

FCC Test Report

Report No.: AGC02294220802FE08A

FCC ID 2AJGM-UV5G

APPLICATION PURPOSE: Class II Permissive Change

PRODUCT DESIGNATION: GMRS Two way radio

BRAND NAME : BAOFENG, POFUNG

MODEL NAME : UV-5G, UV-5G PRO, UV-5RX

APPLICANT : PO FUNG ELECTRONIC (HK) INTERNATONAL GROUP

COMPANY LIMITED

DATE OF ISSUE : May 29, 2024

STANDARD(S) : FCC Part 15 Subpart B

REPORT VERSION: V1.0

Attestation of Global CAGE (Shenzhen) Co., Ltd

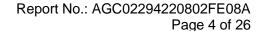
Page 2 of 26

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	May 29, 2024	Valid	Initial Release

Note: The original test report Ref. No AGC02294220802FE08 (dated Sep. 06, 2022, tested Aug. 09,

2022 to Sep. 06, 2022), was modified on May 29, 2024 to include the following changes and additions for:


- -- Added scanning receiving frequency bands: AM108-136MHz, FM 220-260MHz/350-390MHz
- -- Software version changed to: V1.00.33
- -- Updated model name.

Based on the above changes, all test data were re-evaluated for the newly added receiving frequency bands

Table of Contents

1. General Information	4
2. Product Information	5
2.1 Product Technical Description	5
2.2 Auxiliary Surrounding Description	5
2.2 Test Methodology	6
2.3 Description of Test Modes	6
3. Test Environment	7
3.1 Address of The Test Laboratory	7
3.2 Test Facility	7
3.3 Environmental Conditions	8
3.4 Measurement Uncertainty	8
3.5 List of Equipment Used	9
4. Summary of Test Results	10
5. Radiated Emission Measurements	11
5.1 Provisions Applicable	11
5.2 Measurement Setup	11
5.3 Measurement Procedure	12
5.4 Measurement Resul	13
6. Conducted Emission Measurements	17
6.1 Provisions Applicable	17
6.2 Measurement Setup	17
6.3 Measurement Procedure	18
6.4 Measurement Result	19
7. Antenna Conducted Power for Receivers	21
7.1 Provisions Applicable	21
7.2 Measurement Setup	21
7.3 Measurement Procedure	21
7.4 Measurement Result	22
8. Scanning Receivers and Frequency Converters Used with Scanning Receivers	24
8.1 Provisions Applicable	24
8.2 Measurement Setup	24
8.3 Measurement Procedure	24
8.4 Measurement Result	25
Appendix I: Photographs of Test Setup	26
Appendix II: Photographs of Test EUT	26

1. General Information

Applicant	PO FUNG ELECTRONIC (HK) INTERNATONAL GROUP COMPANY LIMITED	
Address	Room 1508, 15/F, Office Tower II, Grand Plaza, 625 Nathan Road, Kowloon, Hong Kong	
Manufacturer	PO FUNG ELECTRONIC (HK) INTERNATONAL GROUP COMPANY LIMITED	
Address	Room 1508, 15/F, Office Tower II, Grand Plaza, 625 Nathan Road, Kowloon, Hon Kong	
Factory	PO FUNG ELECTRONIC (HK) INTERNATONAL GROUP COMPANY LIMITED	
Address	Room 1508, 15/F, Office Tower II, Grand Plaza, 625 Nathan Road, Kowloon, Hong Kong	
Product Designation	GMRS Two way radio	
Brand Name	BAOFENG, POFUNG	
Test Model	UV-5G	
Series Model(s)	UV-5G PRO, UV-5RX	
Difference Description	Only the model name is different	
Date of receipt of test item	May 06, 2024	
Date of Test	May 06, 2024~May 29, 2024	
Deviation from Standard	No any deviation from the test method	
Condition of Test Sample	Normal	
Test Result	Pass	
Test Report Form No	AGCTR-ER-FCC-CSR-V1.0	

Note: The test results of this report relate only to the tested sample identified in this report.

Prepared By	Bibo zhang	
	Bibo Zhang (Project Engineer)	May 29, 2024
Reviewed By	Calin Lin	
	Calvin Liu (Reviewer)	May 29, 2024
Approved By	Max Zhang	
	Max Zhang Authorized Officer	May 29, 2024

Page 5 of 26

2. Product Information

2.1 Product Technical Description

Housing Type	Plastic and metal
Receive Frequency Range	AM108-136MHz(Scanning Receiver) FM220-260MHz/350-390MHz(Scanning Receiver)
Highest Operating Frequency	☑Greater than 108MHz ☐Less than 108MHz
Equipment Type	Table-Top
Hardware Version	V05
Software Version	V1.00.33
Power Supply	DC 7.4V 1800mAh by battery, charging for DC8.4V

I/O Port Information (⊠Applicable □Not Applicable)

I/O Port of EUT					
I/O Port Type Q'TY Cable Tested with					
Antenna Port	1	-	1		
Earphone Port	1	-	1		

2.2 Auxiliary Surrounding Description

Tha	Darinharal	Davissa	ad latarfaca	Cablas Mars	Cannagtad	\i.a.a. +b.a.	Measurement.
1110	 Permaia	1 14/11/14/2 31	na inianaca	Laniae Wala	I CONTRACTACE	11 11 11 11 11 11 11 11 11 11 11 11 11	MASCHIAMAN

☐ Test Accessories Come from The Laboratory

☐ Test Accessories Come from The Manufacturer

Equipment	Manufacturer	Model Name	Specification	Data Cable	Power Cable
Adapter	Baofeng	480-10050-E.S	Input: AC100-240V 50/60Hz, 0.25A Output: DC 10V 0.5A	N/A	0.6m Unshielded
Battery	Baofeng	BL-5	DC 7.4V 1800mAh	N/A	N/A
Charger	Baofeng	CH-5	Input: DC 10V 0.5A Output: DC 8.4V 400mA	N/A	N/A
Back clip	N/A	N/A	N/A	N/A	N/A

Page 6 of 26

2.2 Test Methodology

The tests were performed according to following standards:

No.	Identity	Document Title
1	FCC 47 CFR Part 15	Radio Frequency Devices
2	ANSI C63.4-2014	American National Standard for Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

2.3 Description of Test Modes

No.	Test Mode	Remark
1	Scanning mode	Worst
2	Scanning stopped/Receiving at low channel of 220 MHz to 260 MHz	
3	Scanning stopped/Receiving at middle channel of 220 MHz to 260 MHz	
4	Scanning stopped/Receiving at high channel of 220 MHz to 260 MHz	
5	Scanning stopped/Receiving at low channel of 350 MHz to 390 MHz	
6	Scanning stopped/Receiving at middle channel of 350 MHz to 390 MHz	
7	Scanning stopped/Receiving at high channel of 350 MHz to 390 MHz	
8	Scanning stopped/Receiving at low channel of 108 MHz to 136 MHz	
9	Scanning stopped/Receiving at middle channel of 108 MHz to 136 MHz	
10	Scanning stopped/Receiving at high channel of 108 MHz to 136 MHz	

Note: Only the result of the worst case was recorded in the report.

Page 7 of 26

3. Test Environment

3.1 Address of The Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842 (CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

Page 8 of 26

3.3 Environmental Conditions

	Normal Conditions
Temperature range (°C)	15 - 35
Relative humidity range	20 % - 75 %
Pressure range (kPa)	86 - 106

3.4 Measurement Uncertainty

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Item	Measurement Uncertainty	
Uncertainty of Conducted Emission	$U_c = \pm 2.9 \text{ dB}$	
Uncertainty of Radiated Emission below 1GHz	$U_c = \pm 3.9 \text{ dB}$	
Uncertainty of Radiated Emission above 1GHz	$U_c = \pm 4.9 \text{ dB}$	

Page 9 of 26

3.5 List of Equipment Used

•	Radiated Emiss	sion					
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
	AGC-EM-E046	EMI Test Receiver	R&S	ESCI	10096	2024-02-01	2025-01-31
	AGC-EM-E116	EMI Test Receiver	R&S	ESCI	100034	2023-06-03	2024-06-02
\boxtimes	AGC-EM-E061	Spectrum Analyzer	Agilent	N9010A	MY53470504	2023-06-01	2024-05-31
\boxtimes	AGC-EM-E001	Wideband Antenna	SCHWARZBECK	VULB9168	D69250	2023-05-11	2025-05-10
	AGC-EM-E001	Wideband Antenna	SCHWARZBECK	VULB9168	D69250	2023-05-11	2025-05-10
\boxtimes	AGC-EM-E029	Broadband Ridged Horn Antenna	ETS	3117	00034609	2024-03-31	2025-03-30
\boxtimes	AGC-EM-E146	Pre-amplifier	ETS	3117-PA	00246148	2022-08-04	2024-08-03

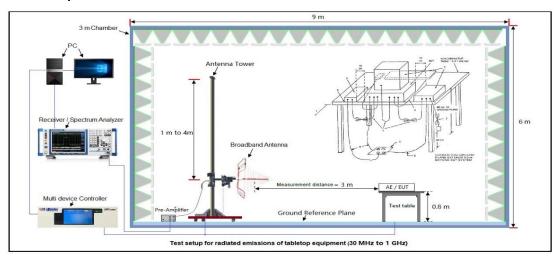
•	AC Power Line	Conducted Emissi	on				
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
\boxtimes	AGC-EM-E045	EMI Test Receiver	R&S	ESPI	101206	2023-06-03	2024-06-02
\boxtimes	AGC-EM-A130	6dB Attenuator	Eeatsheep	LM-XX-6-5W	DC-6GZ	2023-06-09	2024-06-08
\boxtimes	AGC-EM-E023	AMN	R&S	100086	ESH2-Z5	2023-06-03	2024-06-02

• Tes	st Software				
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Version Information
	AGC-EM-S004	RE Test System	Tonscend	TS ⁺ Ver2.1(JS32-RE)	4.0.0.0
	AGC-EM-S003	RE Test System	FARA	EZ-EMC	V.RA-03A
	AGC-EM-S011	RSE Test System	Tonscend	TS ⁺ Ver2.1(JS36-RSE)	4.0.0.0
	AGC-EM-S001	CE Test System	R&S	ES-K1	V1.71

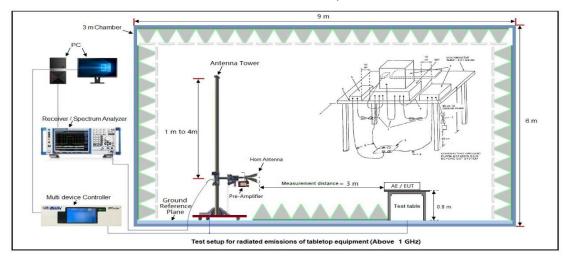
Page 10 of 26

4. Summary of Test Results

Item	FCC Rules	Description Of Test	Class/Severity	Result
1	Section 15.107	Radiated Emission	Class B	Pass
2	Section 15.109	Conducted Emission	Class B	Pass
3	§15.111	Antenna Conducted Power for Receivers	/	Pass
4	§15.121(b)	Scanning receivers and frequency converters used with scanning receivers	/	Pass


5. Radiated Emission Measurements

5.1 Provisions Applicable


FCC CFR Title 47 Part 15 Subpart B Section 15.109:

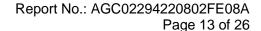
Frequency Range	Class B Limit (dBuV/m @3m)	Class A Limit (dBuV/m @3m)	Value
30MHz-88MHz	40.00	50.00	Quasi-peak
88MHz-216MHz	43.50	53.50	Quasi-peak
216MHz-960MHz	46.00	56.00	Quasi-peak
960MHz-1GHz	54.00	64.00	Quasi-peak
Above 1GHz	54.00	60.00	Average
Above IGHZ	74.00	80.00	Peak

5.2 Measurement Setup

Radiated Emission Measurements Test Setup for 30MHz to 1GHz

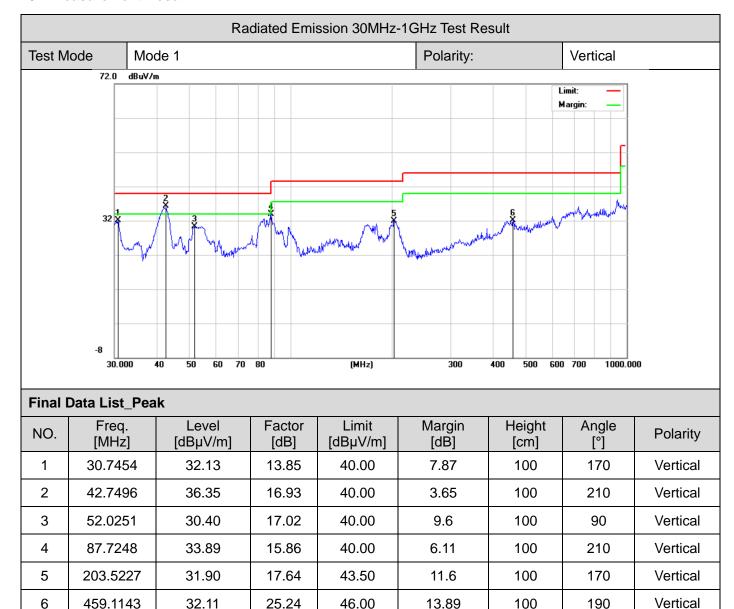
Radiated Emission Measurements Test Setup for above 1GHz

Page 12 of 26


5.3 Measurement Procedure

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.4.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- 4. The EUT received power by AC 120V/60Hz.
- 5. The antenna was placed at 3 meter away from the EUT as stated in FCC Part 15. The antenna connected to the Analyzer via a cable and at times a pre-amplifier would be used.
- 6. The Analyzer / Receiver quickly scanned from 30MHz to 1000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- 7. The test mode(s) were scanned during the test:
- 8. Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and Q.P./Peak reading is presented. For emissions below 1GHz, use 120KHz RBW and VBW>=3RBW for QP reading.
- 9. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 10. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 11. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 12. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 13. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.
- 14. The test data of the worst case condition (mode 1) was reported on the following Data page.

EMI Test Receiver Setup:


During the radiated emission test, the EMI test receiver was set with the following configurations:

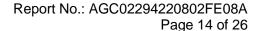
Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
Above 1 GHz	1MHz	10 Hz	/	Ave.

5.4 Measurement Resul

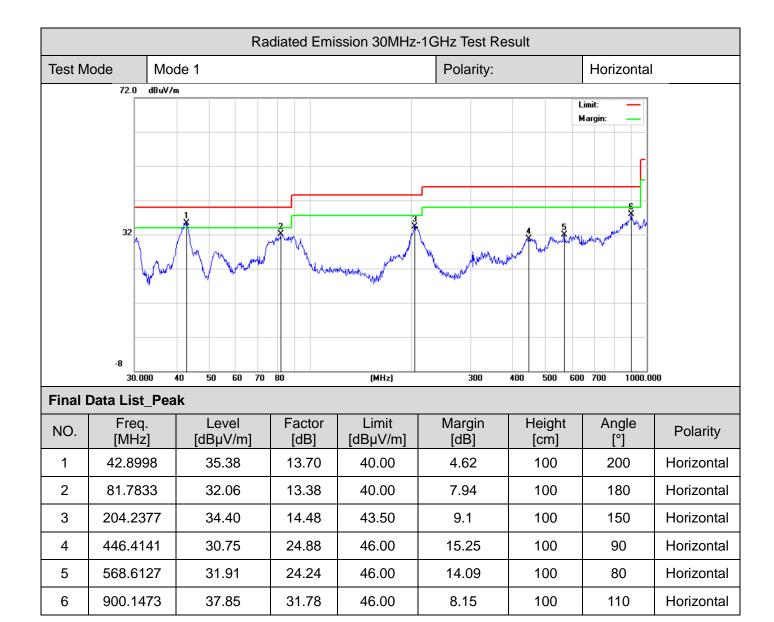
RESULT: PASS

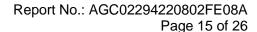
459.1143

6

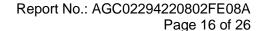

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

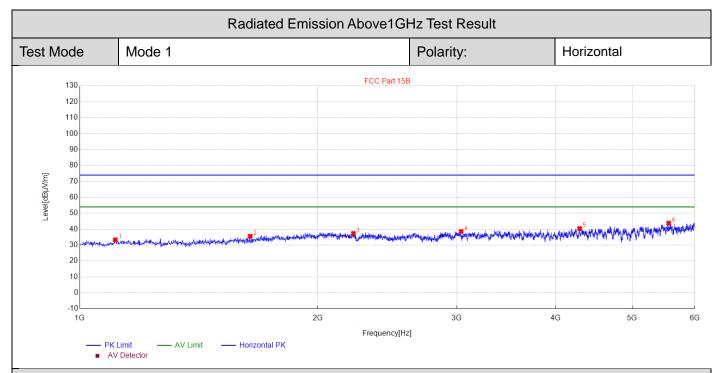
46.00


13.89


100

190





Final I	Data List_Peak							
NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	1101.0202	33.06	-18.18	74.00	40.94	100	150	Vertical
2	1717.1434	36.49	-15.75	74.00	37.51	100	200	Vertical
3	2644.3289	38.48	-12.13	74.00	35.52	100	210	Vertical
4	3367.4735	39.30	-10.99	74.00	34.70	100	230	Vertical
5	4749.75	41.75	-7.83	74.00	32.25	100	180	Vertical
6	5580.9162	43.30	-6.64	74.00	30.70	100	100	Vertical

Final I	Data List-Peak							
NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	1109.0218	33.28	-18.17	74.00	40.72	100	160	Horizontal
2	1643.1286	35.52	-16.36	74.00	38.48	100	170	Horizontal
3	2219.2438	37.35	-12.88	74.00	36.65	100	90	Horizontal
4	3037.4075	38.52	-11.87	74.00	35.48	100	220	Horizontal
5	4290.6581	40.38	-8.76	74.00	33.62	100	160	Horizontal
6	5560.9122	43.77	-6.70	74.00	30.23	100	140	Horizontal

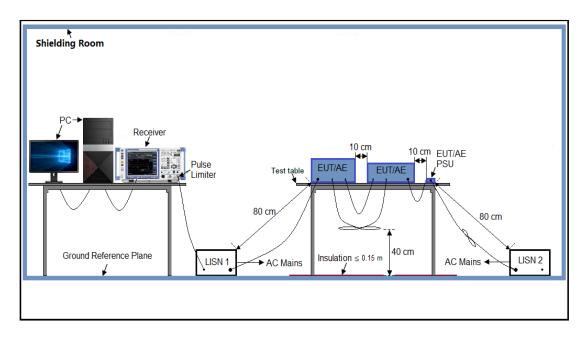
Note:

- 1. Factor=Antenna Factor + Cable loss Amplifier gain, Margin= Limit-Measurement.
- 2. The "Factor" value can be calculated automatically by software of measurement system.

6. Conducted Emission Measurements

6.1 Provisions Applicable

FCC CFR Title 47 Part 15 Subpart B Section 15.107:


For Class B Limits:

Fraguenay	Maximum RF	Line Voltage
Frequency	Q.P. (dBµV)	Average (dBµV)
150kHz~500kHz	66-56	56-46
500kHz~5MHz	56	46
5MHz~30MHz	60	50

For Class A Limits:

Fraguenay	Maximum RF	Line Voltage
Frequency	Q.P. (dBµV)	Average (dBµV)
150kHz~500kHz	79	66
500kHz~30MHz	73	60

6.2 Measurement Setup

Report No.: AGC02294220802FE08A Page 18 of 26

6.3 Measurement Procedure

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.4.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- 4. The EUT received AC 120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipment received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test data of the worst case condition (Mode 1) was reported on the following Data page.

6.4 Measurement Result

st Mode	Mode 1			1.10	SN Line	Mau	tral Side
- IVIOUE	IVIOUE I			LI	SIN LINE	iveu	uai Siue
Le	evel [dBµV]						
80	<u>-</u>			<u>-</u>			!
70							
60		-+!	- <u>-</u>				
50	X W	- 	<u></u>	<u>-ii</u>	·ii		
40	WWW.	-+					
304	Manual Ma	WWX INVINION	in the later of the later to the later	where the state of the state of	and the last transfer of	i — i — i — i — i — i — i — i — i — i —	or and the
10			And the Control of th	X	X		
0-							
-10							
"	150k 300k 400k	600k 800k		2M 3M uency [Hz]	4M 5M 6M	8M 10M	20M 30M
	·		FIEC	uchicy [HZ]			
X X X	MES agc_fin						
				e			
M.	EASUREMENT	RESULT	: "agc_	Iln"			
20	024/5/15 16:	32					
20	024/5/15 16: Frequency		Transd	Limit	Margin	Detector	Line
20			Transd dB	Limit dBµV	Margin dB	Detector	Line
20	Frequency MHz	Level dBµV	dB	dΒμV	dB		
20	Frequency MHz	Level dBµV 43.90	dB 6.1	dBµV 66	dB 21.9	QP	N
20	Frequency MHz 0.154000 0.290000	Level dBµV 43.90 30.90	dB 6.1 6.1	dВµV 66 61	dB 21.9 29.6	QP QP	N N
20	Frequency MHz 0.154000 0.290000 0.566000	Level dBµV 43.90 30.90 27.30	dB 6.1 6.2	dBµV 66 61 56	dB 21.9 29.6 28.7	QP QP QP	N N N
20	Frequency MHz 0.154000 0.290000 0.566000 1.306000	Level dBµV 43.90 30.90 27.30 21.70	dB 6.1 6.2 6.2	dBμV 66 61 56 56	dB 21.9 29.6 28.7 34.3	QP QP QP QP	N N N
20	Frequency MHz 0.154000 0.290000 0.566000	Level dBμV 43.90 30.90 27.30 21.70 16.50	dB 6.1 6.2 6.2 6.3	dBµV 66 61 56 56	21.9 29.6 28.7 34.3 39.5	QP QP QP QP QP	N N N
20	Frequency MHz 0.154000 0.290000 0.566000 1.306000 2.382000	Level dBμV 43.90 30.90 27.30 21.70 16.50	dB 6.1 6.2 6.2 6.3	dBµV 66 61 56 56	21.9 29.6 28.7 34.3 39.5	QP QP QP QP QP	N N N N
20	Frequency MHz 0.154000 0.290000 0.566000 1.306000 2.382000	Level dBμV 43.90 30.90 27.30 21.70 16.50	dB 6.1 6.2 6.2 6.3	dBµV 66 61 56 56	21.9 29.6 28.7 34.3 39.5	QP QP QP QP QP	N N N N
	Frequency MHz 0.154000 0.290000 0.566000 1.306000 2.382000 4.298000	Level dBμV 43.90 30.90 27.30 21.70 16.50 14.70	dB 6.1 6.2 6.2 6.3 6.3	dBµV 66 61 56 56 56 56	21.9 29.6 28.7 34.3 39.5	QP QP QP QP QP	N N N N
м	Frequency MHz 0.154000 0.290000 0.566000 1.306000 2.382000 4.298000	Level dBµV 43.90 30.90 27.30 21.70 16.50 14.70	dB 6.1 6.2 6.2 6.3 6.3	dBµV 66 61 56 56 56 56	21.9 29.6 28.7 34.3 39.5	QP QP QP QP QP	N N N N
м	Frequency MHz 0.154000 0.290000 0.566000 1.306000 2.382000 4.298000 EASUREMENT	Level dBµV 43.90 30.90 27.30 21.70 16.50 14.70 RESULT	6.1 6.1 6.2 6.2 6.3 6.3	dBμV 66 61 56 56 56 56	dB 21.9 29.6 28.7 34.3 39.5 41.3	QP QP QP QP QP QP	N N N N N
м	Frequency MHz 0.154000 0.290000 0.566000 1.306000 2.382000 4.298000 EASUREMENT 024/5/15 16: Frequency	Level dBµV 43.90 30.90 27.30 21.70 16.50 14.70 RESULT 32 Level	dB 6.1 6.2 6.2 6.3 6.3	dBµV 66 61 56 56 56 56	dB 21.9 29.6 28.7 34.3 39.5 41.3	QP QP QP QP QP QP	N N N N N
м	Frequency MHz 0.154000 0.290000 0.566000 1.306000 2.382000 4.298000 EASUREMENT	Level dBµV 43.90 30.90 27.30 21.70 16.50 14.70 RESULT 32 Level	6.1 6.1 6.2 6.2 6.3 6.3	dBμV 66 61 56 56 56 56	dB 21.9 29.6 28.7 34.3 39.5 41.3	QP QP QP QP QP QP	N N N N N
м	Frequency MHz 0.154000 0.290000 0.566000 1.306000 2.382000 4.298000 EASUREMENT 024/5/15 16: Frequency MHz	Level dBµV 43.90 30.90 27.30 21.70 16.50 14.70 RESULT 32 Level dBµV	dB 6.1 6.2 6.2 6.3 6.3 : "agc_	dBµV 66 61 56 56 56 56 56 4 4 4 4 4 4 4 4 4 4 4 4	dB 21.9 29.6 28.7 34.3 39.5 41.3	QP QP QP QP QP QP	N N N N N
М	Frequency MHz 0.154000 0.290000 0.566000 1.306000 2.382000 4.298000 EASUREMENT 024/5/15 16: Frequency MHz 0.150000	Level dBµV 43.90 30.90 27.30 21.70 16.50 14.70 RESULT 32 Level dBµV 28.60	dB 6.1 6.2 6.2 6.3 6.3 : "agc_ Transd dB 6.1	dBµV 66 61 56 56 56 56 56 4 56 Limit dBµV	dB 21.9 29.6 28.7 34.3 39.5 41.3 Margin dB 27.4	QP QP QP QP QP QP	N N N N N
м	Frequency MHz 0.154000 0.290000 0.566000 1.306000 2.382000 4.298000 EASUREMENT 024/5/15 16: Frequency MHz 0.150000 0.554000	Level dBµV 43.90 30.90 27.30 21.70 16.50 14.70 RESULT 32 Level dBµV 28.60 22.90	dB 6.1 6.2 6.2 6.3 6.3 6.3 Transd dB 6.1 6.2	dBµV 66 61 56 56 56 56 46	dB 21.9 29.6 28.7 34.3 39.5 41.3 Margin dB 27.4 23.1	QP QP QP QP QP QP AV	N N N N N N
м	Frequency MHz 0.154000 0.290000 0.566000 1.306000 2.382000 4.298000 EASUREMENT 024/5/15 16: Frequency MHz 0.150000 0.554000 1.374000	Level dBµV 43.90 30.90 27.30 21.70 16.50 14.70 RESULT 32 Level dBµV 28.60 22.90 16.10	dB 6.1 6.2 6.2 6.3 6.3 6.3 Transd dB 6.1 6.2 6.2	dBµV 66 61 56 56 56 56 46 46 46	dB 21.9 29.6 28.7 34.3 39.5 41.3 Margin dB 27.4 23.1 29.9	QP QP QP QP QP QP AV AV	N N N N N N N
М	Frequency MHz 0.154000 0.290000 0.566000 1.306000 2.382000 4.298000 EASUREMENT 024/5/15 16: Frequency MHz 0.150000 0.554000	Level dBµV 43.90 30.90 27.30 21.70 16.50 14.70 RESULT 32 Level dBµV 28.60 22.90	dB 6.1 6.2 6.2 6.3 6.3 6.3 Transd dB 6.1 6.2	dBµV 66 61 56 56 56 56 46	dB 21.9 29.6 28.7 34.3 39.5 41.3 Margin dB 27.4 23.1 29.9	QP QP QP QP QP QP AV AV AV	N N N N N N

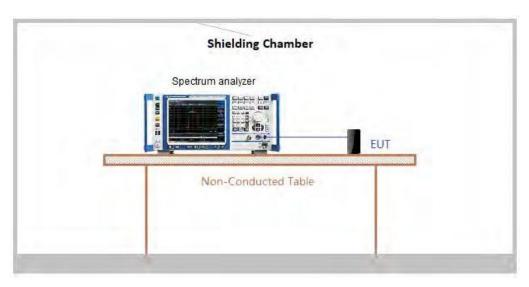
RESULT: PASS

est Mode	Mode 1			LIS	SN Line	Hot S	Side
	Level [dBµV]			<u> </u>			
	80						
	70		ļļ-				
	60				<u></u>	++	
	50					+++++++++++++++++++++++++++++++++++++++	
	40	· - - - - -	<u> </u>			· - -	
	30 4	**************************************	Hilland Allandar Market	المرد والمالين والأسلافوان		. 	
	20	- Marian		interest to the second second	and the same of the last	Printer and the second	
	10					1	
	10	- +	- 			· † -	
-	150k 300k 400k	600k 800k 1			M 5M 6M 8M	10M 20M	M 30M
			Freque	ncy [Hz]			
x :	x x MES agc_fin						
2	MEASUREMENT	RESULT	: "agc	fin"			
_							
2	2024/5/15 16						
2	Frequency	Level	Transd		_	Detector	Line
2			Transd dB	Limit dBµV	Margin dB	Detector	Line
2	Frequency MHz	Level dBµV	dB	dΒμ∇	dB		
2	Frequency MHz	Level dBµV 46.10	dB 6.1	dBµV 66	dB 19.9	QP	L1
2	Frequency MHz 0.150000 0.290000	Level dBµV 46.10 32.50	dB 6.1 6.1	dΒμV 66 61	dB 19.9 28.0	QP QP	L1 L1
2	Frequency MHz 0.150000 0.290000 0.406000	Level dBµV 46.10 32.50 26.90	dB 6.1 6.1 6.1	dBμV 66 61 58	dB 19.9 28.0 30.8	QP QP QP	L1 L1 L1
2	Frequency MHz 0.150000 0.290000 0.406000 0.526000	Level dBμV 46.10 32.50 26.90 24.00	dB 6.1 6.1 6.2	dBµV 66 61 58 56	dB 19.9 28.0 30.8 32.0	QP QP QP QP	L1 L1 L1 L1
2	Frequency MHz 0.150000 0.290000 0.406000 0.526000 0.738000	Level dBµV 46.10 32.50 26.90	dB 6.1 6.1 6.1	dBµV 66 61 58 56	dB 19.9 28.0 30.8	QP QP QP QP	L1 L1 L1
2	Frequency MHz 0.150000 0.290000 0.406000 0.526000 0.738000	Level dBμV 46.10 32.50 26.90 24.00 22.30	dB 6.1 6.1 6.2 6.2	dBµV 66 61 58 56	dB 19.9 28.0 30.8 32.0 33.7	QP QP QP QP QP	L1 L1 L1 L1 L1
2	Frequency MHz 0.150000 0.290000 0.406000 0.526000 0.738000	Level dBμV 46.10 32.50 26.90 24.00 22.30	dB 6.1 6.1 6.2 6.2	dBµV 66 61 58 56	dB 19.9 28.0 30.8 32.0 33.7	QP QP QP QP QP	L1 L1 L1 L1 L1
	Frequency MHz 0.150000 0.290000 0.406000 0.526000 0.738000	Level dBµV 46.10 32.50 26.90 24.00 22.30 21.80	dB 6.1 6.1 6.2 6.2 6.2	dBµV 66 61 58 56 56 56	dB 19.9 28.0 30.8 32.0 33.7	QP QP QP QP QP	L1 L1 L1 L1 L1
2	Frequency MHz 0.150000 0.290000 0.406000 0.526000 0.738000 0.818000	Level dBµV 46.10 32.50 26.90 24.00 22.30 21.80	dB 6.1 6.1 6.2 6.2 6.2	dBµV 66 61 58 56 56 56	dB 19.9 28.0 30.8 32.0 33.7	QP QP QP QP QP	L1 L1 L1 L1 L1
2	Frequency MHz 0.150000 0.290000 0.406000 0.526000 0.738000 0.818000	Level dBµV 46.10 32.50 26.90 24.00 22.30 21.80 RESULT	dB 6.1 6.1 6.2 6.2 6.2 6.2	dВµV 66 61 58 56 56 56 56	dB 19.9 28.0 30.8 32.0 33.7 34.2	QP QP QP QP QP	L1 L1 L1 L1 L1 L1
2	Frequency MHz 0.150000 0.290000 0.406000 0.526000 0.738000 0.818000 MEASUREMENT 2024/5/15 16	Level dBµV 46.10 32.50 26.90 24.00 22.30 21.80 RESULT	dB 6.1 6.1 6.2 6.2 6.2 6.2	dВµV 66 61 58 56 56 56	dB 19.9 28.0 30.8 32.0 33.7 34.2	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1
2	Frequency MHz 0.150000 0.290000 0.406000 0.526000 0.738000 0.818000 MEASUREMENT 2024/5/15 16 Frequency MHz	Level dBµV 46.10 32.50 26.90 24.00 22.30 21.80 RESULT :29 Level dBµV	dB 6.1 6.1 6.2 6.2 6.2 : "agc_ Transd dB	dBµV 66 61 58 56 56 56 56 4 4 4 4 4 4 4 4 4 4 4 4 4 4	dB 19.9 28.0 30.8 32.0 33.7 34.2 Margin dB	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1
2	Frequency MHz 0.150000 0.290000 0.406000 0.526000 0.738000 0.818000 MEASUREMENT 2024/5/15 16 Frequency MHz 0.158000	Level dBµV 46.10 32.50 26.90 24.00 22.30 21.80 RESULT :29 Level dBµV 28.90	dB 6.1 6.1 6.2 6.2 6.2 6.2 : "agc_ Transd dB 6.1	dBµV 66 61 58 56 56 56 56 4 4 4 4 5 5 5 5 5 5 5 5 5 5	dB 19.9 28.0 30.8 32.0 33.7 34.2 Margin dB 26.7	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1 L1
2	Frequency MHz 0.150000 0.290000 0.406000 0.526000 0.738000 0.818000 MEASUREMENT 2024/5/15 16 Frequency MHz 0.158000 0.554000	Level dBµV 46.10 32.50 26.90 24.00 22.30 21.80 RESULT :29 Level dBµV 28.90 17.70	dB 6.1 6.1 6.2 6.2 6.2 6.2 : "agc_ Transd dB 6.1 6.2	dBµV 66 61 58 56 56 56 56 40 Limit dBµV 56 46	dB 19.9 28.0 30.8 32.0 33.7 34.2 Margin dB 26.7 28.3	QP QP QP QP QP QP AV	L1 L1 L1 L1 L1 L1 L1 L1
2	Frequency MHz 0.150000 0.290000 0.406000 0.526000 0.738000 0.818000 MEASUREMENT 2024/5/15 16 Frequency MHz 0.158000 0.554000 1.174000	Level dBµV 46.10 32.50 26.90 24.00 22.30 21.80 RESULT :29 Level dBµV 28.90 17.70 15.90	dB 6.1 6.1 6.2 6.2 6.2 6.2 : "agc_ Transd dB 6.1 6.2 6.2 6.2	dBµV 66 61 58 56 56 56 56 46 46 46	dB 19.9 28.0 30.8 32.0 33.7 34.2 Margin dB 26.7 28.3 30.1	QP QP QP QP QP QP AV AV	L1
2	Frequency MHz 0.150000 0.290000 0.406000 0.526000 0.738000 0.818000 MEASUREMENT 2024/5/15 16 Frequency MHz 0.158000 0.554000 1.174000 2.546000	Level dBµV 46.10 32.50 26.90 24.00 22.30 21.80 RESULT :29 Level dBµV 28.90 17.70 15.90 10.70	dB 6.1 6.1 6.2 6.2 6.2 6.2 6.2 Transd dB 6.1 6.2 6.2 6.3	dBµV 66 61 58 56 56 56 56 46 46 46 46 46	dB 19.9 28.0 30.8 32.0 33.7 34.2 Margin dB 26.7 28.3 30.1 35.3	QP QP QP QP QP QP AV AV AV	L1 L1 L1 L1 L1 L1 L1 L1 L1
2	Frequency MHz 0.150000 0.290000 0.406000 0.526000 0.738000 0.818000 MEASUREMENT 2024/5/15 16 Frequency MHz 0.158000 0.554000 1.174000	Level dBµV 46.10 32.50 26.90 24.00 22.30 21.80 RESULT :29 Level dBµV 28.90 17.70 15.90	dB 6.1 6.1 6.2 6.2 6.2 6.2 : "agc_ Transd dB 6.1 6.2 6.2 6.2	dBµV 66 61 58 56 56 56 56 46 46 46	dB 19.9 28.0 30.8 32.0 33.7 34.2 Margin dB 26.7 28.3 30.1 35.3 39.8	QP QP QP QP QP QP AV AV AV AV	L1

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

Page 21 of 26

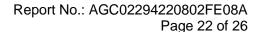

7. Antenna Conducted Power for Receivers

7.1 Provisions Applicable

The antenna conducted power of the receiver as defined in §15.111 shall not exceed the values given in the following tables

Frequency Range	9 KHz to 2GHz	
Limit	2.0 nW (-57 dBm)	

7.2 Measurement Setup

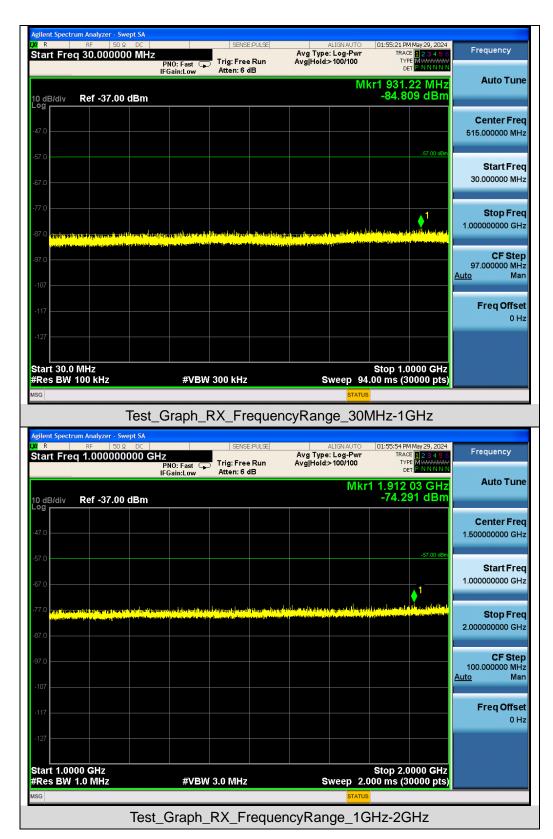

7.3 Measurement Procedure

1. The receiver antenna terminal connected to a spectrum analyzer.

2. Receiver set as follow:

Frequency range	RBW (kHz)	z) VBW (kHz)	
9 kHz ~ 150 kHz	1	3	
150 kHz ~ 30 MHz	10	30	
30 MHz ~ 1000 MHz	100	300	
1000 MHz ~ 3000 MHz	1000	3000	

3. The test data of the worst case condition (mode 1) was reported on the following Data page.



7.4 Measurement Result

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

Page 24 of 26

8. Scanning Receivers and Frequency Converters Used with Scanning Receivers

8.1 Provisions Applicable

Except as provided in paragraph (c) of this section, scanning receivers shall reject any signals from the Cellular Radiotelephone Service frequency bands that are 38 dB or lower based upon a 12 dB SINAD measurement, which is considered the threshold where a signal can be clearly discerned from any interference that may be present.

8.2 Measurement Setup

8.3 Measurement Procedure

- 1) Connected the EUT as shown in the above block diagram.
- Apply a RF signal to the receiver input port at lowest, middle and highest channel frequencies of receiver operation band.
- 3) Adjust the audio output level of the receiver to it's rated value with the distortion less than 10%.
- 4) Adjust the RF Signal Generator Output Power to produce 12 dB SINAD without the audio output power dropping by more than 3 dB. This output level of the RF SG at each channel frequency is the sensitivity of the receiver.
- 5) Select the lowest or worse-case sensitivity level for all of the bands as the reference sensitivity.
- 6) Adjust the RF Signal Generator output to a level of +60 dB above the reference sensitivity obtained in step 5) and its frequency to the frequency points in the cellular band.
- 7) Set the Receiver squelch to threshold, the signal required to open the squelch must be lower than the reference sensitivity level.
- 8) Set the receiver in a scanning mode and allow it to scan through it's complete receiving range.
- 9) If the receiver unsquelched or stopped on any frequency, receiving at this frequency, then adjust the signal generator output level until 12 dB SINAD is produced, this level is the spurious value and the difference between the reference sensitivity and the spurious value is the rejection ratio and must be at least 38dB.
- 10) Repeat above procedure at the frequencies 824.5, 836.0, and 848.5 MHz for the mobile band, and 869.1, 881.5, and 893.5MHz for the cellular base band.

Page 25 of 26

8.4 Measurement Result

Scanning Frequency Band (MHz)	Test Frequency of Cellular Band (MHz)	Spurious Value of Cellular Frequency (dBm)	Reference Sensitivity (dBm)	Measurement Result (dB)	Limit (dB)
220-260	824.5/836.0/848.5	>-47	-107	<-60	<-38
220-260	869.1/881.5/893.5	>-47	-107	<-60	<-38
350-390	824.5/836.0/848.5	>-46	-107	<-61	<-38
350-390	869.1/881.5/893.5	>-46	-107	<-61	<-38
108-136	824.5/836.0/848.5	>-45	-107	<-62	<-38
108-136	869.1/881.5/893.5	>-45	-107	<-62	<-38

Note:

- 1. Measurement Result = Rejection Ratio
- 2. Reference Sensitivity is the recorded value when the signal-to-noise ratio is 12dB.
- 3. Measurement Result = Reference Sensitivity- Spurious Value.

Page 26 of 26

Appendix I: Photographs of Test Setup

Refer to the Report No: AGC02294220802AP03A

Appendix II: Photographs of Test EUT

Refer to the Report No: AGC02294220802AP02A

----End of Report----

Conditions of Issuance of Test Reports

- 1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").
- 2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.
- 3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.
- 4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.
- 5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.
- 6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.
- 7.Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.
- 8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.
- 9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.