB							
dB							
#LgAv							
V1 S2 S3 FC <u>Alta destates terren</u>							
S3 FC	ووبأطعه والمادستان والمقطعة	والمعروم والرور والا	a data Manada a	والفراد والمعادية	and the ball of the b	dis in the li	
		معالاتين بمطلقه كأن					
£(f): FTun							
Swp							
Center 18.750 0 GHz						Snan 1	12.5 GHz
#Res BW 100 kHz		_#VBW 300			Sweep 1.		