

SAR TEST REPORT

Applicant: PO FUNG ELECTRONIC (HK) INTERNATONAL GRO UP COMPANY LIMITED

Address: Room 1508, 15/F, Office Tower II, Grand Plaza, 625 Nathan Road, Kowloon, Hong Kong

FCC ID: 2AJGM-V12D

Product Name: Digital Radio

Standard(s): 47 CFR Part 2(2.1093)

The above device has been tested and found compliant with the requirement of the relative standards by China Certification ICT Co., Ltd (Dongguan)

Report Number:2403V65915E-20Date Of Issue:2024/09/20Reviewed By:Ken ZongTitle:SAR EngineerApproved By:Karl GongTitle:SAR EngineerTitle:SAR EngineerTitle:SAR EngineerTitle:SAR EngineerTitle:SAR EngineerTitle:SAR EngineerTitle:SAR EngineerTitle:SAR Engineer

No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China Tel: +86-769-82016888

SAR TEST RESULTS SUMMARY

On which Francisco and Dan da	Highest Rep (W	Limits				
Operation Frequency Bands	Head Face Up (Gap 25mm)	Body-Worn (Gap 0mm)	(W/kg)			
PTT(410-469MHz)	0.92	2.44	8.0			
Maximum Simultaneous Transmission SAR						
Items	Head Face Up (Gap 25mm)	Body-Worn (Gap 0mm)	Limits			
Sum SAR(W/kg)	/	/	8.0			
EUT Received Date:	EUT Received Date: 2024/07/23					
Tested Date:	2024/07/26					
Tested Result:	Pass					

Test Facility

The Test site used by China Certification ICT Co., Ltd (Dongguan) to collect test data is located on the No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 442868, the FCC Designation No. : CN1314.

Declarations

China Certification ICT Co., Ltd (Dongguan) is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol "▲". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk " \star ".

CONTENTS

DOCUMENT REVISION HISTORY
1. GENERAL INFORMATION6
1.1 PRODUCT DESCRIPTION FOR DEVICE UNDER TEST (DUT)6
1.2 TEST SPECIFICATION, METHODS AND PROCEDURES7
1.3 SAR LIMITS
2. SAR MEASUREMENT SYSTEM9
3. EQUIPMENT LIST AND CALIBRATION16
3.1 EQUIPMENTS LIST & CALIBRATION INFORMATION16
4. SAR MEASUREMENT SYSTEM VERIFICATION
4.1 LIQUID VERIFICATION17
4.2 System Accuracy Verification18
4.3 SAR SYSTEM VALIDATION DATA19
5. EUT TEST STRATEGY AND METHODOLOGY
5.1 TEST POSITIONS FOR FRONT-OF-FACE CONFIGURATIONS
5.2 TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS
5.3 TEST DISTANCE FOR SAR EVALUATION21
5.4 SAR EVALUATION PROCEDURE22
6. CONDUCTED OUTPUT POWER MEASUREMENT
6.1 TEST PROCEDURE
6.2 MAXIMUM TARGET OUTPUT POWER23
6.3 TEST RESULTS:
7. SAR MEASUREMENT RESULTS
7.1 SAR TEST DATA26
8. SAR MEASUREMENT VARIABILITY
9. DUT HOLDER PERTURBATIONS
10. SAR SIMULTANEOUS TRANSMISSION DESCRIPTION
10.1 Simultaneous Transmission:
11. SAR PLOTS
APPENDIX A MEASUREMENT UNCERTAINTY
APPENDIX B EUT TEST POSITION PHOTOS40
APPENDIX C CALIBRATION CERTIFICATES

Page 4 of 61

Report No.: 2403V65915E-20

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Data of Revision
1.0	2403V65915E-20	Original Report	2024/09/20

1. GENERAL INFORMATION

1.1 Product Description for Device under Test (DUT)

EUT Name:	Digital Radio
EUT Model:	NA-V12D
Multiple Models:	GT68PRO, AD-V12D, AT-V12D, BD-V12A, BD-V12B, BD-V12C
Device Type:	Portable
Exposure Category:	Occupational/Controlled Exposure
Antenna Type(s):	Integral Antenna
Body-Worn Accessories:	Belt Clip
Face-Head Accessories:	None
Operation Mode:	PTT_FM/PTT_GMSK
Frequency Band:	PTT_FM/PTT_GMSK: 410-469MHz
RF Conducted Output Power:	PTT_FM/PTT_GMSK(410-469MHz): 32.72 dBm
Power Source:	DC 3.7V from Rechargeable Battery
Serial Number:	20TM-1
Normal Operation:	Face Up and Body

Note:

The series product, models GT68PRO, AD-V12D, AT-V12D, BD-V12A, BD-V12B, BD-V12C and NA-V12D are electrically identical, the model NA-V12D was fully tested. The differences between them please refer to the declaration letter for details.

1.2 Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE 1528-2013, the following FCC Published RF exposure KDB procedures:

KDB 447498 D01 General RF Exposure Guidance v06 KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 KDB 865664 D02 RF Exposure Reporting v01r02 KDB 643646 D01 SAR Test for PTT Radios v01r03

TCB Workshop April 2019: RF Exposure Procedures

1.3 SAR Limits

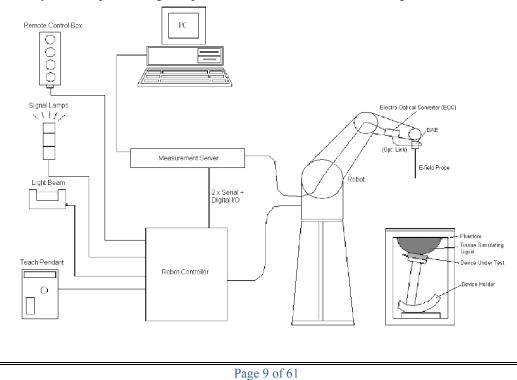
FCC Limit

	SAR (W/kg)		
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)	
Spatial Average (averaged over the whole body)	0.08	0.4	
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0	
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0	

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

Occupational /Controlled Exposure environments Spatial Peak limit 8.0W/kg for 1g SAR applied to the EUT.


2. SAR MEASUREMENT SYSTEM

These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG) which is the Fifth generation of the system shown in the figure hereinafter:

DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal application, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 professional operating system and the DASY52 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

DASY5 Measurement Server

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz Intel ULV Celeron, 128MB chip-disk and 128MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16 bit AD-converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical

processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized point out, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Data Acquisition Electronics

The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

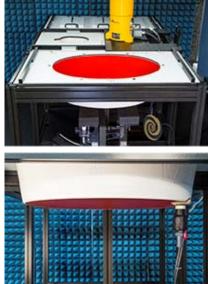
The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

ES3DV2 E-Field Probes

Frequency	10 MHz - 4 GHz Linearity: ± 0.2 dB (30 MHz to 4 GHz)
Directivity	 ± 0.2 dB in TSL (rotation around probe axis) ± 0.3 dB in TSL (rotation normal to probe axis)
Dynamic Range	5 μ W/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 2.0 mm
Application	General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones
Compatibility	DASY3, DASY4, DASY52, DASY6, DASY8 SAR, EASY6, EASY4/MRI

Calibration Frequency Points for ES3DV2 E-Field Probes SN: 3019 Calibrated: 2024/2/8


Calibration	Frequency Range(MHz)		Conversion Factor		
Frequency Point(MHz)	From	То	X	Y	Z
150 Head	100	200	7.38	7.38	7.38
150 Body	100	200	7.15	7.15	7.15
450 Head	350	550	6.76	6.76	6.76

ELI Phantom

The ELI phantom is intended for compliance testing of handheld and bodymounted wireless devices in the frequency range of 30MHz to 6 GHz. ELI is fully compatible with the latest draft of the use of all known tissue simulating liquids. ELI has been optimized for performance and can be integrated into a SPEAG standard phantom table. A cover is provided to prevent evaporation of water and changes in liquid parameters. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points.

The phantom can be used with the following tissue simulating liquids:

- Sugar-water-based liquids can be left permanently in the phantom. Always cover the liquid when the system is not in use to prevent changes in liquid parameters due to water evaporation.
- DGBE-based liquids should be used with care. As DGBE is a softener for most plastics, the liquid should be taken out of the phantom, and the phantom should be dried when the system is not in use (desirable at least once a week).

• Do not use other organic solvents without previously testing the solvent resistivity of the phantom.

Approximately 25 liters of liquid is required to _fill the ELI phantom

Robots

The DASY5 system uses the high precision industrial robot. The robot offers the same features important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchrony motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

The above mentioned robots are controlled by the Staubli CS7MB robot controllers. All information regarding the use and maintenance of the robot arm and the robot controller is contained on the CDs delivered along with the robot. Paper manuals are available upon request direct from Staubli.

SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 1.4 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 15mm 2 step integral, with 1.5mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

Area Scan Parameters extracted from KDB 865664 D01 SA	AR Measurement 100 MHz to 6 GHz
---	---------------------------------

	\leq 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$	
	≤ 2 GHz: ≤ 15 mm 2 - 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Step 3: Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the DASY5 software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10mm, with the side length of the 10g cube is 21.5mm.

			\leq 3 GHz	> 3 GHz
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*	
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: Δz _{Zoom} (n)		≤ 5 mm	3 - 4 GHz: ≤ 4 mm 4 - 5 GHz: ≤ 3 mm 5 - 6 GHz: ≤ 2 mm
	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	$3 - 4 \text{ GHz:} \le 3 \text{ mm}$ $4 - 5 \text{ GHz:} \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$
	grid $\Delta z_{Zoom}(n \ge 1)$: between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1) \text{ mm}$	
Minimum zoom scan volume x, y, z		≥ 30 mm	$3 - 4 \text{ GHz} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz} \ge 22 \text{ mm}$	

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

1528-2013 for details

When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 7 x7 x 7 (5mmx5mmx5mm) providing a volume of 30 mm in the X & Y & Z axis.

Tissue Dielectric Parameters for Head and Body Phantoms

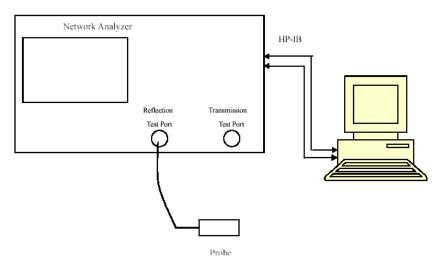
The head tissue dielectric parameters recommended by the IEEE 1528-2013

Recommended Tissue Dielectric Parameters for Head liquid

Table 3—Target dielectric properties of head tissue-equivalent material in the 300 MHz to 6000 MHz frequency range

Frequency	Relative permittivity	Conductivity (σ)	
(MHz)	(£'r)	(S/m)	
300	45.3	0.87	
450	43.5	0.87	
750	41.9	0.89	
835	41.5	0.90	
900	41.5	0.97	
1450	40.5	1.20	
1500	40.4	1.23	
1640	40.2	1.31	
1750	40.1	1.37	
1800	40.0	1.40	
1900	40.0	1.40	
2000	40.0	1.40	
2100	39.8	1.49	
2300	39.5	1.67	
2450	39.2	1.80	
2600	39.0	1.96	
3000	38.5	2.40	
3500	37.9	2.91	
4000	37.4	3.43	
4500	36.8	3.94	
5000	36.2	4.45	
5200	36.0	4.66	
5400	35.8	4.86	
5600	35.5	5.07	
5800	35.3	5.27	
6000	35.1	5.48	

NOTE—For convenience, permittivity and conductivity values at some frequencies that are not part of the original data from Drossos et al. [B60] or the extension to 5800 MHz are provided (i.e., the values shown in italics). These values were linearly interpolated between the values in this table that are immediately above and below these values, except the values at 6000 MHz that were linearly extrapolated from the values at 3000 MHz and 5800 MHz.


3. EQUIPMENT LIST AND CALIBRATION

3.1 Equipments List & Calibration Information

Equipment	Model	S/N	Calibration Date	Calibration Due Date
DASY5 Test Software	DASY52.8	N/A	NCR	NCR
DASY5 Measurement Server	DASY5 5.0.28	1123	NCR	NCR
Data Acquisition Electronics	DAE4	1493	2024/3/27	2025/3/26
E-Field Probe	ES3DV2	3019	2024/2/8	2025/2/7
Mounting Device	MD4HHTV5	BJPCTC0152	NCR	NCR
Oval Flat Phantom	ELI V5.0	1078	NCR	NCR
Dipole, 450MHz	D450V3	1096	2022/11/17	2025/11/16
Simulated Tissue 450 MHz Head	TS-450	2309045001	Each Time	/
Network Analyzer	8753B	2828A00170	2023/10/17	2024/10/16
Dielectric assessment kit	1319	SM DAK 040 CA	NCR	NCR
MXG Vector Signal Generator	N5182B	MY51350144	2024/4/1	2025/3/31
Power Meter	ML2495A	1106009	2023/8/4	2024/8/3
Power Amplifier	ZHL-5W-202-S+	416402204	NCR	NCR
Directional Coupler	441493	520Z	NCR	NCR
Attenuator	20dB, 100W	LN749	NCR	NCR
Attenuator	6dB, 150W	2754	NCR	NCR
Thermometer	DTM3000	3892	2024/4/22	2025/4/21
Thermohygrometer	HTC-1	N/A	2024/4/22	2025/4/21
Spectrum Analyzer	FSV40	101589	2023/10/11	2024/10/10

4. SAR MEASUREMENT SYSTEM VERIFICATION

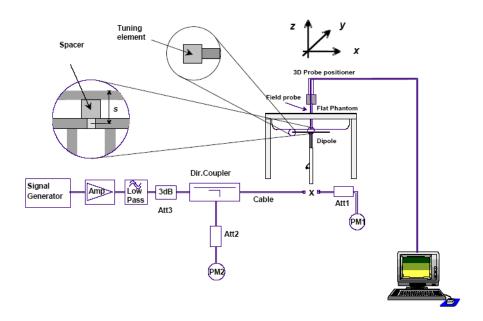
4.1 Liquid Verification

Liquid Verification Setup Block Diagram

Liquid Verification Results

Frequency	LinuidTone	Liquid Parameter		Target Value		Delta (%)		Tolerance
(MHz)	LiquidType	£ _r	0 (S/m)	ε _r	0 (S/m)	$\Delta \epsilon_r$	ΔO	(%)
400	Simulated Tissue 450 MHz Head	44.848	0.838	44.1	0.87	1.7	-3.68	±5
410	Simulated Tissue 450 MHz Head	44.507	0.845	43.98	0.87	1.2	-2.87	±5
420	Simulated Tissue 450 MHz Head	44.459	0.849	43.86	0.87	1.37	-2.41	±5
430	Simulated Tissue 450 MHz Head	44.121	0.856	43.74	0.87	0.87	-1.61	±5
440	Simulated Tissue 450 MHz Head	44.092	0.864	43.62	0.87	1.08	-0.69	±5
450	Simulated Tissue 450 MHz Head	43.896	0.868	43.5	0.87	0.91	-0.23	±5
460	Simulated Tissue 450 MHz Head	43.734	0.874	43.45	0.87	0.65	0.46	±5
470	Simulated Tissue 450 MHz Head	43.564	0.878	43.39	0.87	0.4	0.92	±5
480	Simulated Tissue 450 MHz Head	43.456	0.887	43.34	0.87	0.27	1.95	±5

*Liquid Verification above was performed on2024/07/26.


4.2 System Accuracy Verification

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The spacing distances in the System Verification Setup Block Diagram is given by the following:

- a) $s = 15 \text{ mm} \pm 0.2 \text{ mm}$ for 300 MHz $\leq f \leq 1 000 \text{ MHz}$;
- b) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for 1 000 MHz $< f \le 3$ 000 MHz;
- c) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for 3 000 MHz < f ≤ 6 000 MHz.

System Verification Setup Block Diagram

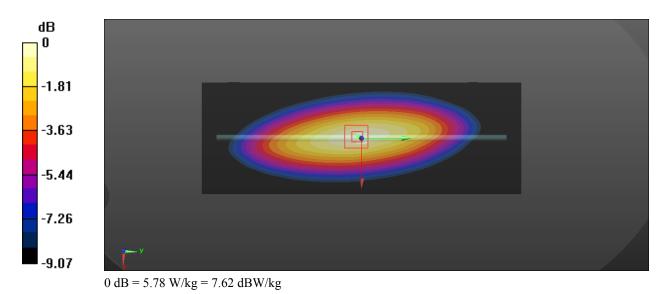
System Accuracy Check Results

Date	Frequency Band	Liquid Type	Input Power (W)	Measured SAR (W/kg)		Target Value (W/kg)	Delta (%)	Tolerance (%)
2024/07/26	450 MHz	Simulated Tissue 450 MHz Head	1	1g	4.68	4.56	2.63	±10

4.3 SAR SYSTEM VALIDATION DATA

System Performance 450 MHz Head was performed on 2024/07/26

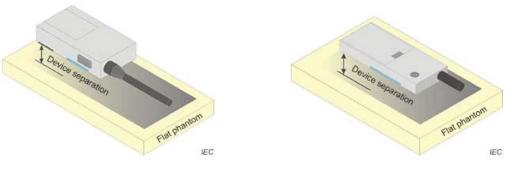
DUT: Dipole 450 MHz; Type: D450V3; Serial: 1096


Communication System: CW; Frequency: 450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 450 MHz; σ = 0.868 S/m; ϵ_r = 43.896; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV2 SN3019; ConvF(6.76, 6.76, 6.76) @ 450 MHz; Calibrated: 2024/2/8
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1493; Calibrated: 2024/3/27
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1078
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.12 (7470)

Area Scan (7x21x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) =5.47 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 74.15 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 7.68 W/kg SAR(1 g) = 4.68W/kg; SAR(10 g) = 3.17 W/kg Maximum value of SAR (measured) = 5.78 W/kg


5. EUT TEST STRATEGY AND METHODOLOGY

5.1 Test positions for Front-of-face configurations

Passive body-worn and audio accessories generally do not apply to the head SAR of PTT radios. Head SAR is measured with the front surface of the radio positioned at 2.5 cm parallel to a flat phantom. A phantom shell thickness of 2 mm is required. When the front of the radio has a contour or non-uniform surface with a variation of 1.0 cm or more, the average distance of such variations is used to establish the 2.5 cm test separation from the phantom.

b) Two-way radios

5.2 Test positions for body-worn and other configurations

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

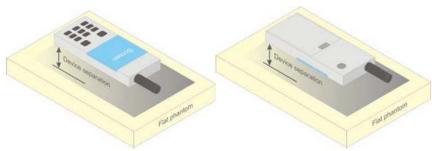


Figure 5 – Test positions for body-worn devices

5.3 Test Distance for SAR Evaluation

In this case the DUT(Device Under Test) is set directly against the phantom, the test distance is 0mm for Body Back mode; for Face Up mode the distance is 25mm.

5.4 SAR Evaluation Procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.

Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or radiating structures of the EUT, the horizontal grid spacing was 15 mm x 15 mm, and the SAR distribution was determined by integrated grid of 1.5mm x 1.5mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.

Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages.

All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

6. CONDUCTED OUTPUT POWER MEASUREMENT

6.1 Test Procedure

The RF output of the transmitter was connected to the input of the Spectrum Analyzer through sufficient attenuation.

The Spectrum Analyzer setting:

RBW	VBW
100 kHz	300 kHz

6.2 Maximum Target Output Power

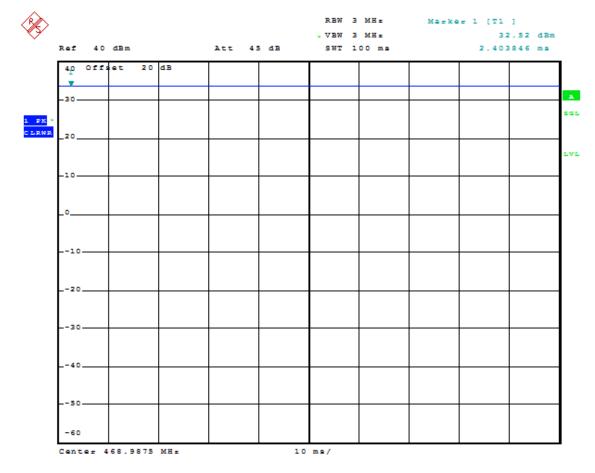
Мос	le	Max. tune-up tolerance power limit for Production(dBm)		
DTT(410 460MHz)	FM_12.5kHz	33		
PTT(410-469MHz)	GMSK_12.5kHz	33		

6.3 Test Results:

Test Mo	de	Frequency (MHz)	Output Power(dBm)
		410.0125	32.53
		424.0125	32.58
	12.5 kHz 454	439.5	32.72
		454.9875	32.65
РТТ		468.9875	32.62
(410-469MHz)		410.0125	32.51
		424.0125	32.63
	GMSK 12.5kHz	439.5	32.69
	12,58112	454.9875	32.66
		468.9875	32.57

Note:

Per KDB 447498 D01, the frequency range of PTT (410-469MHz), according to the following formula Calculate Nc is 5.


KDB procedures, the following should be applied to determine the number of required test channels. The test channels should be evenly spread across the transmission frequency band of each wireless mode.¹⁴

$$N_{\rm c} = Round \left\{ \left[100 (f_{\rm high} - f_{\rm low}) / f_{\rm c} \right]^{0.5} \times (f_{\rm c} / 100)^{0.2} \right\},\$$

where

- N_c is the number of test channels, rounded to the nearest integer,
- *f*_{high} and *f*_{low} are the highest and lowest channel frequencies within the transmission band,
- f_c is the mid-band channel frequency,
- all frequencies are in MHz.

Note: GMSK mode duty cycle is 100%, as shown below

Comment: ProjectNo.:2403V65915E Tester:Ken Date: 26.JUL.2024 15:25:28

Antennas Location:

7. SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation.

7.1 SAR Test Data

Environmental Conditions

Temperature:	22.9-24.1°C
Relative Humidity:	62%
ATM Pressure:	100.8 kPa
Test Date:	2024/07/26

Testing was performed by Carl Zong

Test Results:

PTT(410~469MHz):

Test Mode			Max.	Maximum	1 g SAR Value(W/kg)					
		Frequency (MHz)	Meas. Power (dBm)	output Power(dBm)	Power Scaled Factor	Meas. SAR	PTT 50% Factor	Scaled SAR	Plot	
	410.0125	/	/	/	/	/	/	/		
	EM	424.0125	/	/	/	/	/	/	/	
	FM 12.5 kHz	439.5	/	/	/	/	/	/	/	
	1 2 .0 KHZ	454.9875	/	/	/	/	/	/	/	
Face Up		468.9875	32.62	33	1.091	1.68	0.84	0.92	1#	
(25 mm)	GMSK 12.5 kHz	410.0125	/	/	/	/	/	/	/	
		424.0125	/	/	/	/	/	/	/	
		439.5	/	/	/	/	/	/	/	
		454.9875	/	/	/	/	/	/	/	
		468.9875	32.57	33	1.104	1.61	0.805	0.89	2#	
		410.0125	32.53	33	1.114	2.16	1.08	1.2	3#	
		424.0125	32.58	33	1.102	2.91	1.455	1.6	4#	
	FM 12.5 kHz	439.5	32.72	33	1.067	3.26	1.63	1.74	5#	
	12.5 KHZ	454.9875	32.65	33	1.084	4.26	2.13	2.31	6#	
Body Back		468.9875	32.62	33	1.091	4.47	2.235	2.44	7#	
(0 mm)		410.0125	/	/	/	/	/	/	/	
	CMCM	424.0125	/	/	/	/	/	/	/	
	GMSK 12.5 kHz	439.5	/	/	/	/	/	/	/	
	14.3 KIIL	454.9875	/	/	/	/	/	/	/	
		468.9875	32.57	33	1.104	4.23	2.115	2.33	8#	

Pre-scan all 5 Channels, the peak SAR located on 468.9875MHz for Face Up mode and Body Back mode,

Note:

1. When the 1-g SAR is \leq 3.5W/kg, testing for other channels are optional.

2. KDB 447498 D01 - A duty factor of 50% should be applied to determine compliance for radios with maximum operating duty factors \leq 50%. The 50% duty factor only applies to exposure conditions where the radio operates with a mechanical PTT button.

3. The whole antenna and radiating structures that may contribute to the measured SAR or influence the SAR distribution has been included in the area scan.

8. SAR MEASUREMENT VARIABILITY

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

The Highest Measured SAR Configuration in Each Frequency Band

Head(Face Up)

SAR probe			Meas. SA	R (W/kg)	Largest to
calibration point	Freq.(MHz)	EUT Position	Original	Repeated	Smallest SAR Ratio
/	/	/	/	/	/

Body(Body Back)

SAR probe		Freq.(MHz) EUT Position		Meas. SAR (W/kg)		
calibration point	rieq.(MHZ)	EUT Position	Original Repeated	Smallest SAR Ratio		
450MHz (350-550MHz)	468.9875	Body Back	4.47	4.41	1.01	

Note:

1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.

2. The measured SAR results **do not** have to be scaled to the maximum tune-up tolerance to determine if repeated measurements are required.

3. SAR measurement variability must be assessed for each frequency band, which is determined by the **SAR probe calibration point and tissue-equivalent medium** used for the device measurements.

Note: The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

9. DUT HOLDER PERTURBATIONS

In accordance with TCB workshop October 2016:

1) SAR perturbation due to test device holders, depending on antenna locations, buttons locations on phones or device, form factor (e.g. dongles etc.), the measured SAR could be influenced by the relative positions of the test device and its holder

2) SAR measurement standards have included protocols to evaluate this with a flat phantom, with and without the device holder

3) When the highest reported SAR of an antenna is > 1.2 W/kg, holder perturbation verification is required for each antenna, using the highest SAR configuration among all applicable frequency bands in the same exact device and holder positions used for head and body SAR measurements; i.e. same device/button locations in the holder

Per IEEE 1528: 2013/Annex E/E.4.1.1: Device holder perturbation tolerance for a specific test device: Type B

When it is unknown if a device holder perturbs the fields of a test device, the SAR uncertainty shall be

assessed with a flat phantom (see Clause 5) by comparing the SAR with and without the device holder according to the following tests:

The SAR tolerance for device holder disturbance is computed using Equation (E.21) and entered in the

corresponding row of the appropriate uncertainty table with an assumed rectangular probability distribution and $vi = \infty$ degrees of freedom:

$$SAR_{\text{tolerance}}[\%] = 100 \times \left(\frac{SAR_{\text{w/ holder}} - SAR_{\text{w/o holder}}}{SAR_{\text{w/o holder}}}\right)$$
(E.21)

The Highest Measured SAR Configuration among all applicable Frequency Band

		Meas. S	SAR (W/kg)	The Device holder perturbation uncertainty	
Freq.(MHz)	EUT Position	With holder	Without holder		
468.9875	Body Back	6.42	6.34	1.3%	

10. SAR SIMULTANEOUS TRANSMISSION DESCRIPTION

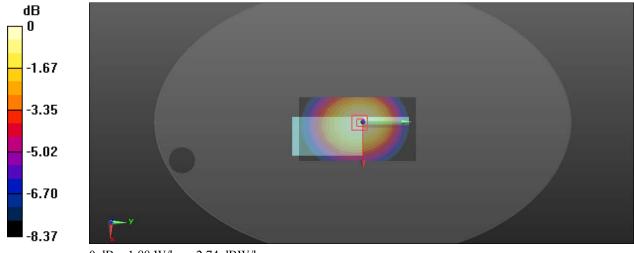
10.1 Simultaneous Transmission:

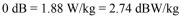
Note: There is no multiple transmitters for the product, so simultaneous transmission need not to evaluate.

11. SAR PLOTS

Plot 1#: FM 12.5kHz_468.9875MHz_Face Up

DUT: Digital Radio; Type: NA-V12D; Serial: 20TM-1


Communication System: UID 0, FM (0); Frequency: 468.988 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 468.988 MHz; $\sigma = 0.878$ S/m; $\epsilon_r = 43.581$; $\rho = 1000$ kg/m³ Phantom section: Flat Section


DASY5 Configuration:

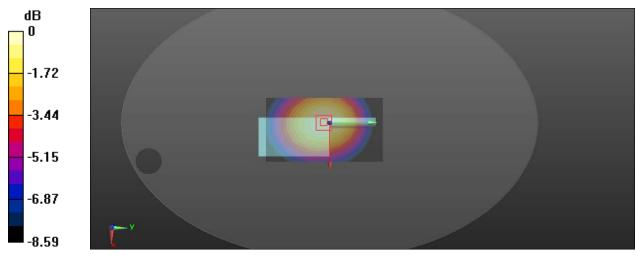
- Probe: ES3DV2 SN3019; ConvF(6.76, 6.76, 6.76) @ 468.988 MHz; Calibrated: 2024/2/8
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1493; Calibrated: 2024/3/27
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1078
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.12 (7470)

Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.90 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 48.30 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 2.31 W/kg SAR(1 g) = 1.68 W/kg; SAR(10 g) = 1.24 W/kg Maximum value of SAR (measured) = 1.88 W/kg

Plot 2#: GMSK 12.5kHz_468.9875MHz_Face Up

DUT: Digital Radio; Type: NA-V12D; Serial: 20TM-1


Communication System: UID 0, GMSK (0); Frequency: 468.988 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 468.988 MHz; $\sigma = 0.878$ S/m; $\epsilon_r = 43.581$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV2 SN3019; ConvF(6.76, 6.76, 6.76) @ 468.988 MHz; Calibrated: 2024/2/8
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1493; Calibrated: 2024/3/27
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1078
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.12 (7470)

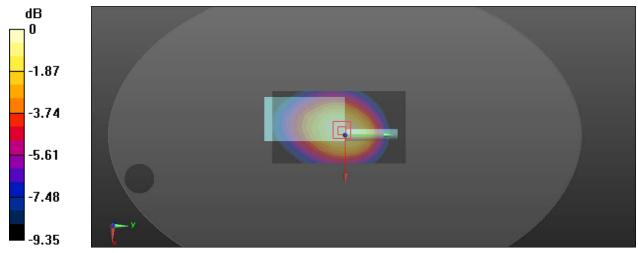
Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.80 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 45.47 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 2.23 W/kg SAR(1 g) = 1.61 W/kg; SAR(10 g) = 1.18 W/kg Maximum value of SAR (measured) = 1.81 W/kg

 $^{0 \}text{ dB} = 1.81 \text{ W/kg} = 2.58 \text{ dBW/kg}$

Plot 3#: FM 12.5kHz_410.0125MHz_Body Back

DUT: Digital Radio; Type: NA-V12D; Serial: 20TM-1


Communication System: UID 0, FM (0); Frequency: 410.012 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 410.012 MHz; σ = 0.845 S/m; ϵ_r = 44.507; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV2 SN3019; ConvF(6.76, 6.76, 6.76) @ 410.012 MHz; Calibrated: 2024/2/8
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1493; Calibrated: 2024/3/27
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1078
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.12 (7470)

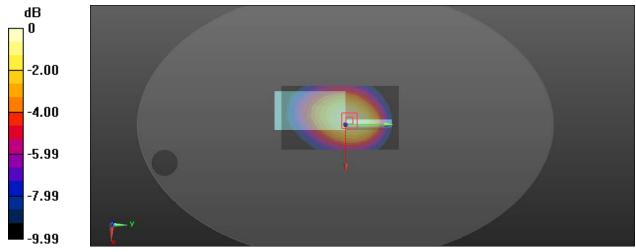
Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.45 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 54.89 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 3.08 W/kg SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.53 W/kg Maximum value of SAR (measured) = 2.46 W/kg

 $^{0 \}text{ dB} = 2.46 \text{ W/kg} = 3.91 \text{ dBW/kg}$

Plot 4#: FM 12.5kHz_424.0125MHz_Body Back

DUT: Digital Radio; Type: NA-V12D; Serial: 20TM-1


Communication System: UID 0, FM (0); Frequency: 424.012 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 424.012 MHz; σ = 0.852 S/m; ϵ_r = 44.323; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV2 SN3019; ConvF(6.76, 6.76, 6.76) @ 424.012 MHz; Calibrated: 2024/2/8
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1493; Calibrated: 2024/3/27
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1078
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.12 (7470)

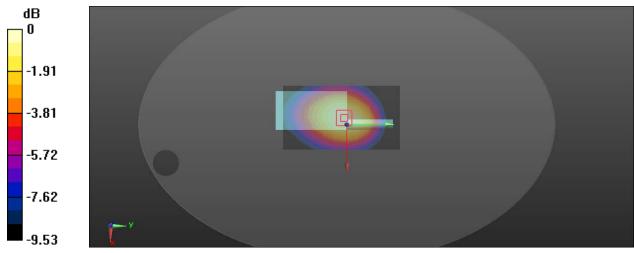
Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.43 W/kg

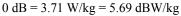
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 61.42 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 4.14 W/kg SAR(1 g) = 2.91 W/kg; SAR(10 g) = 2.04 W/kg Maximum value of SAR (measured) = 3.29 W/kg

 $^{0 \}text{ dB} = 3.29 \text{ W/kg} = 5.17 \text{ dBW/kg}$

Plot 5#: FM 12.5kHz_439.5MHz_Body Back

DUT: Digital Radio; Type: NA-V12D; Serial: 20TM-1


Communication System: UID 0, FM (0); Frequency: 439.5 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 439.5 MHz; $\sigma = 0.864$ S/m; $\epsilon_r = 44.093$; $\rho = 1000$ kg/m³ Phantom section: Flat Section


DASY5 Configuration:

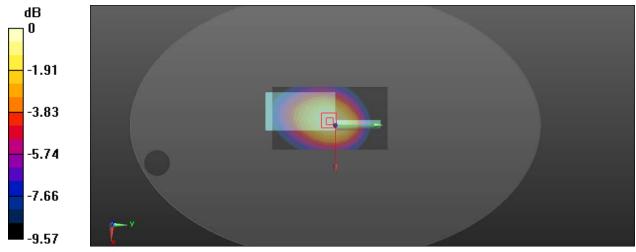
- Probe: ES3DV2 SN3019; ConvF(6.76, 6.76, 6.76) @ 439.5 MHz; Calibrated: 2024/2/8
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1493; Calibrated: 2024/3/27
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1078
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.12 (7470)

Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.83 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 64.91 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 4.67 W/kg SAR(1 g) = 3.26 W/kg; SAR(10 g) = 2.29 W/kg Maximum value of SAR (measured) = 3.71 W/kg

Plot 6#: FM 12.5kHz_454.9875MHz_Body Back

DUT: Digital Radio; Type: NA-V12D; Serial: 20TM-1


Communication System: UID 0, FM (0); Frequency: 454.988 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 454.988 MHz; $\sigma = 0.871$ S/m; $\epsilon_r = 43.815$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV2 SN3019; ConvF(6.76, 6.76, 6.76) @ 454.988 MHz; Calibrated: 2024/2/8
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1493; Calibrated: 2024/3/27
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1078
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.12 (7470)

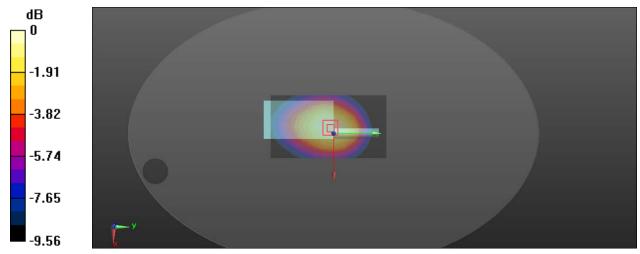
Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 4.83 W/kg

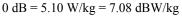
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 75.56 V/m; Power Drift = -0.20 dB Peak SAR (extrapolated) = 6.12 W/kg SAR(1 g) = 4.26 W/kg; SAR(10 g) = 2.99 W/kg Maximum value of SAR (measured) = 4.85 W/kg

 $^{0 \}text{ dB} = 4.85 \text{ W/kg} = 6.86 \text{ dBW/kg}$

Plot 7#: FM 12.5kHz_468.9875MHz_Body Back

DUT: Digital Radio; Type: NA-V12D; Serial: 20TM-1


Communication System: UID 0, FM (0); Frequency: 468.988 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 468.988 MHz; $\sigma = 0.878$ S/m; $\epsilon_r = 43.581$; $\rho = 1000$ kg/m³ Phantom section: Flat Section


DASY5 Configuration:

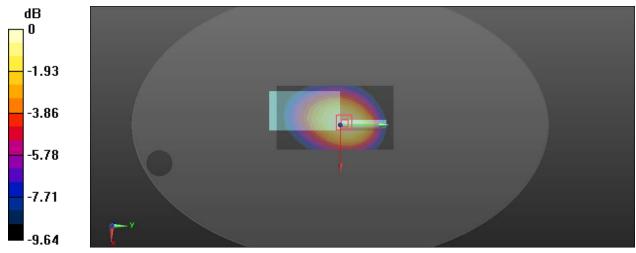
- Probe: ES3DV2 SN3019; ConvF(6.76, 6.76, 6.76) @ 468.988 MHz; Calibrated: 2024/2/8
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1493; Calibrated: 2024/3/27
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1078
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.12 (7470)

Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.23 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 77.32 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 6.42 W/kg SAR(1 g) = 4.47 W/kg; SAR(10 g) = 3.13 W/kg Maximum value of SAR (measured) = 5.10 W/kg

Plot 8#: GMSK 12.5kHz_468.9875MHz_Body Back

DUT: Digital Radio; Type: NA-V12D; Serial: 20TM-1


Communication System: UID 0, GMSK (0); Frequency: 468.988 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 468.988 MHz; $\sigma = 0.878$ S/m; $\epsilon_r = 43.581$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

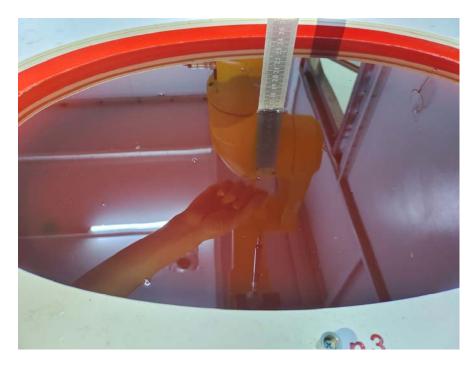
- Probe: ES3DV2 SN3019; ConvF(6.76, 6.76, 6.76) @ 468.988 MHz; Calibrated: 2024/2/8
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1493; Calibrated: 2024/3/27
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1078
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.12 (7470)

Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 4.79 W/kg

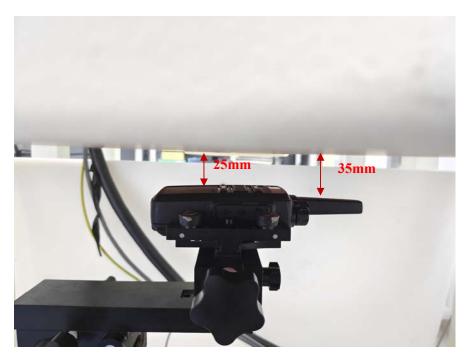
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 76.05 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 6.08 W/kg SAR(1 g) = 4.23 W/kg; SAR(10 g) = 2.97 W/kg Maximum value of SAR (measured) = 4.81 W/kg

 $^{0 \}text{ dB} = 4.81 \text{ W/kg} = 6.82 \text{ dBW/kg}$

APPENDIX A MEASUREMENT UNCERTAINTY


The uncertainty budget has been determined for the measurement system and is given in the following Table.

Measurement uncertainty evaluation for IEEE1528-2013 SAR test


Source of uncertainty	Tolerance/ uncertainty ± %	Probability distribution	Divisor	ci (1 g)	ci (10 g)	Standard uncertainty ± %, (1 g)	Standard uncertainty ± %, (10 g)
		Measuremer	nt system				
Probe calibration	6.55	N	1	1	1	6.3	6.3
Axial Isotropy	4.7	R	√3	1	1	2.7	2.7
Hemispherical Isotropy	9.6	R	√3	0	0	0.0	0.0
Boundary effect	1.0	R	√3	1	1	0.6	0.6
Linearity	4.7	R	√3	1	1	2.7	2.7
Detection limits	1.0	R	√3	1	1	0.6	0.6
Readout electronics	0.3	N	1	1	1	0.3	0.3
Response time	0.0	R	√3	1	1	0.0	0.0
Integration time	0.0	R	√3	1	1	0.0	0.0
RF ambientconditions – noise	1.0	R	√3	1	1	0.6	0.6
RF ambient conditions– reflections	1.0	R	√3	1	1	0.6	0.6
Probe positioner mech. Restrictions	0.8	R	√3	1	1	0.5	0.5
Probe positioning with respect to phantom shell	6.7	R	√3	1	1	3.9	3.9
Post-processing	2.0	R	√3	1	1	1.2	1.2
		Test sample	e related	•	•		
Test sample positioning	2.8	Ν	1	1	1	2.8	2.8
Device holder uncertainty	1.3	N	1	1	1	1.3	1.3
Drift of output power	5.0	R	√3	1	1	2.9	2.9
		Phantom ar	d set-up				
Phantom uncertainty (shape and thickness tolerances)	4.0	R	√3	1	1	2.3	2.3
Liquid conductivity target)	5.0	R	√3	0.64	0.43	1.8	1.2
Liquid conductivity meas.)	2.5	N	1	0.64	0.43	1.6	1.1
Liquid permittivity target)	5.0	R	√3	0.6	0.49	1.7	1.4
Liquid permittivity meas.)	2.5	N	1	0.6	0.49	1.5	1.2
Combined standard uncertainty		RSS				12.2	12.0
Expanded uncertainty 95 % confidence interval)						24.1	23.7

APPENDIX B EUT TEST POSITION PHOTOS

Liquid depth \geq 15cm

Face Up Setup Photo (25mm)

Body Back Setup Photo (0mm)

Report No.: 2403V65915E-20

APPENDIX C CALIBRATION CERTIFICATES

The Swis	s Accreditation Se	urich, Switzerland reditation Service (SAS) ervice is one of the sign the recognition of calibra	atories to the EA	creditation No.: SCS 0108
Client	BACL Shenzhen		Certificate No.	S-3019_Feb24
CAL	BRATION C	ERTIFICATE		
Object		ES3DV2 - SN:	3019	
Calibrati	on procedure(s)	QA CAL-01.v1 Calibration pro	0, QA CAL-12.v10, QA CAL-23.v6, 0 cedure for dosimetric E-field probes	QA CAL-25.v8
Calibrati	on date	February 08, 2	024	
All calibre	surements and the ations have been or	uncertainties with confiden	prational standards, which realize the physical ι are probability are given on the following pages a ratiory facility: environment temperature (22 ± 3) on)	and are part of the certificate.
Primary S	itandards	ID	Cal Date (Certificate No.)	Scheduled Ontiferenting
	ter NRP2	ID SN: 104778	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805)	Scheduled Calibration Mar-24
Power me Power ser	ter NRP2 hsor NRP-Z91	SN: 104778 SN: 103244	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804)	
Power me Power ser OCP DAK	ter NRP2 hsor NRP-Z91 (-3.5 (weighted)	SN: 104778 SN: 103244 SN: 1249	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 05-Oct-23 (OCP-DAK3.5-1249_Oct23)	Mar-24 Mar-24 Oct-24
Power me Power ser OCP DAK OCP DAK	ter NRP2 hsor NRP-Z91 (-3.5 (weighted) (-12	SN: 104778 SN: 103244 SN: 1249 SN: 1016	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 05-Oct-23 (OCP-DAK12-1016_Oct23)	Mar-24 Mar-24 Oct-24 Oct-24
Power me Power ser OCP DAK OCP DAK Reference	ter NRP2 hsor NRP-Z91 (-3.5 (weighted)	SN: 104778 SN: 103244 SN: 1249	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 05-Oct-23 (OCP-DAK12-1016_Oct23) 30-Mar-23 (No. 217-03809)	Mar-24 Mar-24 Oct-24 Oct-24 Mar-24
Power me Power ser OCP DAK OCP DAK Reference DAE4	ter NRP2 hsor NRP-Z91 (-3.5 (weighted) (-12	SN: 104778 SN: 103244 SN: 1249 SN: 1016 SN: CC2552 (20x)	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 05-Oct-23 (OCP-DAK12-1016_Oct23)	Mar-24 Mar-24 Oct-24 Oct-24
Power me Power ser OCP DAK OCP DAK Reference DAE4 Reference	eter NRP2 hsor NRP-291 (-3.5 (weighted) (-12 e 20 dB Attenuator	SN: 104778 SN: 103244 SN: 1249 SN: 1016 SN: CC2552 (20x) SN: 660	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 05-Oct-23 (OCP-DAK12-1016_Oct23) 30-Mar-23 (No. 217-03809) 16-Mar-23 (No. DAE4-660_Mar23) 03-Nov-23 (No. EX3-7349_Nov23)	Mar-24 Mar-24 Oct-24 Oct-24 Mar-24 Mar-24 Mar-24 Nov-24
Power me Power sei OCP DAK OCP DAK Reference DAE4 Reference Secondar Power me	Iter NRP2 Isor NRP-291 (-3.5 (weighted) (-12 20 dB Attenuator Probe EX3DV4 y Standards ter E4419B	SN: 104778 SN: 103244 SN: 1249 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 7349	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 05-Oct-23 (OCP-DAK12-1016_Oct23) 30-Mar-23 (No. 217-03809) 16-Mar-23 (No. DAE4-660_Mar23)	Mar-24 Mar-24 Oct-24 Oct-24 Mar-24 Mar-24 Mar-24
Power me Power sei OCP DAK OCP DAK Reference DAE4 Reference Secondar Power me Power ser	ter NRP2 nsor NRP-291 (-3.5 (weighted) (-12) 20 dB Attenuator Probe EX3DV4 y Standards ter E44198 isor E4412A	SN: 104778 SN: 103244 SN: 1249 SN: 1249 SN: C2552 (20x) SN: 660 SN: 7349 ID SN: GB41293874 SN: MY41498087	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 05-Oct-23 (OCP-DAK12-1016_Oct23) 30-Mar-23 (No. 217-03809) 16-Mar-23 (No. 217-03809) 16-Mar-23 (No. EX3-7349_Nov23) Os-Nov-23 (No. EX3-7349_Nov23) Check Date (In house) 06-Apr-16 (In house check Jun-22) 06-Apr-16 (In house check Jun-22)	Mar-24 Mar-24 Oct-24 Oct-24 Mar-24 Mar-24 Scheduled Check
Power me Power sei OCP DAK OCP DAK Reference DAE4 Reference Secondar Power me Power ser Power ser	Iter NRP2 sor NRP-291 (-3.5 (weighted) (-12 9 20 dB Attenuator 9 Probe EX3DV4 9 Standards ter E44198 1007 E4412A 1007 E4412A	SN: 104778 SN: 103244 SN: 1249 SN: 1249 SN: C2552 (20x) SN: 660 SN: 7349 ID SN: GB41293874 SN: MY41498087 SN: 000110210	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 05-Oct-23 (OCP-DAK12-1016_Oct23) 30-Mar-23 (No. 217-03809) 16-Mar-23 (No. 217-03809) 16-Mar-23 (No. EX3-7349_Nov23) 03-Nov-23 (No. EX3-7349_Nov23) Check Date (In house) 06-Apr-16 (In house check Jun-22) 06-Apr-16 (In house check Jun-22) 06-Apr-16 (In house check Jun-22)	Mar-24 Mar-24 Oct-24 Oct-24 Mar-24 Mar-24 Mar-24 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24
Power me Power sei OCP DAK OCP DAK Reference DAE4 Reference Secondar Power me Power ser Power ser Power ser	Iter NRP2 sor NRP-291 (-3.5 (weighted) (-12 20 dB Attenuator Probe EX3DV4 y Standards ter E44198 isor E44198 isor E4412A isor E4412A tor HP 8648C	SN: 104778 SN: 103244 SN: 103244 SN: 1249 SN: CC2552 (20x) SN: 660 SN: 7349 ID SN: GB41293874 SN: MY41496087 SN: MY41496087 SN: US3642U01700	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 05-Oct-23 (OCP-DAK12-1016_Oct23) 30-Mar-23 (No. 217-03809) 16-Mar-23 (No. 217-03809) 16-Mar-23 (No. EX3-7349_Nov23) 03-Nov-23 (No. EX3-7349_Nov23) Check Date (In house) 06-Apr-16 (In house check Jun-22) 06-Apr-16 (In house check Jun-22) 06-Apr-16 (In house check Jun-22) 06-Apr-16 (In house check Jun-22) 04-Aug-99 (In house check Jun-22)	Mar-24 Mar-24 Oct-24 Oct-24 Mar-24 Mar-24 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Jun-24
Power me Power sei OCP DAK OCP DAK Reference DAE4 Reference Secondar Power me Power ser Power ser Power ser Reference	Iter NRP2 sor NRP-291 (-3.5 (weighted) (-12 9 20 dB Attenuator 9 Probe EX3DV4 9 Standards ter E44198 1007 E4412A 1007 E4412A	SN: 104778 SN: 103244 SN: 1249 SN: 1249 SN: C2552 (20x) SN: 660 SN: 7349 ID SN: GB41293874 SN: MY41498087 SN: 000110210	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 05-Oct-23 (OCP-DAK12-1016_Oct23) 30-Mar-23 (No. 217-03809) 16-Mar-23 (No. 217-03809) 16-Mar-23 (No. EX3-7349_Nov23) 03-Nov-23 (No. EX3-7349_Nov23) Check Date (In house) 06-Apr-16 (In house check Jun-22) 06-Apr-16 (In house check Jun-22) 06-Apr-16 (In house check Jun-22)	Mar-24 Mar-24 Oct-24 Oct-24 Mar-24 Mar-24 Mar-24 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24
Power me Power sei OCP DAK OCP DAK Reference DAE4 Reference Secondar Power me Power ser Power ser Power ser	Iter NRP2 sor NRP-291 (-3.5 (weighted) (-12 20 dB Attenuator Probe EX3DV4 y Standards ter E44198 isor E44198 isor E4412A isor E4412A tor HP 8648C	SN: 104778 SN: 103244 SN: 103244 SN: 1249 SN: CC2552 (20x) SN: 660 SN: 7349 ID SN: GB41293874 SN: MY41496087 SN: MY41496087 SN: US3642U01700	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 05-Oct-23 (OCP-DAK12-1016_Oct23) 30-Mar-23 (No. 217-03809) 16-Mar-23 (No. 217-03809) 16-Mar-23 (No. EX3-7349_Nov23) 03-Nov-23 (No. EX3-7349_Nov23) Check Date (In house) 06-Apr-16 (In house check Jun-22) 06-Apr-16 (In house check Jun-22) 06-Apr-16 (In house check Jun-22) 04-Aug-99 (In house check Jun-22) 31-Mar-14 (In house check Oct-22)	Mar-24 Mar-24 Oct-24 Oct-24 Mar-24 Mar-24 Nov-24 Scheduled Check In house check: Jun-24 In house check: Jun-24
Power me Power sei OCP DAK OCP DAK Reference DAE4 Reference Secondar Power me Power ser Power ser Power ser Reference	Iter NRP2 Isor NRP-291 (-3.5 (weighted) (-12) 20 dB Attenuator Probe EX3DV4 y Standards Iter E44198 Isor E44198 Isor E4412A Isor E4412A Isor E4412A Isor E4412A Isor E4412A Isor E4412A	SN: 104778 SN: 103244 SN: 1249 SN: 1249 SN: 02552 (20x) SN: 660 SN: 7349 ID SN: GB41293874 SN: MY41496087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 05-Oct-23 (OCP-DAK12-1016_Oct23) 30-Mar-23 (No. 217-03809) 16-Mar-23 (No. 217-03809) 16-Mar-23 (No. EX3-7349_Nov23) 03-Nov-23 (No. EX3-7349_Nov23) Check Date (In house) 06-Apr-16 (In house check Jun-22) 06-Apr-16 (In house check Jun-22) 06-Apr-16 (In house check Jun-22) 04-Aug-99 (In house check Jun-22) 31-Mar-14 (In house check Oct-22)	Mar-24 Mar-24 Oct-24 Oct-24 Mar-24 Mar-24 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Jun-24
Power me Power sei OCP DAK OCP DAK Reference DAE4 Reference Secondan Power sei Power sei Power sei Power sei Power sei Power sei Network A	Iter NRP2 Isor NRP-291 (-3.5 (weighted) (-12 20 dB Attenuator Probe EX3DV4 y Standards Iter E44198 Isor E44198 Isor E4412A Itor HP 8648C Inalyzer E8358A	SN: 104778 SN: 103244 SN: 103244 SN: 1249 SN: 076 SN: CC2552 (20x) SN: 660 SN: 7349 ID SN: GB41293874 SN: MY41498087 SN: MY41498087 SN: 000110210 SN: US41080477 Name	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 05-Oct-23 (OCP-DAK12-1016_Oct23) 30-Mar-23 (No. 217-03809) 16-Mar-23 (No. 217-03809) 16-Mar-23 (No. DAE4-660_Mar23) 03-Nov-23 (No. EX3-7349_Nov23) Check Date (In house) 06-Apr-16 (In house check Jun-22) 06-Apr-16 (In house check Jun-22) 06-Apr-16 (In house check Jun-22) 04-Aug-99 (In house check Jun-22) 31-Mar-14 (In house check Oct-22) Function	Mar-24 Mar-24 Oct-24 Oct-24 Mar-24 Mar-24 Nov-24 Scheduled Check In house check: Jun-24 In house check: Jun-24
Power me Power set OCP DAK OCP DAK DOCP DAK Reference DAE4 Reference Secondar Power set Power set Power set Power set Reference Secondar Power set Power set Secondar Power set Calibrated	Iter NRP2 Isor NRP-291 (-3.5 (weighted) (-12) 20 dB Attenuator Probe EX3DV4 y Standards Iter E44198 Isor E44198 Isor E4412A Isor HP 8648C Isor HP 864	SN: 104778 SN: 103244 SN: 103244 SN: 1249 SN: 02552 (20x) SN: 660 SN: 7349 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US341080477 Name Claudio Leubler Sven Kühn	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 05-Oct-23 (OCP-DAK12-1016_Oct23) 30-Mar-23 (No. 217-03809) 16-Mar-23 (No. 217-03809) 16-Mar-23 (No. 217-03809) 16-Mar-23 (No. DAE4-660_Mar23) 03-Nov-23 (No. EX3-7349_Nov23) O6-Apr-16 (in house) 06-Apr-16 (in house check Jun-22) Function Laboratory Technician Technical Manager	Mar-24 Mar-24 Oct-24 Oct-24 Mar-24 Mar-24 Mar-24 Scheduled Check In house check: Jun-24 In house check: Jun-24 Signature Signature Struct Exbrusev 08, 2024
Power me Power set OCP DAK DOCP DAK DOCP DAK Reference DAE4 Reference Secondar Power set Power set Power set Reference Referen	Iter NRP2 Isor NRP-291 (-3.5 (weighted) (-12) 20 dB Attenuator Probe EX3DV4 y Standards Iter E44198 Isor E44198 Isor E4412A Isor HP 8648C Isor HP 864	SN: 104778 SN: 103244 SN: 103244 SN: 1249 SN: 02552 (20x) SN: 660 SN: 7349 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US341080477 Name Claudio Leubler Sven Kühn	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 30-Mar-23 (No. 217-03809) 16-Mar-23 (No. 217-03809) 03-Nov-23 (No. EX3-7349_Nov23) OB-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22) 31-Mar-14 (in house check Oct-22) 31-Mar-14 (in house check Oct-22) Function Laboratory Technician Technical Manager	Mar-24 Mar-24 Oct-24 Oct-24 Mar-24 Mar-24 Mar-24 Scheduled Check In house check: Jun-24 In house check: Jun-24 Signature Signature Struct Exbrusev 08, 2024

Page 42 of 61

Report No.: 2403V65915E-20

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

S S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization $\hat{\partial}$	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization ∂ = 0 (f ≤ 900 MHz in TEM-ceil; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum
 calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES-3019_Feb24

Page 2 of 10

February 08, 2024

Parameters of Probe: ES3DV2 - SN:3019

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm (µV/(V/m) ²) A	1.04	1.15	0.97	±10.1%
DCP (mV) B	104.2	100.9	106.9	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	с	D dB	WR mV	Max dev.	Max Unc ^E k = 2
0	CW	X	0.00	0.00	1.00	0.00	118.8	±1.0%	±4.7%
~		Y	0.00	0.00	1.00		118.8		
		Z	0.00	0.00	1.00		120.2		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Linearization parameter uncertainty for maximum specified field strength. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: ES-3019_Feb24

Page 3 of 10

Page 44 of 61

February 08, 2024

Parameters of Probe: ES3DV2 - SN:3019

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-57.7°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES-3019_Feb24

Page 4 of 10

Page 45 of 61

February 08, 2024

Parameters of Probe: ES3DV2 - SN:3019

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
150	52.3	0.76	7.38	7.38	7.38	0.00	2.00	±13.3%
450	43.5	0.87	6.76	6.76	6.76	0.16	1.30	±13.3%

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty to the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.
^F The probes are calibrated using issue simulating liquids (TSL) that deviate for *c* and *c* by less than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10% if SAR correction is applied.
^G ApplyDepth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±6.4 GMz and been 2.0% for foreworks and been 2.0% for foreworks and be excluded by the probe line of the probability of the probability of the probability of the probability of the probability.

than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: ES-3019_Feb24

Page 5 of 10

Page 46 of 61

February 08, 2024

Parameters of Probe: ES3DV2 - SN:3019

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
150	61.9	0.80	7.15	7.15	7.15	0.00	1.00	±13.3%

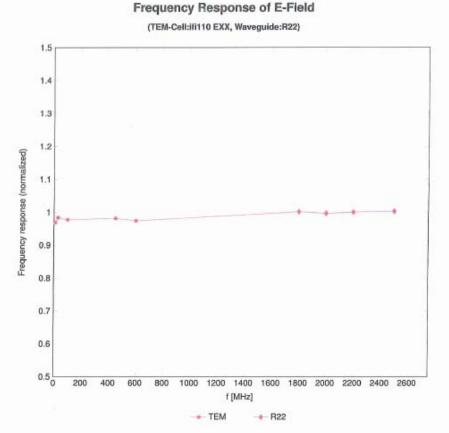
^C Frequency validity abave 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Abave 50 GHz frequency validity can be extended to ±110 MHz.
^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for *e* and *o* by less than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10% if SAR correction is applied.

and and wall for Fourthermannian or up to 2 rows own executions approxe. © AlphanDepth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: ES-3019_Feb24

Page 6 of 10

Page 47 of 61



February 08, 2024

ES3DV2 - SN:3019

Fraguency Basmanas of F Field

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)

Certificate No: ES-3019_Feb24

Page 7 of 10

Page 48 of 61

February 08, 2024

XYZ .

Tot

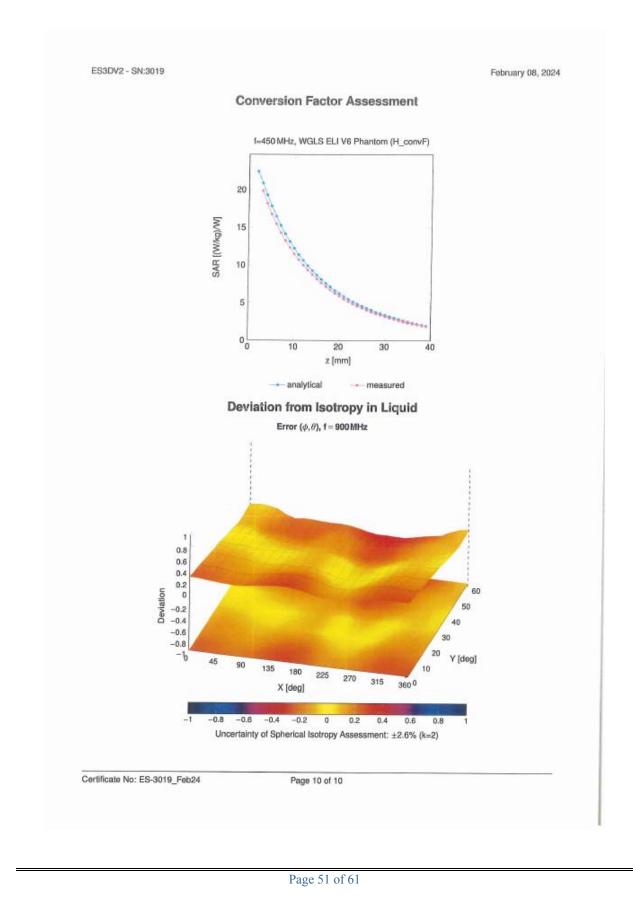
-

45

1.0 0*

315°

ES3DV2 - SN:3019 Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz, TEM, 0° 90° f=1800 MHz, R22, 0° 90ª X Y Z Tot 45° 135° 135* . 2 0.4 0.6 0,8 0.4 0.6 0.8 1.0 180° 0° 180° 315 225 225 270° 270° 0.5 Error [dB] 0 -0.5


> 120 240 300 360 0 60 180 Roll [°] ---- 600 MHz - 1800 MHz Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

Certificate No: ES-3019_Feb24

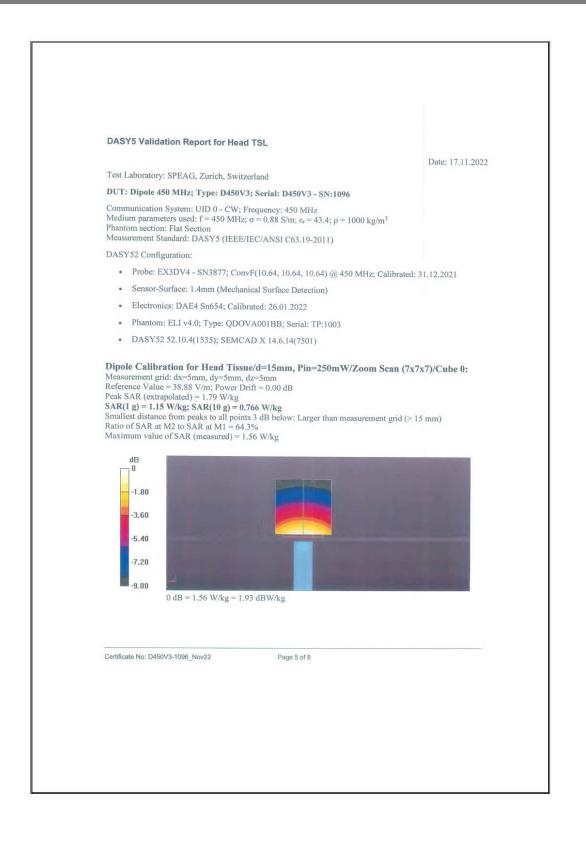
Page 8 of 10

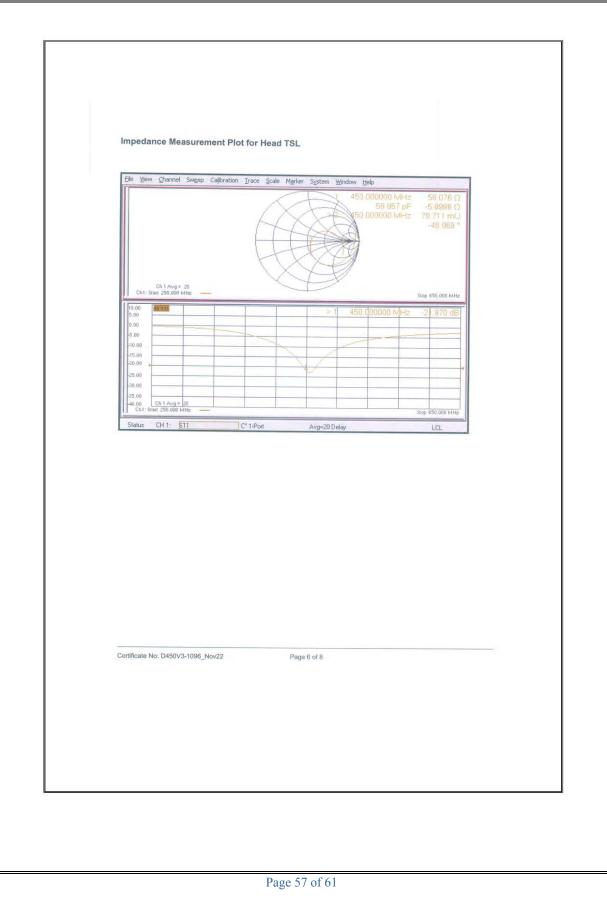
Page 49 of 61

Zeughausstrasse 43, 8004 Zuric	h, Switzerland		Service suisse d'étalonnage
Accredited by the Swiss Accredita The Swiss Accreditation Servic Multilateral Agreement for the n	e is one of the signatorie	as to the EA	Accreditation No.: SCS 0108
Client BACL USA	eeeginten er eulleration		lo: D450V3-1096_Nov22
CALIBRATION O	CERTIFICAT	E	
Object	D450V3 - SN:10	96	
Calibration procedure(s)	QA CAL-15.v9 Calibration Proce	edure for SAR Validation Source	s below 700 MHz
Calibration date:	November 17, 20)22	
Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291	E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245	y facility: environment temperature (22 ± 3)* Cal Date (Certificate No.) 04-Apr-22 (No. 217-03523/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525)	C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 3877 SN: 654	04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-3877_Dec21) 26-Jan-22 (No. DAE4-654_Jan22)	Apr-23 Apr-23 Dec-22 Jan-23
Secondary Standards Power meter E44190 Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Agilent E8358A	1 a second contraction of the second second	Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22) 31-Mar-14 (in house check Oct-22)	Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Oct-24
Calibrated by:	Name Aldonia Georgiadou	Function Laboratory Technician	Signature
	Sven Kühn	Technical Manager	SIE
Approved by:			1.00
		full without written approval of the laboratory	Issued: November 17, 2022

Report No.: 2403V65915E-20

Calibration La Schmid & Parti Engineering	ner AG	IBC MRA	and Accountry of	s	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura
	8004 Zurich, Switzerland	The Condition	Station of State	S	Swiss Calibration Service
The Swiss Accredita	ss Accreditation Service (SAS) tion Service is one of the signate ant for the recognition of calibrat	ories to the EA tion certificates		Ace	creditation No.: SCS 0108
Glossary: TSL	tissue simulating l	liquid			
ConvF N/A	sensitivity in TSL not applicable or r	/ NORM x,y,z			
a) IEC/IEEI Absorpti Body-Wo And Pro	Performed According E 62209-1528, "Measur on Rate Of Human Exp orn Wireless Communic cedures (Frequency Ra 5664, "SAR Measureme	rement Procedure posure To Radio F cation Devices - F ange of 4 MHz to	For The Asse requency Fiel Part 1528: Hun 10 GHz)" Octo	lds F nan I ober	rom Hand-Held And Models, Instrumentation 2020
Additional Doo					
of the ce Antenna center m Return L phantom reflected SAR men SAR nor. connectc SAR for.	rtificate. All figures stat Parameters with TSL: larking of the flat phantu oss: This parameter is (as described in the m power. No uncertainty asured: SAR measured malized: SAR as measured or.	ed in the certifica The source is mo om. measured with th easurement conc required. I at the stated ant ured, normalized	te are valid at i unted in a touc e source posit lition clause). T enna input pov to an input pov	the f ch co tione The I wer. wer o	onfiguration below the d under the liquid filled Return Loss ensures low
multiplied by the	ncertainty of measurem e coverage factor k=2, o pproximately 95%.	ent is stated as the which for a normatic	ne standard un Il distribution c	certa	ainty of measurement sponds to a coverage
Certificate No: D450	V3-1096_Nov22	Page 2 of 8			


Page 53 of 61


Report No.: 2403V65915E-20

DASY system configuration, as far as not g DASY Version	given on pa	ge 1. DASY52		V52.10.4
Extrapolation	Ad	vanced Extrapolation		102.10.4
Phantom		ELI4 Flat Phantom	Chall thi	ckness: 2 ± 0.2 mm
Distance Dipole Center - TSL		15 mm		
Zoom Scan Resolution		dx, dy, dz = 5 mm		vith Spacer
Frequency		450 MHz ± 1 MHz		
Head TSL parameters The following parameters and calculations	were applie	id.		
Nominal Hand TC:		Temperature	Permittivity	Conductivity
Nominal Head TSL parameters		22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters Head TSL temperature change during		(22.0 ± 0.2) °C < 0.5 °C	43.4 ± 6 %	0.88 mho/m ± 6 9
AR result with Head TSL SAR averaged over 1 cm ³ (1 g) of Head T	TSL	Condition		
SAR measured		250 mW input power	1.1	5 W/kg
SAR for nominal Head TSL parameters		normalized to 1W		± 18.1 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head	d TSL	condition		
SAR measured		250 mW input power	0.7	66 W/kg
SAR for nominal Head TSL parameters		normalized to 1W		± 17.6 % (k=2)
Sody TSL parameters The following parameters and calculations v Nominal Body TSL parameters	were applie	d. Temperature 22.0 °C	Permittivity 56.7	Conductivity 0.94 mho/m
Measured Body TSL parameters		(22.0 ± 0.2) °C	56.2 ± 6 %	0.93 mho/m ± 6 %
Body TSL temperature change during t		< 0.5 °C		
SAR averaged over 1 cm ³ (1 g) of Body		Condition		
SAR measured		250 mW input power	1.1	4 W/kg
SAR for nominal Body TSL parameters		normalized to 1W	4.59 W/kg	± 18.1 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Bo	ody TSL	condition		
SAR measured		250 mW input power	0.76	8 W/kg
SAR for nominal Body TSL parameters		normalized to 1W	3.09 W/kg	± 17.6 % (k=2)
ertificate No: D450V3-1096_Nov22	Pa	ge 3 of 8		

	Annendix (Additional anneading the second	
	Appendix (Additional assessments outside t Antenna Parameters with Head TSL	he scope of SCS 0108)
,		
	Impedance, transformed to feed point Return Loss	56.1 Ω - 5.9 jΩ - 22.0 dB
,	Intenna Parameters with Body TSL	
	Impedance, transformed to feed point Return Loss	53.2 Ω - 9.7 jΩ - 20.1 dB
		- 20.1 0B
G	eneral Antenna Parameters and Design	
	Electrical Delay (one direction)	1.347 ns
Δ	fter long term use with 100W radiated power, only a slight v	
n fe	Measurement Conditions" paragraph. The SAR data are not ccording to the Standard. o excessive force must be applied to the dipole arms, becared edpoint may be damaged.	
	Manufactured by	SPEAG
_ c	artificate No: D450V3-1096_Ncv22 Page	4 of 8

Page 55 of 61

DASY5 Validation	Report for Body TS			
	toportion Body 13			Det. 17.11.0000
Test Laboratory: SPE,	AG, Zurich, Switzerlar	nd		Date: 17.11.2022
		erial: D450V3 - SN:109	06	
Communication Syste	m: UID 0 - CW; Frequest f = 450 MHz; σ = Section	uency: 450 MHz 0.93 S/m; ε _r = 56.2; ρ =		
DASY52 Configuration	n:			
 Probe: EX3DV 	4 - SN3877; ConvF(1	0.64, 10.64, 10.64) @ 4	50 MHz; Calibrated:	31.12.2021
	: 1.4mm (Mechanical			
• Electronics: Da	AE4 Sn654; Calibrated	1: 26.01.2022		
Phantom: ELI	4.0; Type: QDOVA0	01BB; Serial: TP:1003		
• DASY52 52.10	.4(1535); SEMCAD 2	X 14.6.14(7501)		
dB 0 -1.60 -3.20 -4.80 -6.40 -8.00	d) = 1.74 W/kg ;; SAR(10 g) = 0.768 T peaks to all points 3 d SAR at M1 = 65.8%	W/kg IB below: Larger than n W/kg	neasurement grid (> 1	5 mm)
Certificate No: D450V3-109	3 Nov22	Page 7 of 8		
Gennicate No. D45075-109	5_N0V22	Page 7 of 8		

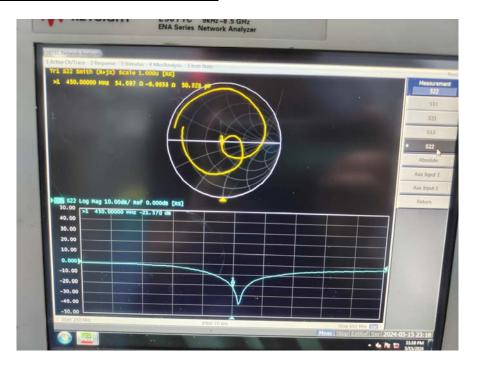
Impedance Measurement Plot for Body TSL
Ele Vew Channel Swgep Calibration Irace Scale Marker System Window Help
1 450.00000 MHz 53.195 Ω 38.303 pF -9.7425 Ω 50.000000 MHz 98.916 mU -68.449 °
Ch 1 Aug = 20 Ch 1: Start 20.000 MHz
10.00 4500 20.095 dB 5.00
Ch1:Statz 250.000 MHz Step 650.000 MHz Status CH1: S11 C*1-Port Avg=20 Delay LCL
Certificate No: D450V3-1096_Nov22 Page 8 of 8
Certificate No: D450V3-1096_Nov22 Page 8 of 8

D450V3 - SN:1096 Extended Dipole Calibrations

China Certification ICT Co., Ltd (Dongguan)

DU	JT Code:	ADK				Cal Date:		e:	2023/11/15				
De	scription	Antenna - Dipole				Temperature:		23.6°C					
	Model	D450V3				Humidity:				58%			
Manu	ufacturer	SPEAG					Pressure				101.7 kPa		
Certific	rtificate No.: D450V3-1096_Mar22						Tester: Karl C			Gong jarve bang			
TEST SPECIFICATIONS													
Speci	Specification: WP 438 SAR Dipole Verification									Ve	ersion:	202	0 - Rev 0
Speci	Specification: Version:												
TEST	TEST PARAMETERS												
				ted Frequency R	l Frequency Range: N/A		Next Cal Due			2024/11/15			
Equip	ment Us	Tolerance: sed to perf	orm Mea	sure						Date:			
Item:	Network	Analyzer	Identifie	er: NAM	Model:	8	753B	Last	Cal	2023/10/1	Ca	al Due:	2024/10/16
item.		ion/Verifi	lucitime		widder.	0	7550	Last	Last Cal: 7			ii Duc.	2024/10/10
Item:		n - Kit	Identifie	er: NAM	Model:	Model: 85032F Last Cal: NCR		NCR	Ca	al Due:	NCR		
Item:	Term	ninator	Identifie	r: NANA	Model:	_	5032- 0003 Last Cal:		Cal:	2023/4/29	Cal Due:		2024/4/28
Item:	Item: Identifier:			Model:		Last Cal:			Cal Due:				
COMM	IENTS, O	PINIONS an	d INTERPI	RETATIONS									
None													
Measur	ement Un	certainty											
	Probabil Distribut		bability tribution	Impedance (dB)		Insertion Loss (dB)		s v	Value (dB)	(dB) Value (+/- %)			
(level o	Expanded uncertainty U (level of Normal(k=2) confidebce = 95%)		mal(k=2)						0.93				
	RESULTS												
Pass													
This measurement was a calibration verification. (Instrument parameters are within tolerances.) Measurements are traceable to the international System of Units (SI) via NIST													
CALIBRATION DATA ATTACHED													

	Name	Function	Signatum
Measure By	Kark Gong	SAR Engineer	Karl Gong


Page 60 of 61

Per FCC KDB 865664 D01, calibration intervals of up to 3 years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements.

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20 dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from calibration date.

		Return Loss		Real Impedence	Imaginary Impedence
D450V3 - SN:1096	Measured Value (dB)	-21.570	Measured Value (Ω)	54.697	-6.955
	Target Value (dB)	-21.970	Target Value (Ω)	56.076	-5.899
	Devation (%)	-1.82	Devation (Ω)	-1.379	-1.056
	Limit (%)	±20	Limit (Ω)	5	5
	Limit (< dB)	-20	Results	Pass	Pass
	Results	Pass			

***** END OF REPORT *****

Page 61 of 61