

TEST REPORT

FCC ID: 2AJH4-A12C

Product: Soundbar speaker

Model No.: A12C

Additional Model No.: N/A

Trade Mark: N/A

Report No.: TCT171124E028

Issued Date: Nov. 21, 2017

Issued for:

Shenzhen JIU YI Technology Co., Ltd.

3F, Building 62, Longwang Temple Industrial Park, Fuyong Street, Bao' an District, Shenzhen, Guangdong, China

Issued By:

Shenzhen Tongce Testing Lab.

1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

TEL: +86-755-27673339

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab.

This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

1. Test Certification		
2. Test Result Summary	(0)	4
3. EUT Description		5
4. Genera Information		
4.1. TEST ENVIRONMENT AND MODE		
4.2. DESCRIPTION OF SUPPORT UNITS		
5. Facilities and Accreditations	(ES)	7
5.1. FACILITIES		
5.2. LOCATION		
5.3. MEASUREMENT UNCERTAINTY		7
6. Test Results and Measurement Data		8
6.1. ANTENNA REQUIREMENT		
6.2. CONDUCTED EMISSION		
6.3. CONDUCTED OUTPUT POWER		13
RBW > the 20 dB bandwidth of the emission be 13	being measured V	'BW ≥ RBW
Sweep = auto		13
Detector function = peak		13
Trace = max hold	<u>(C)</u>	13
6.4. 20DB OCCUPY BANDWIDTH		17
6.5. CARRIER FREQUENCIES SEPARATION		21
6.6. HOPPING CHANNEL NUMBER		25
6.7. DWELL TIME		28
6.8. PSEUDORANDOM FREQUENCY HOPPING SEQUENCE		
6.9. CONDUCTED BAND EDGE MEASUREMENT	(0)	33
6.10. CONDUCTED SPURIOUS EMISSION MEASUREMENT		36
6.11. RADIATED SPURIOUS EMISSION MEASUREMENT		40
Appendix A: Photographs of Test Setup		
Appendix B: Photographs of EUT		

. Test Certification

Product:	Soundbar speaker
Model No.:	A12C
Additional Model:	N/A
Applicant:	Shenzhen JIU YI Technology Co., Ltd.
Address:	3F, Building 62, Longwang Temple Industrial Park, Fuyong Street, Bao' an District, Shenzhen, Guangdong, China
Manufacturer:	Shenzhen JIU YI Technology Co., Ltd.
Address:	3F, Building 62, Longwang Temple Industrial Park, Fuyong Street, Bao' an District, Shenzhen, Guangdong, China
Date of Test:	Nov. 09 –Nov. 21, 2017
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

Sent There

Beryl Zhao

Tomsin

Date: Nov. 21, 2017

-

Date:

Nov. 21, 2017

Report No.: TCT171124E028

Approved By:

Reviewed By:

Date:

Nov. 21, 2017

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1) §2.1046	PASS
20dB Occupied Bandwidth	§15.247 (a)(1) §2.1049	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209 §2.1053, §2.1057	PASS
Band Edge	§15.247(d) §2.1051, §2.1057	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. EUT Description

			Nopol No.: 101111242020
TES	TING CENTRE	TECHNOLOGY	Report No.: TCT171124E028

Product Name:	Soundbar speaker
Model:	A12C
Additional Model:	N/A
Trade Mark:	N/A
Bluetooth version:	BT2.1+EDR
Operation Frequency:	2402MHz~2480MHz
Transfer Rate:	1/2 Mbits/s
Number of Channel:	79
Modulation Type:	GFSK, π/4-DQPSK
Modulation Technology:	FHSS
Antenna Type:	PCB Antenna
Antenna Gain:	1.2dBi
Power Supply:	DC12V from adapter

Operation Frequency each of channel for GFSK, $\pi/4$ -DQPSK

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0 0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
	• • •						
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		-
Remark:	Channel 0, 3	9 &78 ha	ve been tes	ted for G	FSK, π/4-D0	QPSKmod	dulation mode.

4. Genera Information

4.1. Test environment and mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	BI24-120220-AdU			(c)

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 6 of 60

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District,

Shenzhen, Guangdong, China

Tel: 86-755-27673339

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

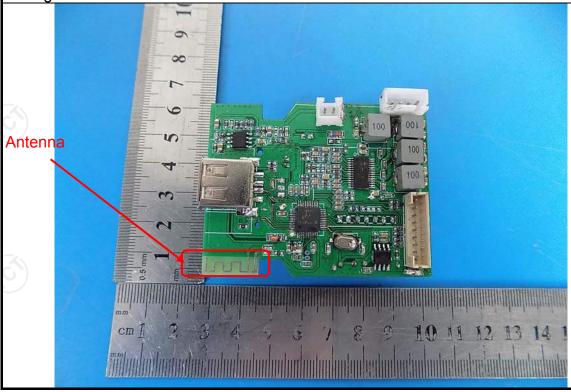
Report No.: TCT171124E028

6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is a PCB antenna which permanently attached, and the best case gain of the antenna is 1.2dBi.

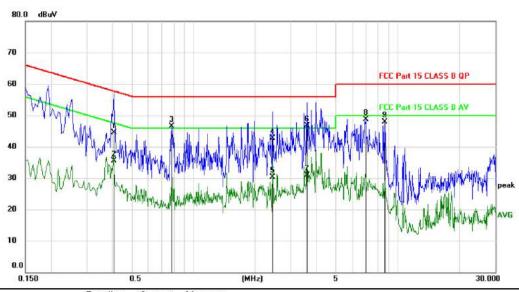
6.2. Conducted Emission

6.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.207	60			
Test Method:	ANSI C63.10:2013					
Frequency Range:	150 kHz to 30 MHz					
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto			
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (compared to the compared to the compare	dBuV) Average 56 to 46* 46 50			
Test Setup:	Reference 40cm 40cm E.U.T AC power Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Net Test table height=0.8m	Filter EMI Receiver	— AC power			
Test Mode:	Refer to item 4.1					
Test Procedure:	 The E.U.T is connectimpedance stabilized provides a 50 ohm/5 measuring equipmer The peripheral deviced power through a List coupling impedance refer to the block photographs). Both sides of A.C. conducted interferent emission, the relative the interface cables ANSI C63.10:2013 of 	ation network 50uH coupling im nt. es are also conne SN that provides with 50ohm tern diagram of the line are checke nce. In order to file positions of equ must be changed	(L.I.S.N.). This apedance for the ected to the main a 500hm/50uH mination. (Please test setup and ed for maximum and the maximum ipment and all of according to			
Test Result:	PASS					

6.2.2. Test Instruments

Cond	ucted Emission	Shielding R	oom Test Site (8	43)		
Equipment	Manufacturer	Model	Serial Number	<u> </u>		
Test Receiver	R&S	ESPI	101401	Jun. 12, 2018		
LISN	Schwarzbeck	NSLK 8126	8126453	Sep. 27, 2018		
Coax cable (9KHz-30MHz)	тст	CE-05	N/A	Sep. 27, 2018		
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A		



6.2.3. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	า		
MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
0.4065	44.31	0.20	44.51	57.72	-13.21	QP		
0.4065	35.31	0.20	35.51	47.72	-12.21	AVG		
0.7799	46.27	0.20	46.47	56.00	-9.53	peak		
2.4359	42.43	0.22	42.65	56.00	-13.35	QP		
2.4360	30.10	0.22	30.32	46.00	-15.68	AVG		
3.5880	46.43	0.24	46.67	56.00	-9.33	QP		
3.5880	30.61	0.24	30.85	46.00	-15.15	AVG		
6.9765	48.46	0.30	48.76	60.00	-11.24	peak		
8.6280	47.56	0.34	47.90	60.00	-12.10	peak		
	MHz 0.4065 0.4065 0.7799 2.4359 2.4360 3.5880 3.5880 6.9765	Freq. Level MHz dBuV 0.4065 44.31 0.4065 35.31 0.7799 46.27 2.4359 42.43 2.4360 30.10 3.5880 46.43 3.5880 30.61 6.9765 48.46	Freq. Level Factor MHz dBuV dB 0.4065 44.31 0.20 0.4065 35.31 0.20 0.7799 46.27 0.20 2.4359 42.43 0.22 2.4360 30.10 0.22 3.5880 46.43 0.24 3.5880 30.61 0.24 6.9765 48.46 0.30	Freq. Level Factor ment MHz dBuV dB dBuV 0.4065 44.31 0.20 44.51 0.4065 35.31 0.20 35.51 0.7799 46.27 0.20 46.47 2.4359 42.43 0.22 42.65 2.4360 30.10 0.22 30.32 3.5880 46.43 0.24 46.67 3.5880 30.61 0.24 30.85 6.9765 48.46 0.30 48.76	Freq. Level Factor ment Limit MHz dBuV dB dBuV dBuV 0.4065 44.31 0.20 44.51 57.72 0.4065 35.31 0.20 35.51 47.72 0.7799 46.27 0.20 46.47 56.00 2.4359 42.43 0.22 42.65 56.00 2.4360 30.10 0.22 30.32 46.00 3.5880 46.43 0.24 46.67 56.00 3.5880 30.61 0.24 30.85 46.00 6.9765 48.46 0.30 48.76 60.00	Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV dBuV dB 0.4065 44.31 0.20 44.51 57.72 -13.21 0.4065 35.31 0.20 35.51 47.72 -12.21 0.7799 46.27 0.20 46.47 56.00 -9.53 2.4359 42.43 0.22 42.65 56.00 -13.35 2.4360 30.10 0.22 30.32 46.00 -15.68 3.5880 46.43 0.24 46.67 56.00 -9.33 3.5880 30.61 0.24 30.85 46.00 -15.15 6.9765 48.46 0.30 48.76 60.00 -11.24	Freq. Level Factor ment Limit Margin 0.4065 44.31 0.20 44.51 57.72 -13.21 QP 0.4065 35.31 0.20 35.51 47.72 -12.21 AVG 0.7799 46.27 0.20 46.47 56.00 -9.53 peak 2.4359 42.43 0.22 42.65 56.00 -13.35 QP 2.4360 30.10 0.22 30.32 46.00 -15.68 AVG 3.5880 46.43 0.24 46.67 56.00 -9.33 QP 3.5880 30.61 0.24 30.85 46.00 -15.15 AVG 6.9765 48.46 0.30 48.76 60.00 -11.24 peak	Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV dB Detector Comment 0.4065 44.31 0.20 44.51 57.72 -13.21 QP 0.4065 35.31 0.20 35.51 47.72 -12.21 AVG 0.7799 46.27 0.20 46.47 56.00 -9.53 peak 2.4359 42.43 0.22 42.65 56.00 -13.35 QP 2.4360 30.10 0.22 30.32 46.00 -15.68 AVG 3.5880 46.43 0.24 46.67 56.00 -9.33 QP 3.5880 30.61 0.24 30.85 46.00 -15.15 AVG 6.9765 48.46 0.30 48.76 60.00 -11.24 peak

Note:

Freq. = Emission frequency in MHz

Reading level ($dB\mu V$) = Receiver reading

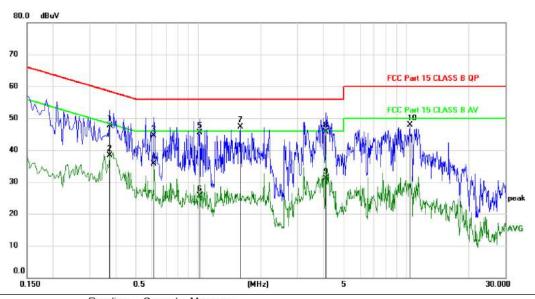
Corr. Factor (dB) = Antenna factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak


AVG =average

Report No.: TCT171124E028

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	1		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
	0.3750	47.47	0.20	47.67	58.39	-10.72	QP		
	0.3750	38.06	0.20	38.26	48.39	-10.13	AVG		
	0.6133	44.34	0.20	44.54	56.00	-11.46	QP		
	0.6134	35.49	0.20	35.69	46.00	-10.31	AVG		
	1.0183	45.38	0.20	45.58	56.00	-10.42	QP		
	1.0184	25.52	0.20	25.72	46.00	-20.28	AVG		
*	1.5944	47.19	0.20	47.39	56.00	-8.61	peak		
	4.1189	45.52	0.26	45.78	56.00	-10.22	QP		
	4.1190	30.86	0.26	31.12	46.00	-14.88	AVG		
	10.4235	47.53	0.42	47.95	60.00	-12.05	peak		
	0.00100A	MHz 0.3750 0.3750 0.6133 0.6134 1.0183 1.0184 * 1.5944 4.1189 4.1190	Mk. Freq. Level MHz dBuV 0.3750 47.47 0.3750 38.06 0.6133 44.34 0.6134 35.49 1.0183 45.38 1.0184 25.52 * 1.5944 47.19 4.1189 45.52 4.1190 30.86	Mk. Freq. Level dBuV dB 0.3750 47.47 0.20 0.3750 38.06 0.20 0.6133 44.34 0.20 0.6134 35.49 0.20 1.0183 45.38 0.20 1.0184 25.52 0.20 * 1.5944 47.19 0.20 4.1189 45.52 0.26 4.1190 30.86 0.26	Mk. Freq. Level Factor ment MHz dBuV dB dBuV 0.3750 47.47 0.20 47.67 0.3750 38.06 0.20 38.26 0.6133 44.34 0.20 44.54 0.6134 35.49 0.20 35.69 1.0183 45.38 0.20 45.58 1.0184 25.52 0.20 25.72 * 1.5944 47.19 0.20 47.39 4.1189 45.52 0.26 45.78 4.1190 30.86 0.26 31.12	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV dBuV 0.3750 47.47 0.20 47.67 58.39 0.3750 38.06 0.20 38.26 48.39 0.6133 44.34 0.20 44.54 56.00 0.6134 35.49 0.20 35.69 46.00 1.0183 45.38 0.20 45.58 56.00 1.0184 25.52 0.20 25.72 46.00 * 1.5944 47.19 0.20 47.39 56.00 4.1189 45.52 0.26 45.78 56.00 4.1190 30.86 0.26 31.12 46.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV dBuV dB dBuV dB dB	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV dBuV dB Detector 0.3750 47.47 0.20 47.67 58.39 -10.72 QP 0.3750 38.06 0.20 38.26 48.39 -10.13 AVG 0.6133 44.34 0.20 44.54 56.00 -11.46 QP 0.6134 35.49 0.20 35.69 46.00 -10.31 AVG 1.0183 45.38 0.20 45.58 56.00 -10.42 QP 1.0184 25.52 0.20 25.72 46.00 -20.28 AVG * 1.5944 47.19 0.20 47.39 56.00 -8.61 peak 4.1189 45.52 0.26 45.78 56.00 -10.22 QP 4.1190 30.86 0.26 31.12 46.00 -14.88 AVG	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV dB Detector Comment 0.3750 47.47 0.20 47.67 58.39 -10.72 QP 0.3750 38.06 0.20 38.26 48.39 -10.13 AVG 0.6133 44.34 0.20 44.54 56.00 -11.46 QP 0.6134 35.49 0.20 35.69 46.00 -10.31 AVG 1.0183 45.38 0.20 45.58 56.00 -10.42 QP 1.0184 25.52 0.20 25.72 46.00 -20.28 AVG * 1.5944 47.19 0.20 47.39 56.00 -8.61 peak 4.1189 45.52 0.26 45.78 56.00 -10.22 QP 4.1190 30.86 0.26 31.12 46.00 -14.88 AVG

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK), and the worst case Mode (Lowest channel and GFSK) was submitted only.

Page 12 of 60

6.3. Conducted Output Power

6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.10:2013				
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.				
Test Result:	PASS				

6.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 27, 2018
RF Cable (9KHz-26.5GHz)	TCT	RE-06	N/A	Sep. 27, 2018
Antenna Connector	TCT	RFC-01	N/A	Sep. 27, 2018

6.3.3. Test Data

TESTING CENTRE TECHNOLOGY Report No.: TCT171124E028


GFSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	-4.279	21.00	PASS		
Middle	-4.187	21.00	PASS		
Highest	-5.021	21.00	PASS		

π/4 DQPSK mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	-3.578	21.00	PASS
Middle	-3.465	21.00	PASS
Highest	-4.318	21.00	PASS

Test pl	ots as follov	vs:			

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

TESTING CENTRE TECHNOLOGY Report No.: TCT171124E028

6.4. 20dB Occupy Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)					
Test Method:	ANSI C63.10:2013					
Limit:	N/A					
Test Setup:						
	Spectrum Analyzer EUT					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 The testing follows ANSI C63.10:2013 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 					
Test Result:	PASS					

6.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 27, 2018
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 27, 2018
Antenna Connector	TCT	RFC-01	N/A	Sep. 27, 2018

6.4.3. Test data

Report No.: TCT171124E028

Test channel	20dB Occupy Bandwidth (kHz)				
rest channel	GFSK	π/4-DQPSK	Conclusion		
Lowest	885	1263	PASS		
Middle	882	1263	PASS		
Highest	884	1267	PASS		
follows:					

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

6.5. Carrier Frequencies Separation

6.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The testing follows ANSI C63.10:2013 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS (C)

6.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 27, 2018
RF Cable (9KHz-26.5GHz)	TCT	RE-06	N/A	Sep. 27, 2018
Antenna Connector	ТСТ	RFC-01	N/A	Sep. 27, 2018

6.5.3. Test data

Report No.: TCT171124E028

GFSK mode						
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result			
Lowest	1000.00	590.00	PASS			
Middle	1000.00	590.00	PASS			
Highest	1000.00	590.00	PASS			

Pi/4 DQPSK mode				
Test channel Carrier Frequencies Limit (kHz) Result				
Lowest	1000.00	844.67	PASS	
Middle	1000.00	844.67	PASS	
Highest	1000.00	844.67	PASS	

Note: According to section 6.4

Hoto. Hoodraing to doction of		
Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	885	590.00
π/4-DQPSK	1267	844.67

Test plots as follows:

Lowest channel

Middle channel

Highest channel

Lowest channel



Middle channel

Highest channel

6.6. Hopping Channel Number

6.6.1. Test Specification

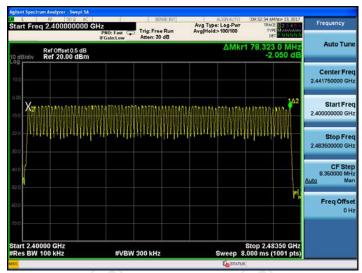
FCC Part15 C Section 15.247 (a)(1)			
ANSI C63.10:2013			
Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.			
Spectrum Analyzer EUT			
Hopping mode			
 The testing follows ANSI C63.10:2013 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report. 			
PASS			

6.6.2. Test Instruments

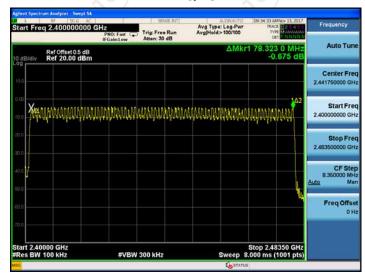
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 27, 2018
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 27, 2018
Antenna Connector	TCT	RFC-01	N/A	Sep. 27, 2018

6.6.3. Test data

Report No.: TCT171124E028


Mode	Hopping channel numbers	Limit	Result	
GFSK, P/4-DQPSK	79	15	PASS	

Test plots as follows:



GFSK

π/4 DQPSK

6.7. Dwell Time

6.7.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	ANSI C63.10:2013			
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Hopping mode			
Test Procedure:	 The testing follows ANSI C63.10:2013 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 			
Test Result:	PASS			

6.7.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 27, 2018
RF Cable (9KHz-26.5GHz)	TCT	RE-06	N/A	Sep. 27, 2018
Antenna Connector	TCT	RFC-01	N/A	Sep. 27, 2018

6.7.3. Test Data

Mode	Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limit (s)	Conclusion
	DH1	2441	0.380	0.122	<0.4	PASS
GFSK	DH3	2441	1.635	0.262	<0.4	PASS
	DH5	2441	2.885	0.308	<0.4	PASS
	DH1	2441	0.390	0.125	<0.4	PASS
π/4 DQPSK	DH3	2441	1.640	0.262	<0.4	PASS
	DH5	2441	2.890	0.308	<0.4	PASS

Note: 1 A period time = 0.4 (s) * 79 = 31.6(s)

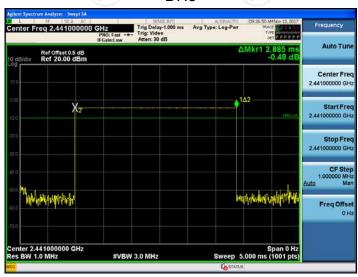
2 DH1 time slot = Pulse Duration * (1600/(2*79)) * A period time/1000 DH3 time slot = Pulse Duration * (1600/(4*79)) * A period time/1000 DH5 time slot = Pulse Duration * (1600/(6*79)) * A period time/1000

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to (1600 / 6 / 79) x (0.4 x 79) = 106.67 hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

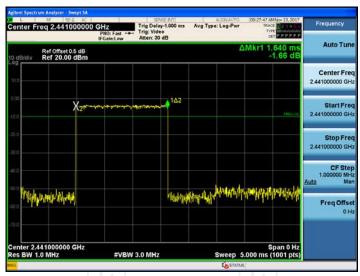
Test plots as follows:

Report No.: TCT171124E028


GFSK DH1

DH3

DH₅



π/4 DQPSK 2-DH1

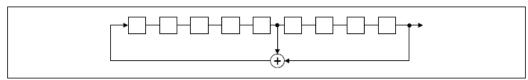
2-DH3

2-DH5

6.8. Pseudorandom Frequency Hopping Sequence

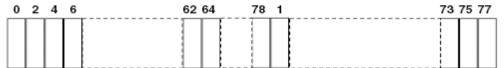
Test Requirement:

FCC Part15 C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9. Conducted Band Edge Measurement

6.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows the guidelines in Band-edge Compliance of RF Conducted Emissions of ANSI C63.10:2013 Measurement Guidelines. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
Test Result:	PASS
est Mode:	Transmitting mode with modulation 1. The testing follows the guidelines in Band-edge Compliance of RF Conducted Emissions of ANSI C63.10:2013 Measurement Guidelines. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Set RBW = 100 kHz (≥1% span=10MHz), VBW = kHz (≥RBW). Band edge emissions must be at lease 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 2 dB when RMS conducted output power procedure used. 4. Enable hopping function of the EUT and then reported the step 2 and 3. 5. Measure and record the results in the test report.

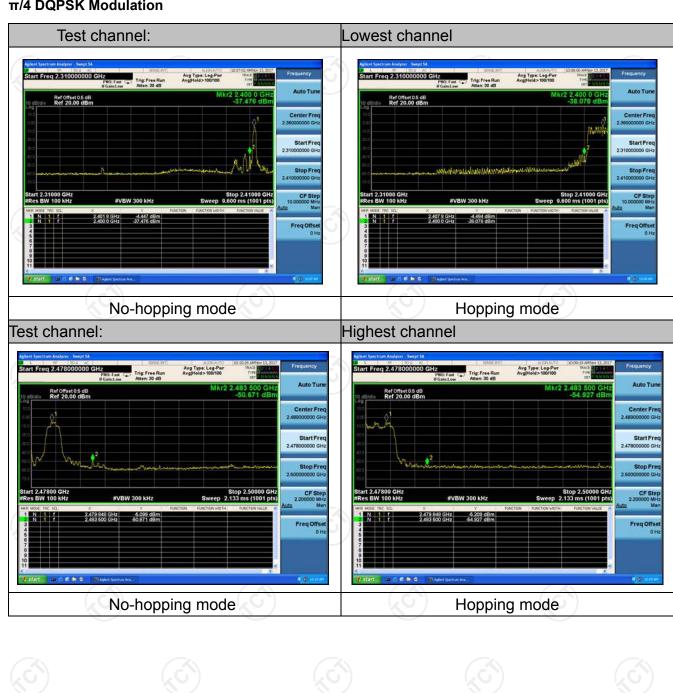
6.9.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 27, 2018
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 27, 2018
Antenna Connector	TCT	RFC-01	N/A	Sep. 27, 2018

No-hopping mode

6.9.3. Test Data

GFSK Modulation Lowest channel Test channel: Avg Type: Leg-Pwr Avg[Hold>100/100 Avg Type: Log-Pwr Avg[Hold>100/100 Ref Offset 0.5 dB Ref 20.00 dBm Ref Offset 0.5 dB Ref 20.00 dBm No-hopping mode Hopping mode Highest channel Test channel: client Spectrum Analyzes Start Freq 2.478000000 GHz PNO: Fast Progress of the Atten 30 dB art Freq 2.478000000 GHz Avg Type: Log-Pur Avg[Hold>100/100 Avg Type: Log-Pwr Avg[Hold>100/100 Ref Offset 0.5 dB Ref 20.00 dBm Ref Offset 0.5 dB Ref 20.00 dBm


Page 34 of 60

Hopping mode

Report No.: TCT171124E028

π/4 DQPSK Modulation

6.10. Conducted Spurious Emission Measurement

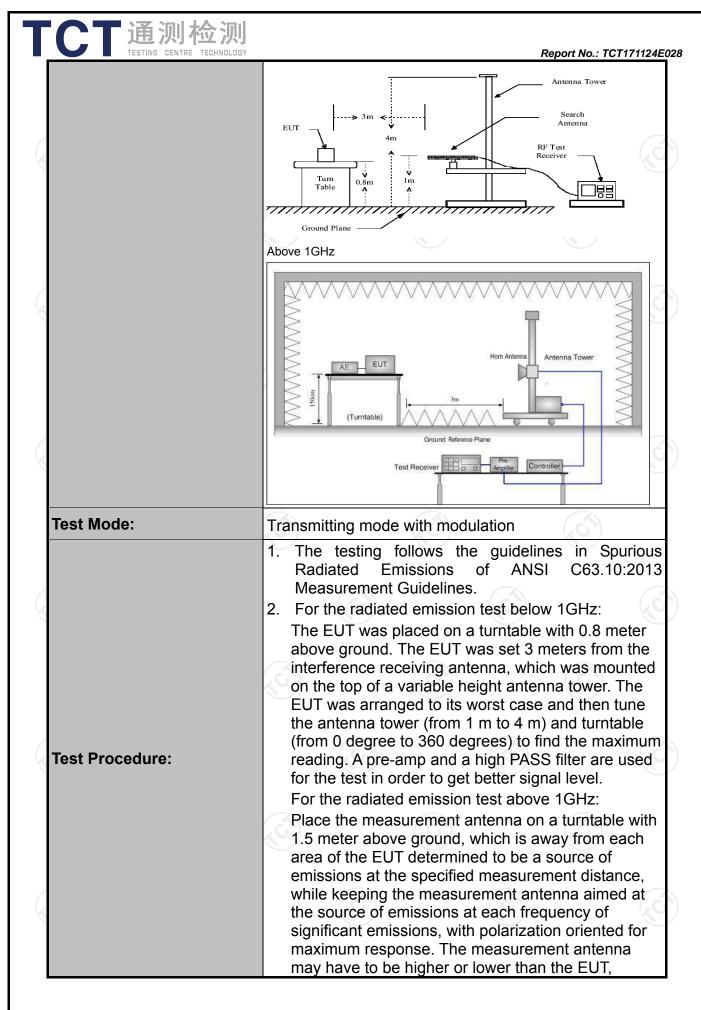
6.10.1. Test Specification

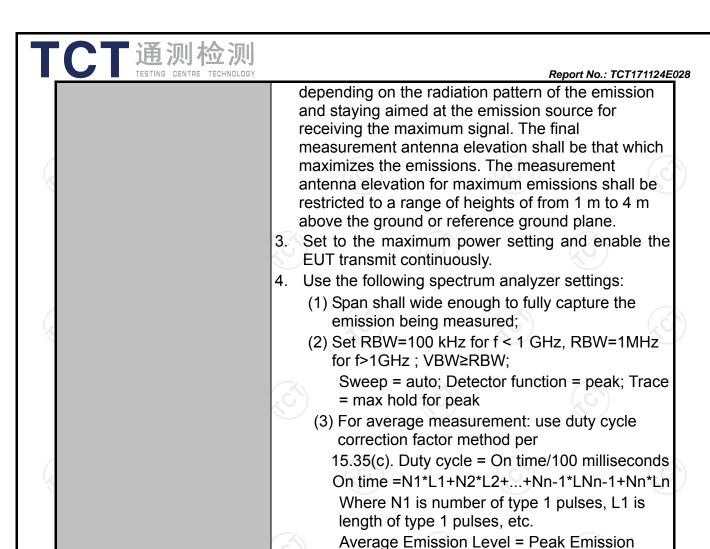
Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013				
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which for in the restricted bands must also comply with the radiated emission limits.				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The testing follows the guidelines in Spurious RF Conducted Emissions of ANSI C63.10:2013 Measurement Guidelines The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 				
Test Result:	PASS				

6.10.2. Test Instruments

_ /				
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 27, 2018
Spectrum Analyzer	ROHDE&SCH WARZ	FSQ	200061	Sep. 27, 2018
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 27, 2018
Antenna Connector	тст	RFC-01	N/A	Sep. 27, 2018

6.10.3. Test Data





6.11. Radiated Spurious Emission Measurement

6.11.1. Test Specification

ANSI C63.10:2013 9 kHz to 25 GHz			Z\				
Prequency Range: 9 kHz to 25 GHz 3 m Horizontal & Vertical	Test Requirement:	FCC Part15	C Sectio	n 15.209	(0,)		100
Measurement Distance: 3 m Horizontal & Vertical	Test Method:	ANSI C63.10	0:2013				
Horizontal & Vertical	Frequency Range:	9 kHz to 25 (GHz				
Frequency	Measurement Distance:	3 m				100)
Netroper Setup: SkHz-150kHz Quasi-peak 200Hz 1kHz Quasi-peak Value 150kHz-30MHz Quasi-peak 9kHz 30kHz Quasi-peak Value 30MHz 30MHz Quasi-peak Value Above 1GHz Peak 1MHz 3MHz Peak Value Peak 1MHz 10Hz Average Network	Antenna Polarization:	Horizontal &	Vertical				
150kHz- 30MHz 30kHz 30kHz 30kHz 30MHz 30MHz 30MHz 30MHz 30MHz 30MHz 40kHz 30MHz 40kHz 40						+	
South Computer C	Receiver Setup:	150kHz-					
Peak	•	30MHz-1GHz	Quasi-pe	7 3		1 07	
Frequency		Above 1GHz	-				
Computer Distance (meters) O.009-0.490 2400/F(KHz) 300 O.490-1.705 24000/F(KHz) 300 O.490-1.705 24000/F(KHz) 30 30 O.490-1.705 30 O.490-1.705 O.490-1.70			Реак	TMHZ	TUHZ	AVE	erage value
D.490-1.705 24000/F(KHz) 30		Frequen	псу		-		
1.705-30 30 30 30 30 30 30 30				,			1
30-88					KHz)		
S8-216							
Above 960 200 3 Above 960 500 3 Frequency Field Strength (microvolts/meter) Detector (meters) Above 1GHz 500 3 Average 5000 3 Peak For radiated emissions below 30MHz Test setup:						6	
Frequency Field Strength (microvolts/meter) Distance (meters) Above 1GHz 500 3 Average 5000 3 Peak For radiated emissions below 30MHz Distance = 3m Computer Pre-Amplifier Receiver	Limit:			/ U /			
Frequency (microvolts/meter) Distance (meters) Above 1GHz 500 3 Average 5000 3 Peak For radiated emissions below 30MHz Distance = 3m Computer Pre-Amplifier Receiver Ground Plane		Above 9	60	500			3
Above 1GHz 5000 3 Peak For radiated emissions below 30MHz Distance = 3m Computer Pre - Amplifier Receiver Ground Plane		Frequency		-	Distan	се	Detector
For radiated emissions below 30MHz Distance = 3m Computer Pre - Amplifier Receiver Ground Plane		Above 1GHz	,				
Test setup: Distance = 3m Computer		7,5576 1511		5000	3		Peak
Turn table Receiver Ground Plane	Test setup:	Di		w 30MHz	Pre -		nter]
			1	and Plane	<u> </u>	Receiver	

PASS

Test results:

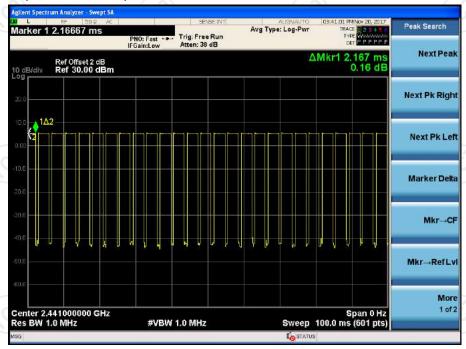
Level + 20*log(Duty cycle)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

6.11.2. Test Instruments

	Radiated Em	ission Test Sit	te (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Test Receiver	ROHDE&SCHW ARZ	ESVD	100008	Sep. 27, 2018
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ	200061	Sep. 27, 2018
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 27, 2018
Pre-amplifier	HP	8447D	2727A05017	Sep. 27, 2018
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 27, 2018
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 27, 2018
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 27, 2018
Horn Antenna	Schwarzbeck	BBH 9170	582	Jun. 07, 2018
Antenna Mast	Keleto	CC-A-4M	N/A	N/A
Coax cable (9KHz-1GHz)	тст	RE-low-01	N/A	Sep. 27, 2018
Coax cable (9KHz-40GHz)	тст	RE-high-02	N/A	Sep. 27, 2018
Coax cable (9KHz-1GHz)	тст	RE-low-03	N/A	Sep. 27, 2018
Coax cable (9KHz-40GHz)	тст	RE-high-04	N/A	Sep. 27, 2018
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

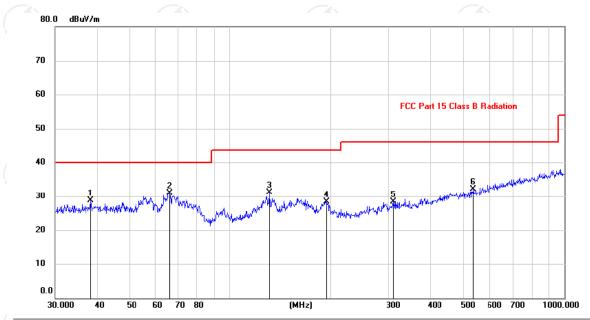

6.11.3. Test Data

Duty cycle correction factor for average measurement

DH5 on time (One Pulse) Plot on Channel 00

DH5 on time (Count Pulses) Plot on Channel 00

Note:


- 1. Worst case Duty cycle = on time/100 milliseconds = (2.890*26+2.167)/100=0.77307
- 2. Worst case Duty cycle correction factor = 20*log (Duty cycle) = -2.236dB
- 3. DH5 has the highest duty cycle worst case and is reported.
- 4. The average levels were calculated from the peak level corrected with duty cycle correction factor (-2.236dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

Please refer to following diagram for individual

Below 1GHz

Horizontal:

(-	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
_			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Datactor	cm	degree	Comment
-	1		38.3462	14.67	13.95	28.62	40.00	-11.38	peak			
_	2	*	65.8031	19.13	11.85	30.98	40.00	-9.02	peak			
_	3		131.2965	17.72	13.30	31.02	43.50	-12.48	peak			
_	4		193.7728	17.69	10.70	28.39	43.50	-15.11	peak			
(]	5	,	308.9126	14.62	13.62	28.24	46.00	-17.76	peak			
1	6	,	533.8321	13.83	18.18	32.01	46.00	-13.99	peak			

Vertical:

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		34.8823	13.93	13.51	27.44	40.00	-12.56	peak			
2		49.8814	13.84	13.71	27.55	40.00	-12.45	peak			
3		96.4362	23.37	10.31	33.68	43.50	-9.82	peak			
4		145.8611	21.92	14.25	36.17	43.50	-7.33	peak			
5	*	287.9904	29.70	13.09	42.79	46.00	-3.21	peak			
6		378.5843	13.55	15.36	28.91	46.00	-17.09	peak			

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

2. Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK) and the worst case Mode (Lowest channel and GFSK) was submitted only.

Page 46 of 60

Above 1GHz

EUT:	Soundbar speaker	Model No.:	A12C
Temperature:	20 ℃	Relative Humidity:	48%
		Test By:	Eileen Liu

All the modulation modes have been tested, and the worst result was report as below:

Test Mo	ode: π/4 DQPS	SK TX Lo)W						
Freq (MHz)	Read Level (dBuV/m)	Polar (H/V)	Antenna Factor (dB/m)	Cable loss(dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804	42.51	V	33.95	10.18	34.26	52.38	74	21.62	PK
4804	/		/						AV
7206	/		/						
9608	T		1						
4804	43.41	Н	33.95	10.18	34.26	53.28	74	20.72	PK
4804	/		1						AV
7206	/		1						
9608	/	(.c)	1		(.ci)		(.c)		(.ci
Test Mo	ode: π/4 DQPS	SK TX M	id						
4882	43.56	V	33.93	10.2	34.29	53.49	74	20.51	PK
4882	1		1 ((.c.)		(.c.)	AV
7323			1						
9764	/		1						
4882	43.25	H	33.93	10.2	34.29	53.09	74	20.91	PK
4882	32.83	HO	33.93	10.2	34.29	42.67	54	11.33	AV
7323									
9764									
Test Mo	ode: π/4 DQPS	SK TX Hi	gh						
4960	42.53	V	33.98	10.22	34.25	52.48	74	21.52	PK
4960	1		1						AV
7440	1		1						
9920	1	1/20	1		(0)		(6)		1/20
4960	43.09	Н	33.98	10.22	34.25	53.04	74	20.96	PK
4960	1		1						AV
7440			1 (.)			(.c)		(.c)	
9920			1					***	

Note:

^{1,} Result = Read level + Antenna factor + cable loss-Amp factor
2, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Spurious Emission in Band edge

EUT:	Soundbar speaker	Model No.:	A12C
Temperature:	20 ℃	Relative Humidity:	48%
		Test By:	Eileen Liu

All the modulation modes have been tested, and the worst result was report as below:

Test mode: GF	SK Tx Hopp	ing							
Freq (MHz)	Read Level (dBuV/m)	Polar (H/V)	Antenna Factor (dB/m)	Cable loss (dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2390	44.47	V	27.62	3.92	34.97	41.04	74	32.96	PK
2390	/	V		-	<u> </u>	-			- /3
2390	44.60	Ŧ	27.62	3.92	34.97	41.17	74	32.83	PK
2390		H		1		-	-		
Test mode: GF	SK Tx Hopp	ing							
2483.5	44.98	>	27.89	4	34.97	40.90	74	33.10	PK
2483.5	<u> </u>	>		1					AV
2483.5	44.03	Н	27.89	4	34.97	40.95	74	33.05	PK
2483.5		Ŧ							

Note:

- 1, Result = Read level + Antenna factor + cable loss-Amp factor
- 2, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

EUT:	Soundbar speaker	Model No.:	A12C
Temperature:	20 ℃	Relative Humidity:	48%
		Test By:	Eileen Liu

All the modulation modes have been tested, and the worst result was report as below:

Test mode: π/-	Test mode: π/4 DQPSK Tx Hopping												
Freq (MHz)	Read Level (dBuV/m)	Polar (H/V)	Antenna Factor (dB/m)	Cable loss (dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark				
2390	44.19	V	27.62	3.92	34.97	40.76	74	33.24	PK				
2390		V				1	-	-					
2390	44.37	Ŧ	27.62	3.92	34.97	40.94	74	33.06	PK				
2390		Ŧ		-)	1							
Test mode: π/-	4 DQPSK Tx	Hopping											
2483.5	44.62	V	27.89	4	34.97	41.54	74	32.46	PK				
2483.5	(C))	V	(()			(, C)	-	(C)					
2483.5	44.30	Н	27.89	4	34.97	41.22	74	32.78	PK				
2483.5		Η				-							

Note:

- 1, Result = Read level + Antenna factor + cable loss-Amp factor
- 2, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Page 48 of 60

EUT:	Soundbar speaker	Model No.:	A12C
Temperature:	20 °C	Relative Humidity:	48%
	(0)	Test By:	Eileen Liu

All the modulation modes have been tested, and the worst result was report as below:

Test mode: Gl	FSK Tx Low								
Freq (MHz)	Read Level (dBuV/m)	Polar (H/V)	Antenna Factor (dB/m)	Cable loss (dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2390	44.30	V	27.62	3.92	34.97	40.87	74	33.13	PK
2390	(,	\ \ \ !		4 _X C)	-	54		AV
2390	44.32	Œ	27.62	3.92	34.97	40.89	74	33.11	PK
2390		Н					54		AV
Test mode: GI	FSK Tx High								
2483.5	44.47	٧	27.89	4	34.97	41.04	74	32.96	PK
2483.5		V		I			54		AV
2483.5	44.20	Н	27.89	4	34.97	40.77	74	33.23	PK
2483.5	(Н		+20)	1	54		AV

Note:

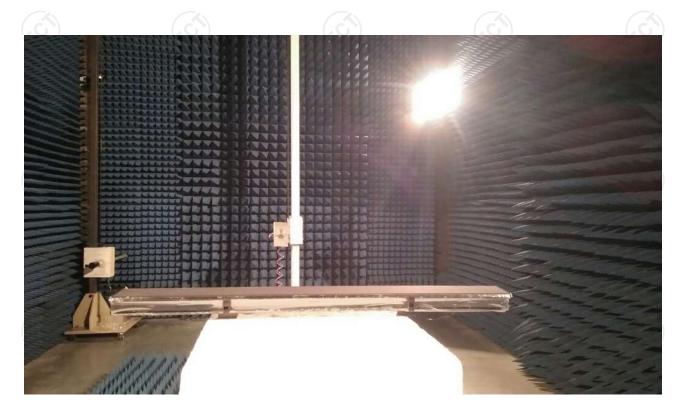
- 1, Result = Read level + Antenna factor + cable loss-Amp factor
- 2, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

EUT:	Soundbar speaker	Model No.:	A12C
Temperature:	20 ℃	Relative Humidity:	48%
		Test By:	Eileen Liu

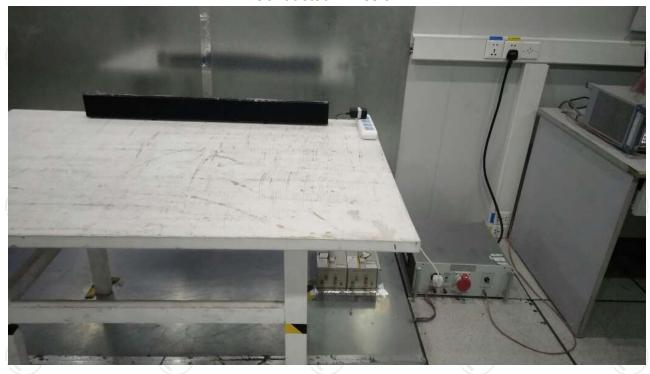
All the modulation modes have been tested, and the worst result was report as below:

Test mode: π/4 DQPSK Tx Low											
Freq (MHz)	Read Level (dBuV/m)	Polar (H/V)	Antenna Factor (dB/m)	Cable loss (dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark		
2390	44.03	>	27.62	3.92	34.97	40.60	74	33.40	PK		
2390		V			K		54		AV		
2390	44.60	Н	27.62	3.92	34.97	41.17	74	32.83	PK		
2390		I					54		AV		
Test mode: π/4 DQPSK Tx High											
2483.5	44.13	V	27.89	4	34.97	40.70	74	33.30	PK		
2483.5		٧					54		AV		
2483.5	44.04	Н	27.89	4	34.97	40.61	74	33.39	PK		
2483.5		Н					54		AV		

Note


- 1, Result = Read level + Antenna factor + cable loss-Amp factor
- 2, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Appendix A: Photographs of Test Setup Product: Soundbar speaker


Product: Soundbar speaker Model: A12C Radiated Emission

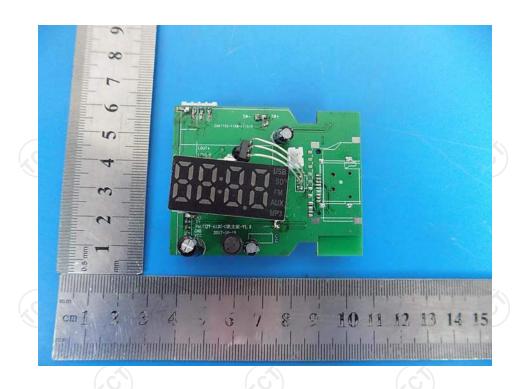
Conducted Emission

Appendix B: Photographs of EUT Product: Soundbar speaker Model: A12C

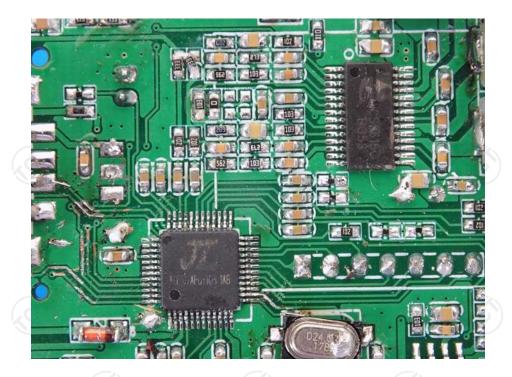
External Photos

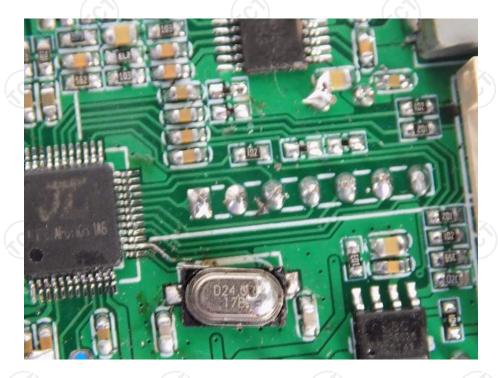


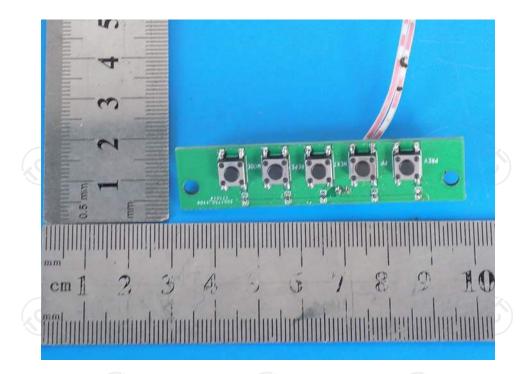
Product: Soundbar speaker Model: A12C Internal Photos

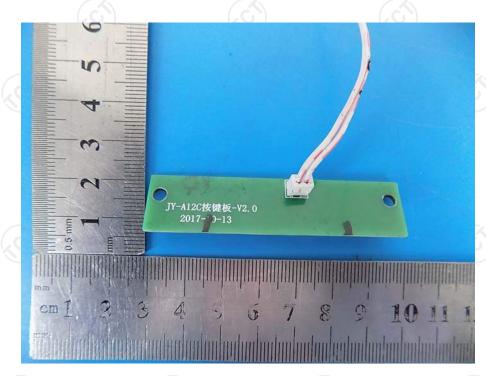


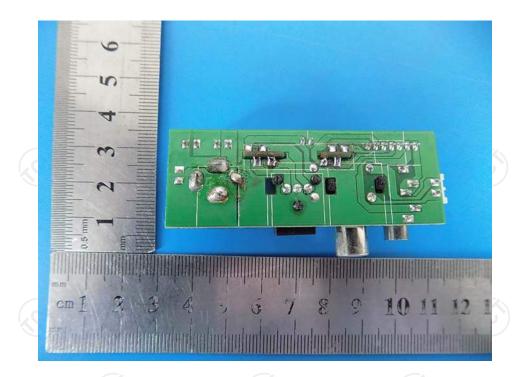


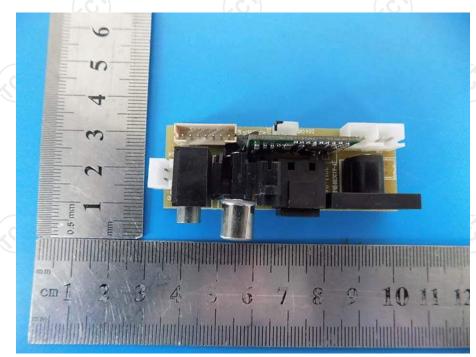












****END OF REPORT****