

TEST REPORT FCC ID: 2AJJ2-CARTRIDGE For

NOKTA MUHENDISLIK INS. ELEK. PLAS. GIDA VE REKLAM SAN. TIC. LTD. STI.

Wireless Cartridge

NOKTA 2.4 GHz Wireless Cartridge (MAKRO 2.4 GHz Wireless

Cartridge)

Trade name : NOKTA DETECTION TECHNOLOGIES

Prepared for : NOKTA MUHENDISLIK INS. ELEK. PLAS. GIDA VE REKLAM

SAN. TIC. LTD. STI.

Address EMEK MAH. SIVATYOLU CAD. SAKIZ SOK. NO4

SANCAKTEPE ISTANBUL TURKEY

Prepared by : Shenzhen Alpha Product Testing Co., Ltd.

Building B, East Area of Nanchang Second, Industrial Zone,

Gushu 2nd Road, Bao'an, Shenzhen, China

Report No. : T1861213 04

Model No.

Date of Receipt : July 04, 2016

Date of Test : August 14-August 18, 2016

Date of Report : August 19, 2016

Version Number : REV0

TABLE OF CONTENT

Des	script	tion	Page
1	Ger	neral Information	4
	1.1	Description of Device (EUT)	4
	1.2	Description of Test Facility	5
2	EM (C Equipment List	6
3 T	est l	Procedure	7
4	Sun	nmary of Measurement	8
	4.1	Summary of test result	8
	4.2	Test connection	
	4.3	Assistant equipment used for test	8
	4.4	Test mode	
	4.5	Test Conditions	9
	4.6	Measurement Uncertainty (95% confidence levels, k=2)	9
5	Spu	rious Emission	10
	5.1	Radiation Emission	10
	5.2	Radiation Emission Limits(15.209&249)	10
	5.3	Test Setup	11
	5.4	Test Procedure	13
	5.5	Test Equipment Setting For emission test Result	13
	5.6	Test Condition	
	5.7	Test Result	
6	PO	WER LINE CONDUCTED EMISSION	
	6.1	Conducted Emission Limits(15.207)	
	6.2	Test Setup	
	6.3	Test Procedure	
	6.4	Test Results	
7	Bar	ndwidth	_
	7.1	Test limit	_
	7.2	Method of measurement	
	7.3	Test Setup	
	7.4	Test Results	_
8	Ant	enna Requirement	
	8.1	Standard Requirement	
	8.2	Antenna Connected Construction	
	8.3	Result	
9	Pho	otographs of Test Setup	
	9.1	Photos of Radiated emission	
10	Pho	otographs of EUT	27

D I Vame

DECLARATION

Applicant : NOKTA MUHENDISLIK INS. ELEK. PLAS. GIDA VE

REKLAM SAN. TIC. LTD. STI.

Manufacturer : NOKTA MUHENDISLIK INS. ELEK. PLAS. GIDA VE

REKLAM SAN. TIC. LTD. STI.

Product : Wireless Cartridge

(A) Model No. : NOKTA 2.4 GHz Wireless Cartridge (MAKRO

odel No. : 2.4 GHz Wireless Cartridge)

(B) Trade Name : NOKTA DETECTION TECHNOLOGIES

(C) Power supply: DC 5V

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.249: 2016, ANSI C63.10-2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart B Class B limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature):	Reak Yang Test Engineer	Kear	lang

Approved by (name + signature).....:

Simple Guan
Project Manager

Date of issue..... August 19, 2016

1 General Information

1.1 Description of Device (EUT)

EUT : Wireless Cartridge

Model No. : NOKTA 2.4 GHz Wireless Cartridge (MAKRO 2.4 GHz Wireless

Cartridge)

DIFF. : N/A

Trade mark : NOKTA DETECTION TECHNOLOGIES

Power supply : DC 5V from host of Metal detector

Radio Technology : 2.4G ISM

Operation frequency : 2440-2445MHz

Channel No. 6 Channels

Channel Separation : 2MHz

Modulation : GFSK

Antenna Type : PCB Antenna, max gain 1dBi.

Applicant . NOKTA MUHENDISLIK INS. ELEK. PLAS. GIDA VE

REKLAM SAN. TIC. LTD. STI.

Address : EMEK MAH. SIVATYOLU CAD. SAKIZ SOK. NO4

SANCAKTEPE ISTANBUL TURKEY

Manufacturer : NOKTA MUHENDISLIK INS. ELEK. PLAS. GIDA VE

REKLAM SAN. TIC. LTD. STI.

Address : EMEK MAH. SIVATYOLU CAD. SAKIZ SOK. NO4

SANCAKTEPE ISTANBUL TURKEY

Description of Test Facility 1.2

Shenzhen Alpha Product Testing Co., Ltd.

Building B, East Area of Nanchang Second, Industrial Zone, Gushu 2nd Road, Bao'an, Shenzhen, China

March 25, 2015 File on Federal Communication Commission

Registration Number: 203110

July 18, 2014 Certificated by IC Registration Number: 12135A

2 EMC Equipment List

Equipment	Manufacture	Model No.	Serial No.	Due cal.	Cal Interval
3m Semi-Anechoic	CHENYU	N/A	N/A	2018.01.18	2Year
Spectrum analyzer	Agilent	E4407B	MY46185649	2017.01.16	1Year
Receiver	R&S	ESPI	101873	2017.01.16	1Year
Receiver	R&S	ESCI	101165	2017.01.16	1Year
Bilog Antenna	SCHWARZBECK	VULB 9168	VULB9168-438	2018.01.18	2Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D(1201)	2017.01.20	2Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	8126466	2017.01.16	1 Year
L.I.S.N.#2	ROHDE&SCHWA RZ	ENV216	101043	2017.01.16	1 Year
Cable	Resenberger	N/A	No.1	2017.01.16	1Year
Cable	SCHWARZBECK	N/A	No.2	2017.01.16	1Year
Cable	SCHWARZBECK	N/A	No.3	2017.01.16	1Year
Pre-amplifier	НР	HP8347A	2834A00455	2017.01.18	1Year
Pre-amplifier	Agilent	8449B	3008A02664	2017.01.18	1Year
vector Signal Generator	Agilent	N5182A	MY49060042	2016.11.16	1 Year
vector Signal Generator	Agilent	E4438C	US44271917	2016.11.16	1 Year
X-series USB Peak and Average Power Sensor	Agilent	U2021XA	MY54080020	2016.11.16	1 Year
X-series USB Peak and Average Power Sensor	Agilent	U2021XA	MY54110001	2016.11.16	1 Year
Signal Analyzer	Agilent	N9020A	MY48030494	2016.11.16	1 Year

3 Test Procedure

POWER LINE CONDUCTED INTERFERENCE: The test procedure used was ANSI Standard C63.10-2013 using a 50 u H LISN. Both Lines were observed. The bandwidth of the receiver was 10kHz with an appropriate sweep speed. The ambient temperature of the EUT was 25 with a humidity of 58%.

RADIATION INTERFERENCE: The test procedure used was ANSI Standard C63.10-2013 using a ANRITSU spectrum analyzer with a pre-selector. The analyzer was calibrated in dB above a micro volt at the output of the antenna. The resolution bandwidth was 100kHz and the video bandwidth was 300 kHz up to 1 GHz and 1 MHz with a video BW of 3MHz above 1 GHz. The ambient temperature of the EUT was 25 with a humidity of 58%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer and cable loss. The antenna correction factors and cable loss are stated in terms of dB. The gain of the Pre-selector was accounted for in the Spectrum Analyzer Meter Reading. Example:

ANSI STANDARD C63.10-2013 10.1.7 MEASUREMENT PROCEDURES: The EUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The EUT was placed in the center of the table (1.5m side). The table used for radiated measurements is capable of continuous rotation. When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes. The situation was similar for the conducted measurement except that the table did not rotate. The EUT was setup as described in ANSI Standard C63.10-2013 10.1.7 with the EUT 40 cm from the vertical ground wall.

4 Summary of Measurement

4.1 Summary of test result

Test Item	Test Requirement	Stanadard Paragraph	Result
Spurious Emission	FCC PART 15: 2016	Section 15.249&15.209	Compliance
Conduction Emission	FCC PART 15: 2016	Section 15.207	Compliance
Occupied bandwidth	FCC PART 15: 2016	Section 15.215	Compliance
Band edge Requirement	FCC PART 15: 2016	Section 15.249	Compliance
Antenna Requirement	FCC PART 15: 2016	Section 15.203	Compliance

Note: The EUT has been tested as an independent unit. And Continual Transmitting in maximum power.

4.2 Test connection

EUT was placed on a turn table, which is 0.8 meter high above ground for blew 1GHz, 1.5 meter high above ground for above 1GHz.

TX Mode:

4.3 Assistant equipment used for test

Description	:	DC source
Manufacturer	:	ALL Power
Model No.	:	ADC50-20
Note: FCC VOC approved.	•	

4.4 Test mode

The EUT was controlled to work in Continuous TX mode, and select test channel, wireless mode.

Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2440	3	2442	5	2444
2	2441	4	2443	6	2445

4.5 Test Conditions

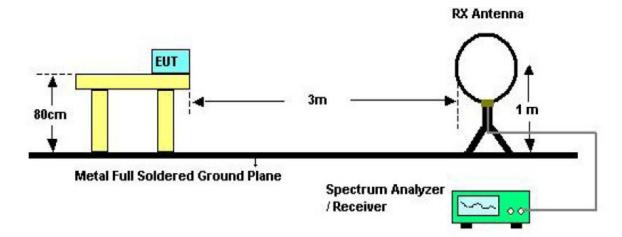
Temperature range	21-25
Humidity range	40-75%
Pressure range	86-106kPa

4.6 Measurement Uncertainty (95% confidence levels, k=2)

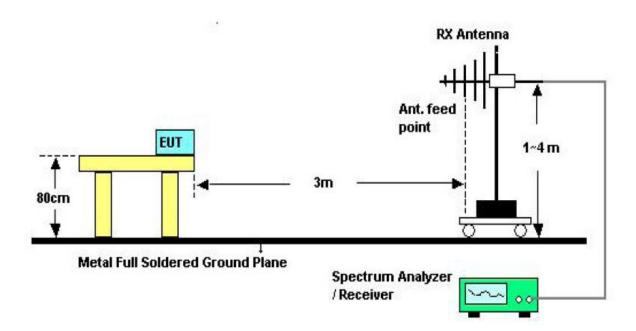
Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.71dB	
Uncertainty for Radiation Emission test in 3m	2.13 dB	Polarize: V
chamber (below 30MHz)	2.57dB	Polarize: H
Uncertainty for Radiation Emission test in 3m	3.90 dB	Polarize: V
chamber (30MHz to 1GHz)	3.92dB	Polarize: H
Uncertainty for Radiation Emission test in 3m	4.26 dB	Polarize: H
chamber (1GHz to 25GHz)	4.28 dB	Polarize: V
Uncertainty for radio frequency	1×10-9	
Uncertainty for DC and low frequency voltages	0.06%	

5 Spurious Emission

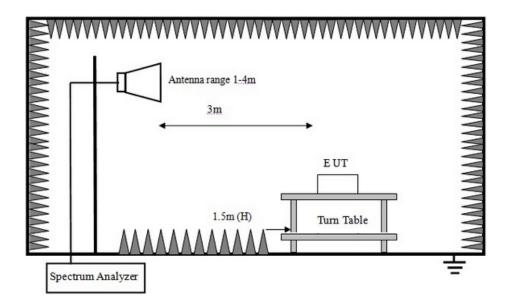
5.1 Radiation Emission


5.2 Radiation Emission Limits(15.209&249)

Frequency (MHz)	Limits	Field Strength s at 3 metres (watts, o	.i.r.p.)		
	uV/m	dB uV/m	Measurement distance(m)		
0.009-0.490	2400/F(kHz)	XX	300		
0.490-1.705	24000/F(kHz)	XX	30		
1.705-30	30	29.5	30		
30~88	100(3nW)	40	3		
88~216	150(6.8nW)	43.5	3		
216~960	200(12nW)	46	3		
Above960	500(75nW)	54	3		
Carrier frequency		93.97(AV)	3		
Carrier frequency		113.97(PK)	3		


NOTE:

- a) The tighter limit applies at the band edges.
- b) Emission Level(dB uV/m)=20log Emission Level(uV /m)


5.3 Test Setup See the next page

Below 30MHz Test Setup

Above 30MHz Test Setup

Above 1GHz Test Setup

Note: For harmonic emissions test a appropriate high pass filter was inserted in the input port of AMP.

5.4 Test Procedure

- a) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1GHz, The EUT was placed on a rotating 0.8 m high above ground for below 1GHz and 1.5m high for above1GHz testing, The table was rotated 360 degrees to determine the position of the highest radiation
- b) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set of make measurement.
- c) The initial step in collecting conducted emission data is a spectrum analyzer Peak detector mode pre-scanning the measurement frequency range.
 Significant Peaks are then marked. and then Qusia Peak Detector mode premeasured
- d) If Peak value comply with QP limit Below 1GHz. The EUT deemed to comply with QP limit. But the Peak value and average value both need to comply with applicable limit above 1GHz.
- e) For the actual test configuration, please see the test setup photo.
- f) Test for all x, y, z axes is performed and only the worst case of X xes was recorded in the test report.
- g) For the radiated emission test above 1GHz:

 Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

5.5 Test Equipment Setting For emission test Result.

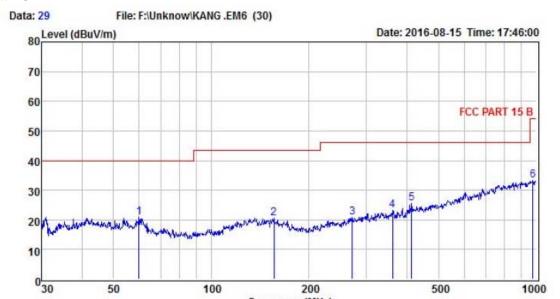
9KHz~150KHz	RBW 200Hz	VBW1KHz
150KHz~30MHz	RBW 9KHz	VBW 30KHz
30MHZ~1GHz	RBW 120KHz	VBW 300KHz
Above 1GHz	RBW 1MHz	VBW 3MHz

5.6 Test Condition

Continual Transmitting in maximum power.

5.7 Test Result

We have scanned the 10th harmonic from 9KHz to the EUT. Detailed information please see the following page.

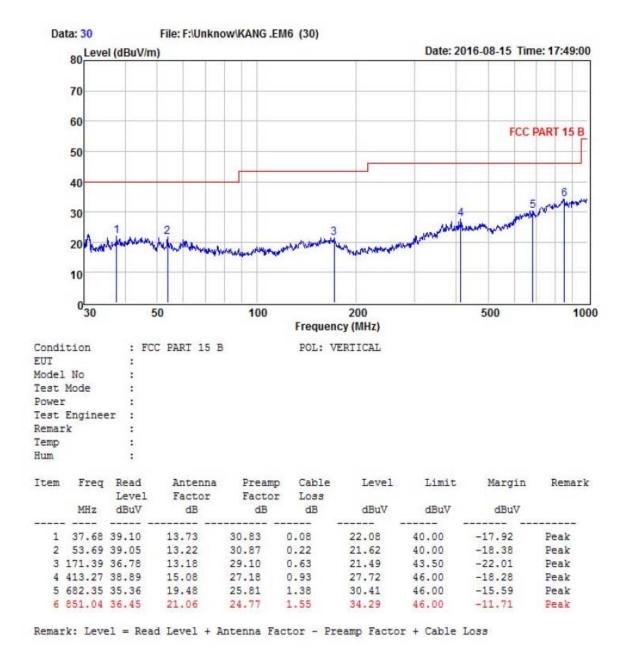

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Remark: Only show the test data of the worst Channel in this report.

From 30MHz to 1000MHz: Conclusion: PASS

Below 1GHz


Condition : FCC PART 15 B
EUT :
Model No :
Test Mode :
Power :
Test Engineer :
Remark :
Temp :
Hum :

POL: HORIZONTAL

Frequency (MHz)

Item	Freq	Read Level	Antenna Factor	Preamp Factor		Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	59.86	38.58	12.75	30.90	0.24	20.67	40.00	-19.33	Peak
2	155.91	35.18	14.15	29.31	0.38	20.40	43.50	-23.10	Peak
3	271.32	36.12	12.15	28.12	0.67	20.82	46.00	-25.18	Peak
4	361.71	35.89	14.07	27.65	0.86	23.17	46.00	-22.83	Peak
5	413.27	36.89	15.08	27.18	0.93	25.72	46.00	-20.28	Peak
6	975.75	34.78	22.21	25.12	1.38	33.25	54.00	-20.75	Peak

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

Notes: Above is below 1GHz test data. This report only shall the worst case mode for TX 2440MHz.

Radiated Emissions Result of Inside band and out of band

EUT: Wireless Cartridge M/N: NOKTA 2.4 GHz Wireless Cartridge (MAKRO 2.4 GHz Wireless Cartridge)

Power: DC 5V

Test date: 2016-08-15 Test site: 3m Chamber Tested by: Reak Yang

Test mode: 2440MHz

Antenna polarity: Vertical

internal polarity. Voltical									
No	Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	2440	86.94	27.60	3.97	34.97	83.54	114	30.46	PK
2	2440	65.79	27.60	3.97	34.97	62.39	94	31.61	AV
3	4880	58.53	31.38	5.75	34.14	61.52	74	12.48	PK
4	4880	38.33	31.38	5.75	34.14	41.32	54	12.68	AV
5	2400	49.58	27.62	3.94	34.97	46.17	74	27.83	PK
6	2400	41.32	27.62	3.94	34.97	37.91	54	16.09	AV
Anter	nna Polari	ity: Horizor	ıtal						
1	2440	82.26	27.60	3.97	34.97	78.86	114	35.14	PK
2	2440	80.87	27.60	3.97	34.97	77.47	94	16.53	AV
3	4880	55.93	31.38	5.75	34.14	58.92	74	15.08	PK
4	4880	35.81	31.38	5.75	34.14	38.80	54	15.20	AV
5	2400	50.11	27.62	3.94	34.97	46.70	74	27.30	PK
6	2400	41.45	27.62	3.94	34.97	38.04	54	15.96	AV
					_		_	_	

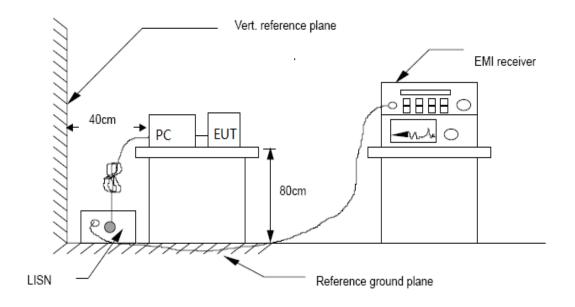
Note:

- 1, Measuring frequency from 1GHz to 25GHz
- 2,Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2,Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.
- 5. For fundamental frequency , RBW=3MHz, VBW=10MHz, peak detector is for PK value RMS detector is for AV value

EUT	: Wirele	ess Cartridge	: M/	/N: NO	KTA 2.4	GHz Wirel	ess Cartridg	ge (MAK	RO 2.4
		ss Cartridge)					-		
Pow	er: DC	5V							
Test	date: 20	16-08-15	Test sit	te: 3m (Chamber	Tested by	r: Reak Yang	<u>—</u> —	
Test	mode: 2	2445MHz							
Ante	enna pola	arity: Vertica	ıl						
No	Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss (dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remar k
1	2445	85.94	27.59	4.00	34.97	82.56	114	31.44	PK
2	2445	65.79	27.59	4.00	34.97	62.41	94	31.59	AV
3	4890	57.53	31.41	5.75	34.12	60.57	74	13.37	PK
4	4890	38.61	31.41	5.75	34.12	41.65	54	12.29	AV
5	2483.5	51.16	27.59	4.00	34.97	47.78	74	26.22	PK
6	2483.5	40.78	27.59	4.00	34.97	37.40	54	16.60	AV
	/	/							
Ante	enna Pola	arity: Horizo	ntal						
1	2445	83.26	27.59	4.00	34.97	79.88	114	34.12	PK
2	2445	63.83	27.59	4.00	34.97	60.45	94	33.55	AV
3	4960	56.93	31.41	5.75	34.12	59.97	74	14.03	PK
4	4960	36.20	31.41	5.75	34.12	39.24	54	14.76	AV
5	2483.5	49.76	27.59	4.00	34.97	46.38	74	27.62	PK
6	2483.5	39.93	27.59	4.00	34.97	36.55	54	17.45	AV
	/	/							
Note				,					

- 1, Measuring frequency from 1GHz to 25GHz
- 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2,Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.
- 5. For fundamental frequency , RBW=3MHz, VBW=10MHz, peak detector is for PK value RMS detector is for AV value

6 POWER LINE CONDUCTED EMISSION

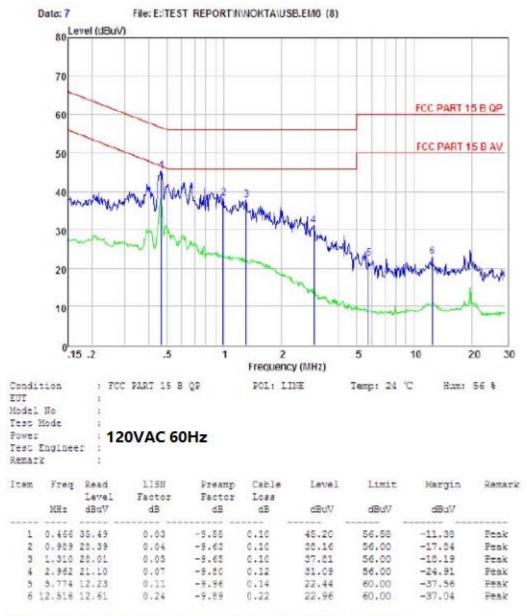

6.1 Conducted Emission Limits(15.207)

Frequency	Limits dB(μV)				
MHz	Quasi-peak Level	Average Level			
0.15 -0.50	66 -56*	56 - 46*			
0.50 -5.00	56	46			
5.00 -30.00	60	50			

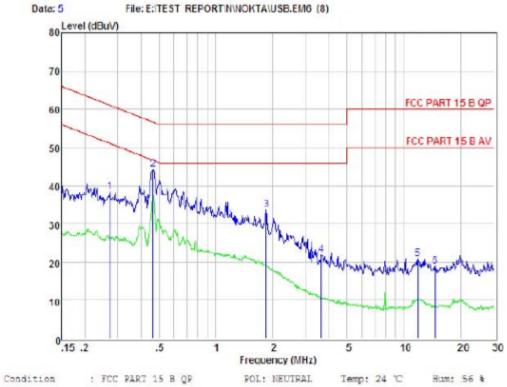
Notes: 1. *Decreasing linearly with logarithm of frequency.

- 2. The lower limit shall apply at the transition frequencies.
- 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

6.2 Test Setup



6.3 Test Procedure


The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10-2013 on Conducted Emission Measurement. The bandwidth of test receiver (R & S ESCS30) is set at 9 kHz.

6.4 Test Results

Pass

Remark: Level = Read Level + LISM Factor - Freamp Factor + Cable Loss

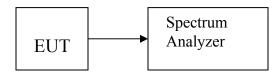
EUT Model No Test Mode 120VAC 60Hz Power

Test Engineer : Remark

Item	Freq	Read Level	LISM Factor	Preamp Factor	Cable Loss	Level	Limit	Margin	Remark
	ZHM	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	0.273	28.72	0.03	-9.56	0.10	38.41	61.03	-22.62	Peak
2	0.461	34.41	0.03	-9.58	0.10	44.12	56.67	-12.55	Peak
3	1.858	23.81	0.05	-9.71	0.10	33.67	56.00	-22.33	Peak
4	3.642	11.79	0.08	-9.85	0.12	21.84	56.00	-34.16	Peak
5	11.933	10.37	0.26	-9.90	0.22	20.75	60.00	-39.25	Peak
.6	14.672	8.64	0.24	-9.86	0.23	18.97	60.00	-41.03	Peak

Remark: Level = Read Level + LISN Factor - Freamp Factor + Cable Loss

7 Bandwidth


7.1 Test limit

Please refer section 15.215

7.2 Method of measurement

- a) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.
- b)The test receiver RBW set 100Hz, VBW set 300KHz, Sweep time set auto.
- c) Peak detector is used

7.3 Test Setup

7.4 Test Results

PASS.

Detailed information please see the following page.

Channel	Frequency (MHz)	20dB Bandwidth (KHz)	Limit (KHz)	Result	
CH1	2440	2059	/	PASS	
СН6	2445	1783	/	PASS	

CH Low:

CH High:

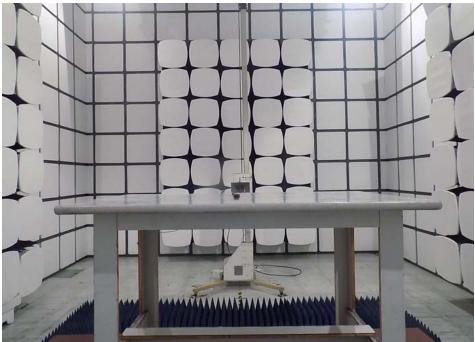
8 Antenna Requirement

8.1 Standard Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

8.2 Antenna Connected Construction

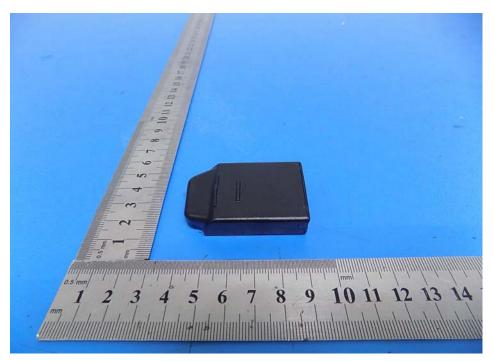
The directional gains of antenna used for transmitting is 1dBi, and is a PCB Antenna and no consideration of replacement. Please see EUT photo for details.


8.3 Result

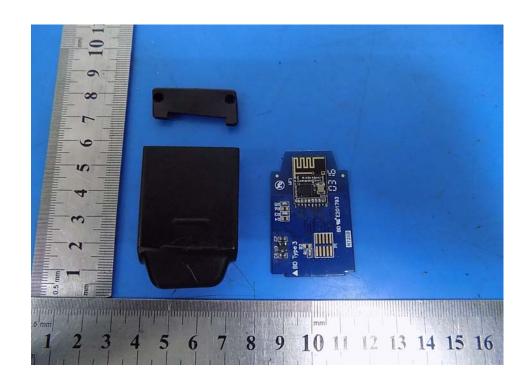
The EUT antenna is PCB Antenna. It comply with the standard requirement.

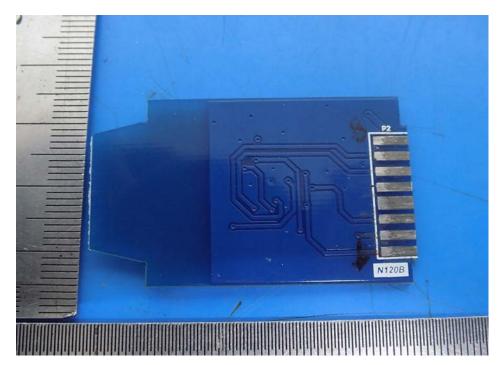
9 Photographs of Test Setup

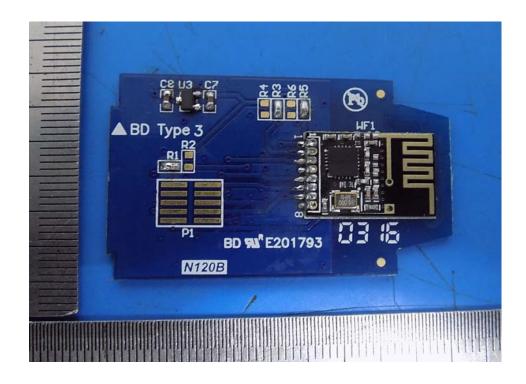
9.1 Photos of Radiated emission



10 Photographs of EUT







----- END OF REPORT-----